Dear support,
The following request to get daily max t2m over nov 2019 :
data = ct.catalogue.retrieve(
'reanalysis-era5-single-levels',
{
'variable': 'maximum_2m_temperature_since_previous_post_processing',
'format': 'netcdf',
'product_type': 'reanalysis',
'year': '2019',
'month':['11'],
'day':[
'01','02','03',
'04','05','06',
'07','08','09',
'10','11','12',
'13','14','15',
'16','17','18',
'19','20','21',
'22','23','24',
'25','26','27',
'28','29','30'
],
'time':[
'00:00','01:00','02:00',
'03:00','04:00','05:00',
'06:00','07:00','08:00',
'09:00','10:00','11:00',
'12:00','13:00','14:00',
'15:00','16:00','17:00',
'18:00','19:00','20:00',
'21:00','22:00','23:00'
],
'area' : "75/-25/25/45"
}
)
print(data)
returns a dataset containing only one attribute called mx2t_NON_CDM_NON_CDM :
<xarray.DataArray 'mx2t_NON_CDM' (time: 720, lat: 201, lon: 281)> dask.array<shape=(720, 201, 281), dtype=float32, chunksize=(48, 201, 281)> Coordinates: * lon (lon) float64 -25.0 -24.75 -24.5 -24.25 ... 44.25 44.5 44.75 45.0 * lat (lat) float64 25.0 25.25 25.5 25.75 26.0 ... 74.25 74.5 74.75 75.0 * time (time) datetime64[ns] 2019-11-01 ... 2019-11-30T23:00:00 Attributes: units: K long_name: Maximum temperature at 2 metres since previous post-proce... standard_name: mx2t_NON_CDM_NON_CDM Conventions: CF-1.6 history: 2020-02-12 11:02:36 GMT by grib_to_netcdf-2.16.0: /opt/ec... institution: ECMWF source: ECMWF
But when I do the same request on dec 2019, I get a dataset containing 2 parameters mx2t_0001_NON_CDM_NON_CDM and mx2t_0005_NON_CDM_NON_CDM :
[<xarray.DataArray 'mx2t_0001_NON_CDM' (time: 744, lat: 201, lon: 281)> dask.array<shape=(744, 201, 281), dtype=float32, chunksize=(48, 201, 281)> Coordinates: * lon (lon) float64 -25.0 -24.75 -24.5 -24.25 ... 44.25 44.5 44.75 45.0 * lat (lat) float64 25.0 25.25 25.5 25.75 26.0 ... 74.25 74.5 74.75 75.0 * time (time) datetime64[ns] 2019-12-01 ... 2019-12-31T23:00:00 Attributes: units: K long_name: Maximum temperature at 2 metres since previous post-proce... standard_name: mx2t_0001_NON_CDM_NON_CDM Conventions: CF-1.6 history: 2020-02-12 10:41:07 GMT by grib_to_netcdf-2.16.0: /opt/ec... institution: ECMWF source: ECMWF, <xarray.DataArray 'mx2t_0005_NON_CDM' (time: 744, lat: 201, lon: 281)> dask.array<shape=(744, 201, 281), dtype=float32, chunksize=(48, 201, 281)> Coordinates: * lon (lon) float64 -25.0 -24.75 -24.5 -24.25 ... 44.25 44.5 44.75 45.0 * lat (lat) float64 25.0 25.25 25.5 25.75 26.0 ... 74.25 74.5 74.75 75.0 * time (time) datetime64[ns] 2019-12-01 ... 2019-12-31T23:00:00 Attributes: units: K long_name: Maximum temperature at 2 metres since previous post-proce... standard_name: mx2t_0005_NON_CDM_NON_CDM Conventions: CF-1.6 history: 2020-02-12 10:41:07 GMT by grib_to_netcdf-2.16.0: /opt/ec... institution: ECMWF source: ECMWF]
Here is the request for dec 2019 :
data = ct.catalogue.retrieve(
'reanalysis-era5-single-levels',
{
'variable': 'maximum_2m_temperature_since_previous_post_processing',
'format': 'netcdf',
'product_type': 'reanalysis',
'year': '2019',
'month':['12'],
'day':[
'01','02','03',
'04','05','06',
'07','08','09',
'10','11','12',
'13','14','15',
'16','17','18',
'19','20','21',
'22','23','24',
'25','26','27',
'28','29','30','31'
],
'time':[
'00:00','01:00','02:00',
'03:00','04:00','05:00',
'06:00','07:00','08:00',
'09:00','10:00','11:00',
'12:00','13:00','14:00',
'15:00','16:00','17:00',
'18:00','19:00','20:00',
'21:00','22:00','23:00'
],
'area' : "75/-25/25/45"
}
)
print(data)
I also noticed the same behavior on minimum_2m_temperature_since_previous_post_processing on dec 2019.
Could you please tell me whether this is a normal behavior, and if so, which attribute to take into account between mx2t_001 and mx2t_005 ?
All the best
Julien
2 Comments
Michela Giusti
Hi
please have a look at the following link:
ERA5 CDS requests which return a mixture of ERA5 and ERA5T data (such as for November 2019)
Thanks
MIchela
Julien Soursou
Hi Michela,
Thanks for pointing this documentation, I definitely got my answers thanks !
All the best
Julien