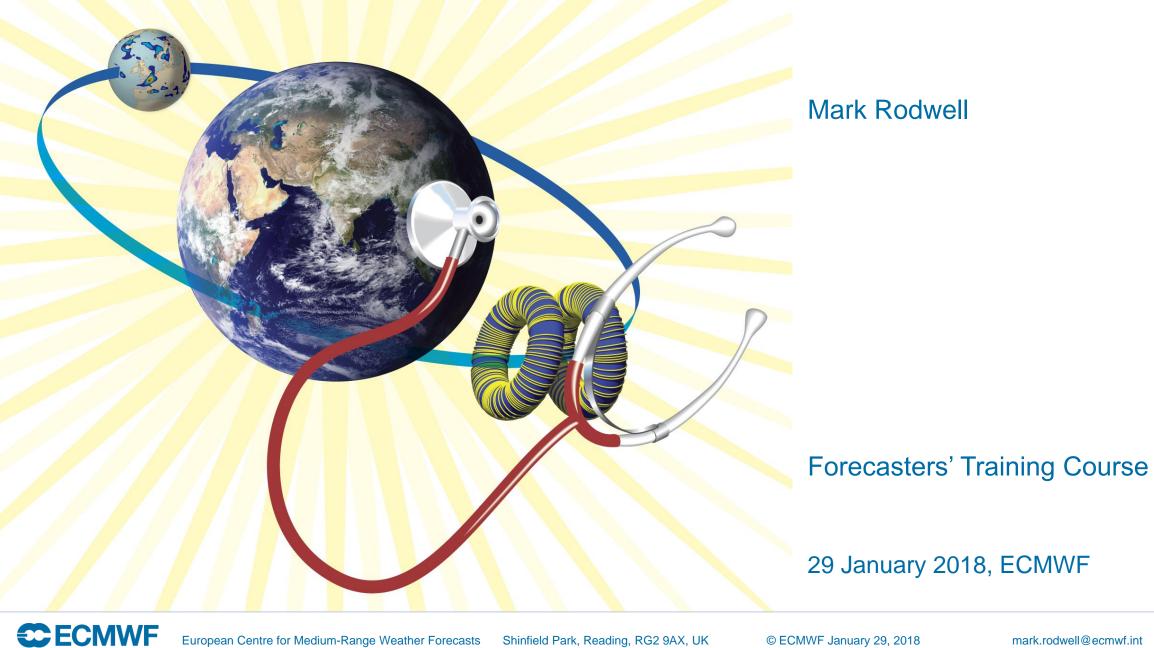
Model errors and diagnostic tools



mark.rodwell@ecmwf.int

© ECMWF January 29, 2018

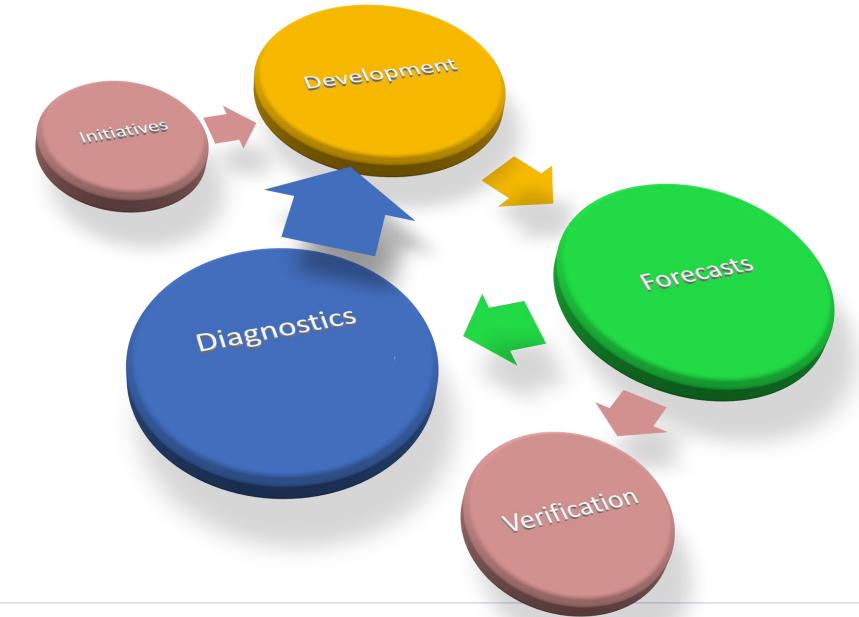
Outline

- The role of operational diagnostics
- Mean error
- Variance error (& predictability)
- A diagnostic framework for forecast system development

