For my thesis, I need to get the average of ERA5 land values at 15.00 and 16:00 for specific days in each month. To clarify, I've been trying the following:

import cdstoolbox as ct

@ct.application(title='Download data')
@ct.output.download()
@ct.output.download()
@ct.output.download()
def download_application():
    data1, data2, data3 = ct.catalogue.retrieve(
        'reanalysis-era5-land',
        {
            'variable': [
                '10m_u_component_of_wind', '10m_v_component_of_wind', '2m_temperature',
            ],
            'year': '2019',
            'month': '03',
            'day': [
                '05', '12', '19',
                '23', '24', '27',
                '28',
            ],
            'time': [
                '15.00',16:00',
            ],
            'area': [
                41, -80.5, 34,
                -74,
            ],
            'grid':['0.008333333', '0.00833333']
        }
    )

   temperature_mean = ct.cube.resample(data3, freq='day', dim='time', how='mean')

   uwind_mean = ct.cube.resample(data2, freq='day', dim='time', how='mean')

   vwind_mean = ct.cube.resample(data1, freq='day', dim='time', how='mean')
            
  return temperature_mean, uwind_mean, vwind_mean


With the goal of obtaining 7 two-dimensional arrays (one per day) for each variable, where each pixel contains the average of the estimates at 15.00 and 16.00.
But when I then try to visualize the output in Snap or Spyder, it makes almost no sense - there are 24 timesteps, of which 7(located in a seemigly random way along the list) seem to contain just the estimate made at 15.00.
Any suggestion on how to solve this matter would be dearly appreciated.