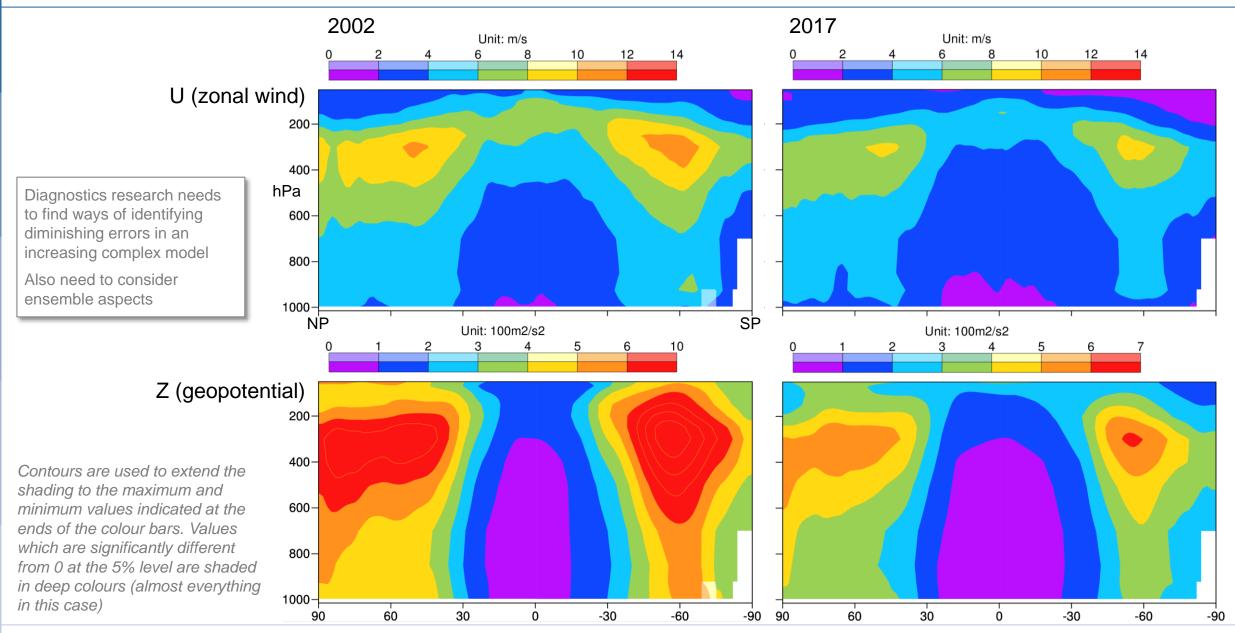
Outline

- The role of operational diagnostics
- Mean error
- Variance error (& predictability)
- A diagnostic framework for forecast system development

The role of Diagnostics in the development process



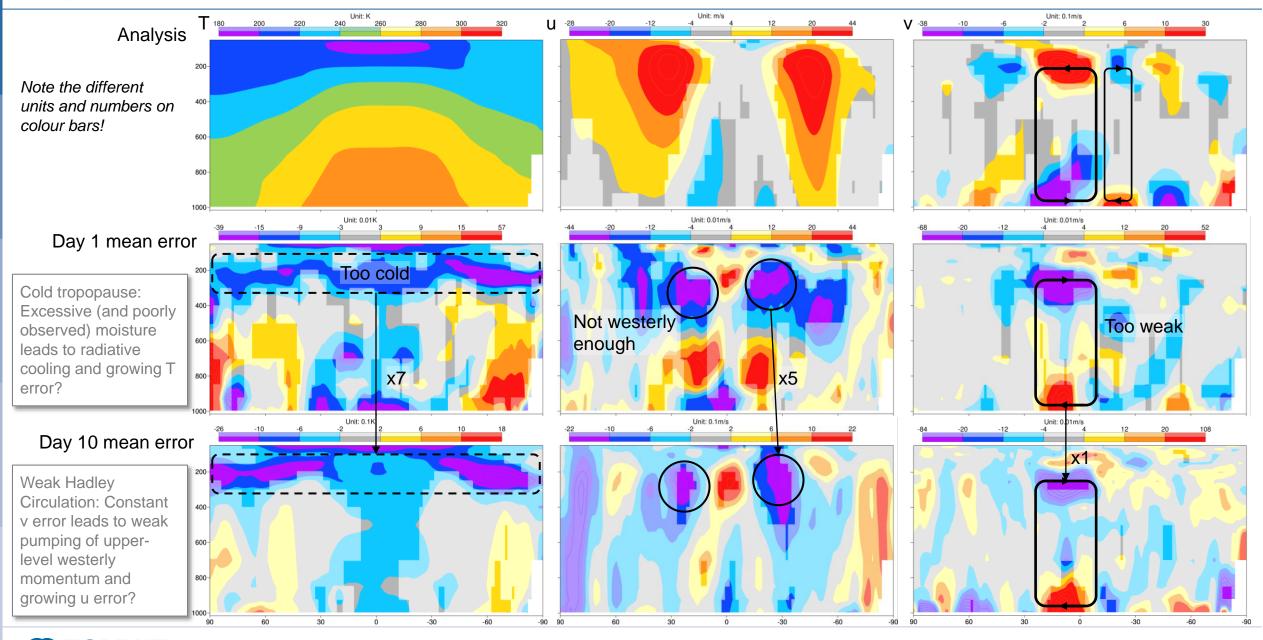
Progress over the last 15 years - [RMSE] latitude-pressure cross-sections DJF D+5



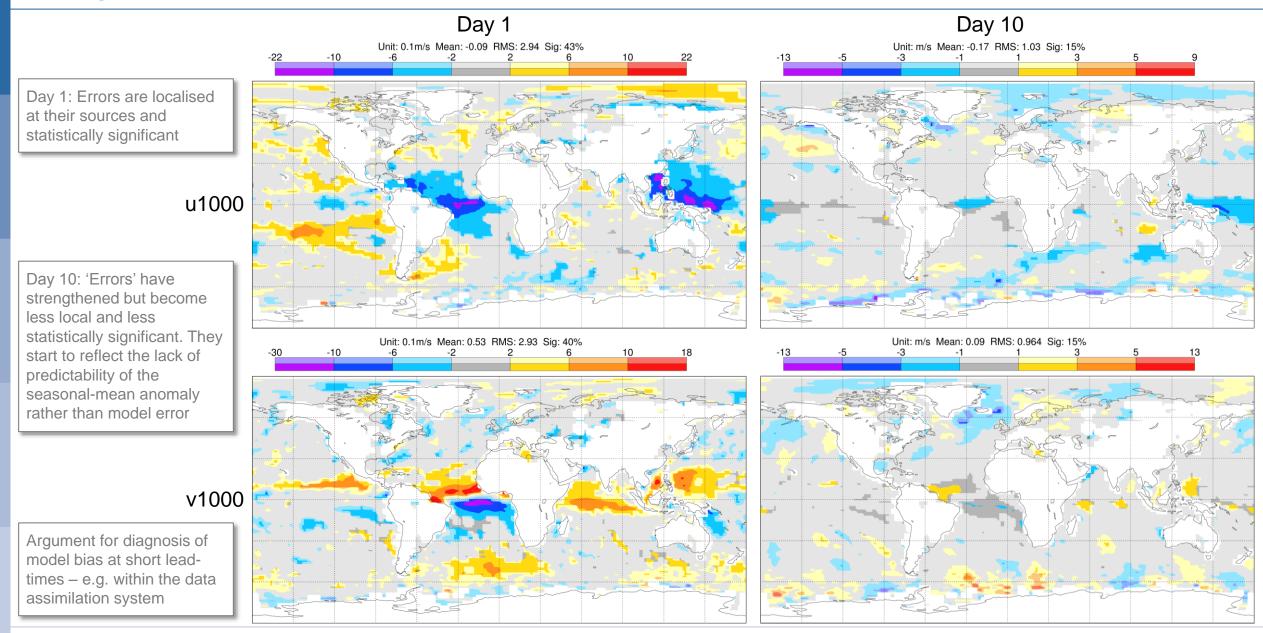
Outline

- The role of operational diagnostics
- Mean error
- Variance error (& predictability)
- A diagnostic framework for forecast system development

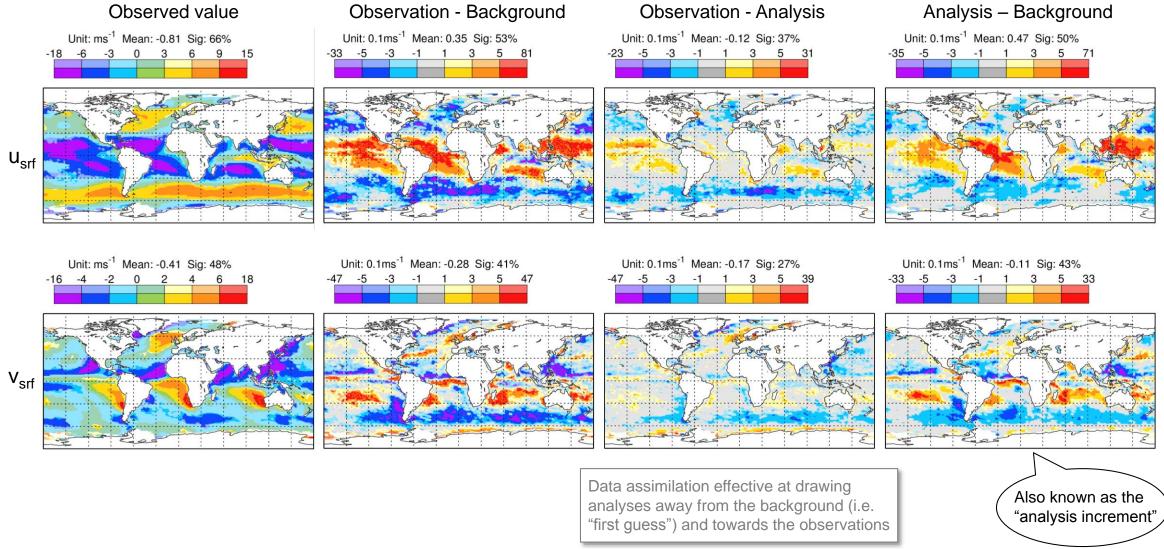
Key forecast biases - DJF 2016/17



Geographical view of mean wind errors – DJF 2016/17

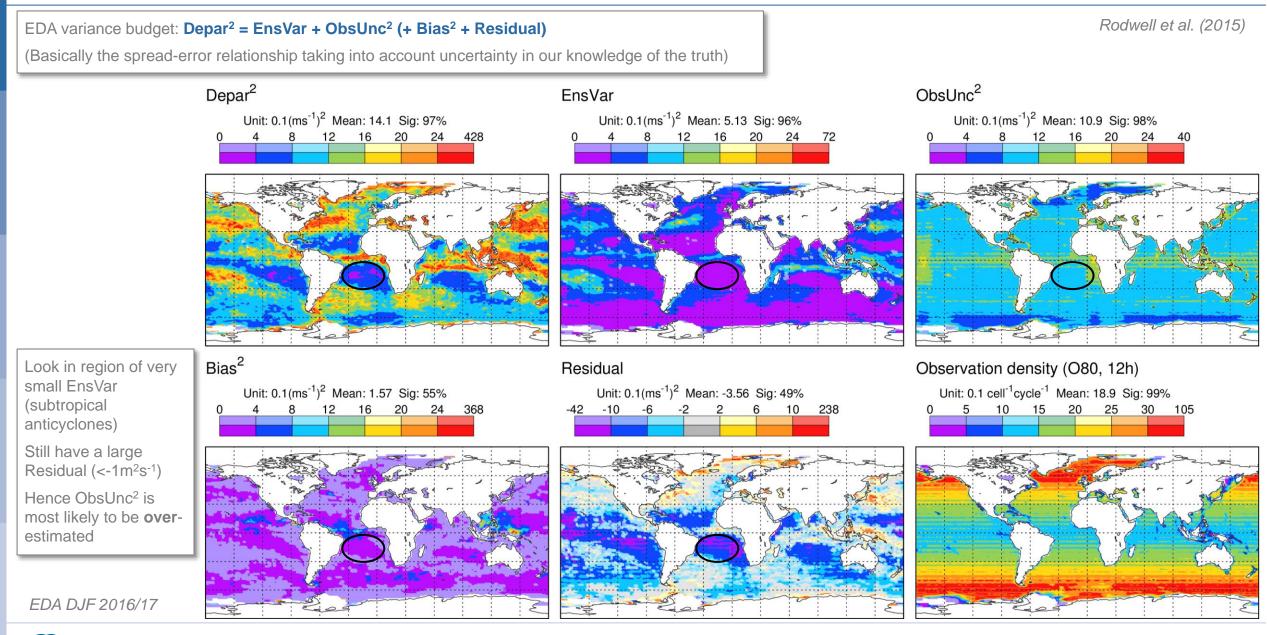


Mean assimilation diagnostics for "ASCAT" surface winds



DJF 2016/17 0 & 12Z Operational HRES analyses

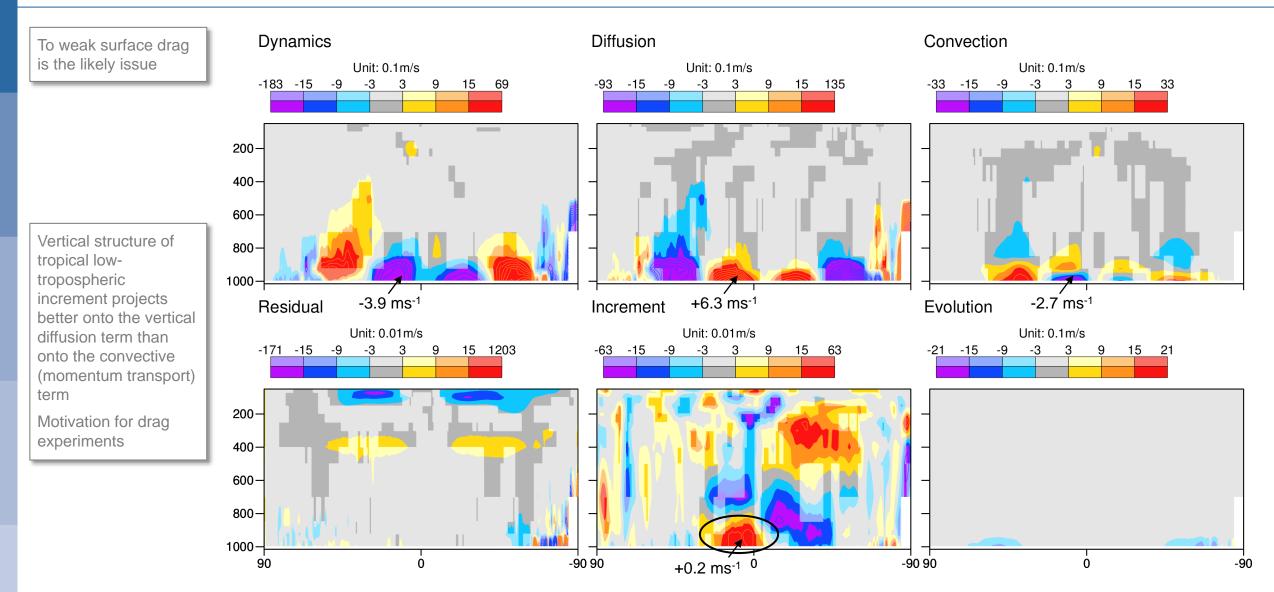
Do we under-estimate ASCAT observation uncertainty? - EDA says "No"!



EUROPEAN CENTRE For Medium-Range Weather Forecasts

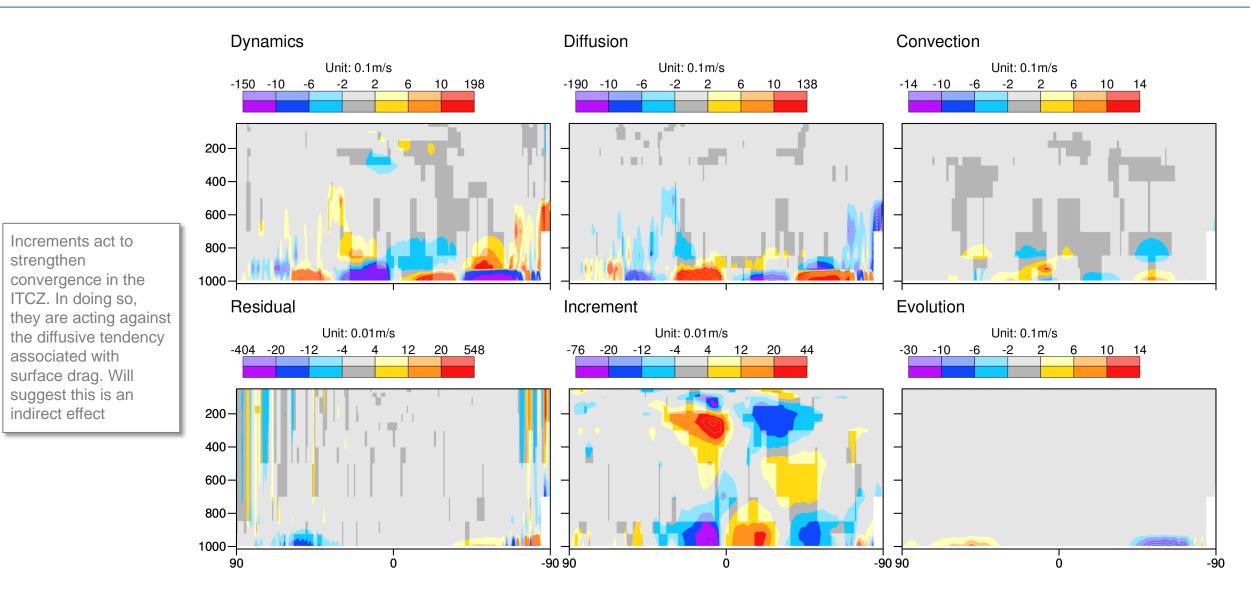
Mark J Rodwell

Budget of mean background process tendencies and analysis increments for [u]



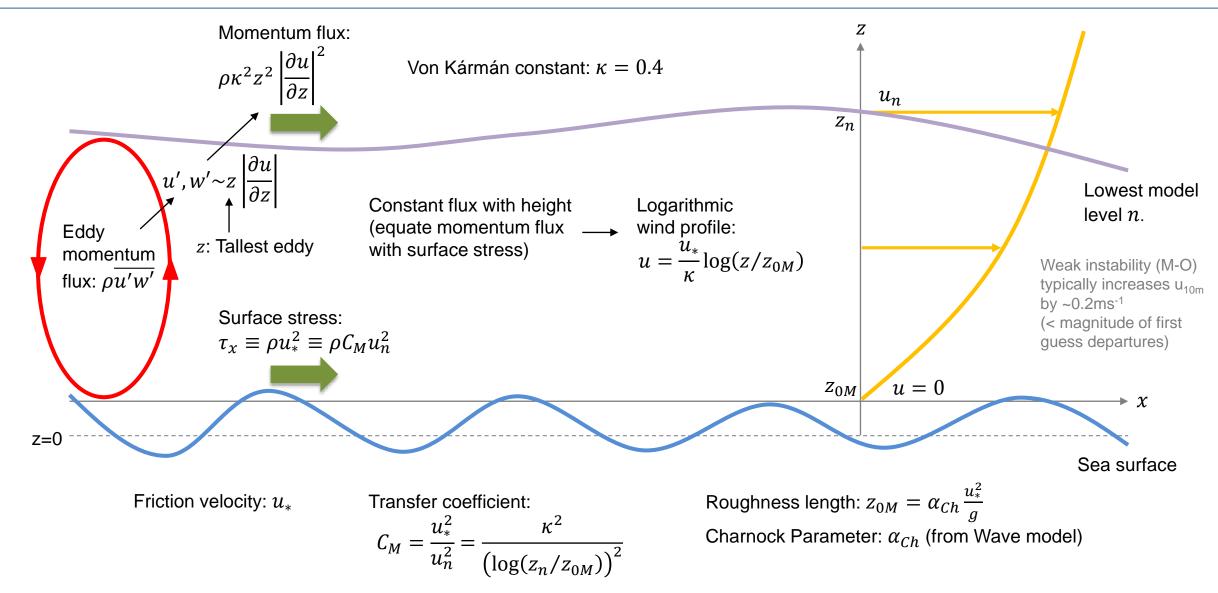
Data based on background forecast of the EDA control for DJF 2015/16. Tendencies are integrated over the data assimilation window (12 hours)

Budget of mean background process tendencies and analysis increments for [v]



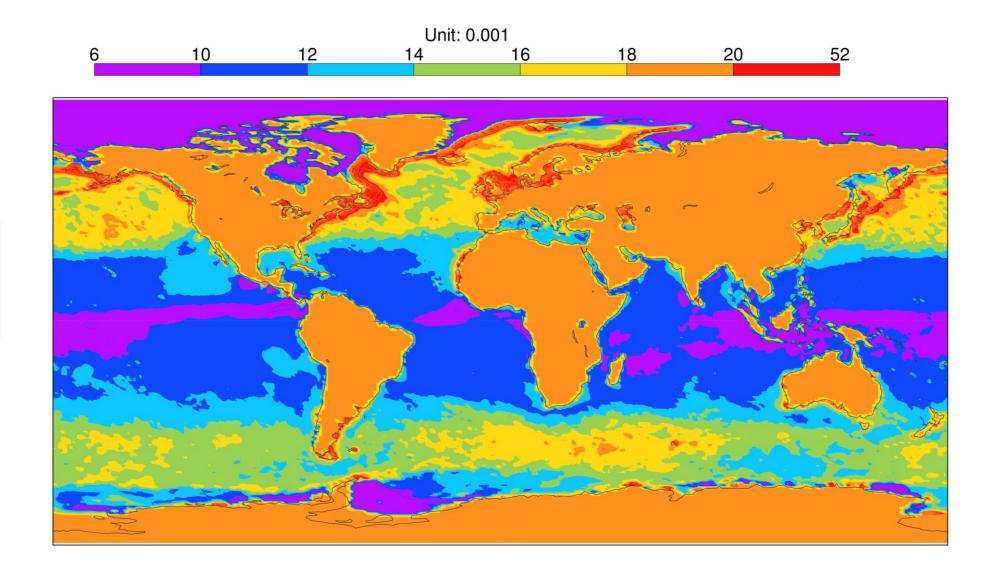
Data based on background forecast of the EDA control for DJF 2015/16. Tendencies are integrated over the data assimilation window (12 hours)

Momentum fluxes in the Surface Boundary Layer (neutrally stable, zonal flow)



Turning off wave model fixes $\alpha_{Ch} = 0.018$ and affects coefs for momentum, heat and moisture C_M , C_H , C_Q . In drag expts, C_M alone is scaled.

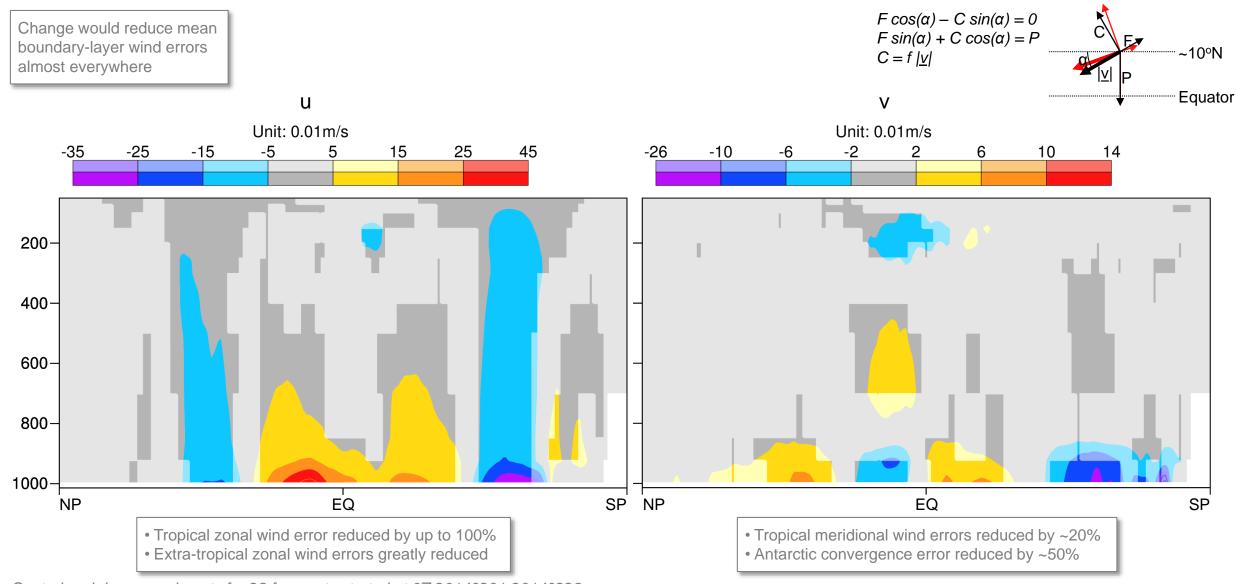
Charnock parameter from wave model (DJF 2016)



The wave model produces values in the tropics below 0.010 The historical uniform value is 0.018

Based on HRES analyses for 0 and 12Z 20151201-20160228

Zonal-mean change at day 1 for 110% $C_M - 90\% C_M$ (20% increase in transfer coef.)



Control and drag experiments for 28 forecasts started at 0Z 20140201-20140228

EUROPEAN CENTRE For Medium-Range Weather Forecasts

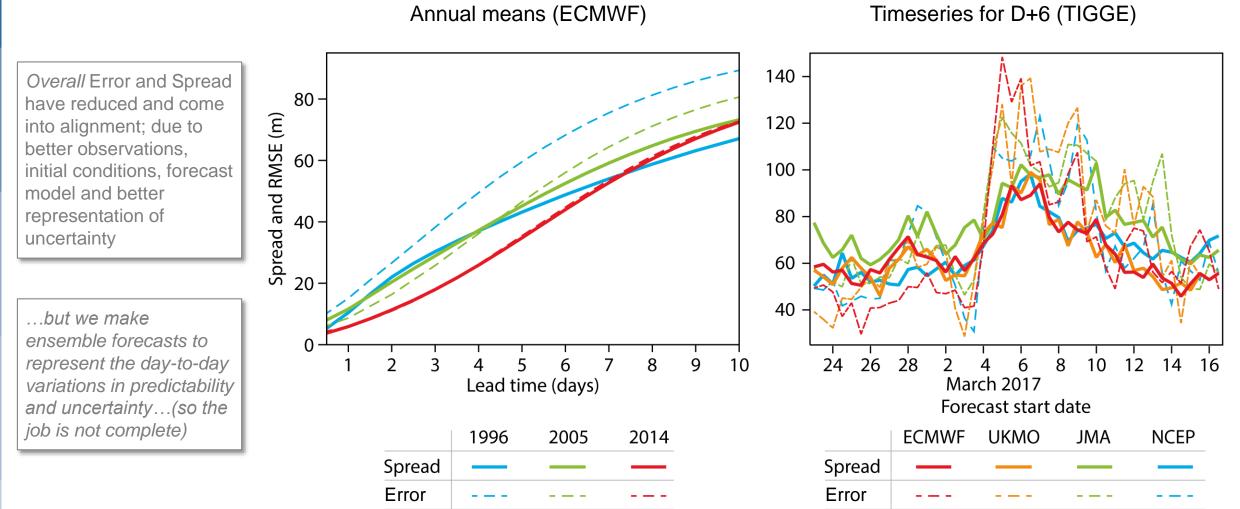
Outline

- The role of operational diagnostics
- Mean error
- Variance error (& predictability)
- A diagnostic framework for forecast system development

Ensemble spread and error

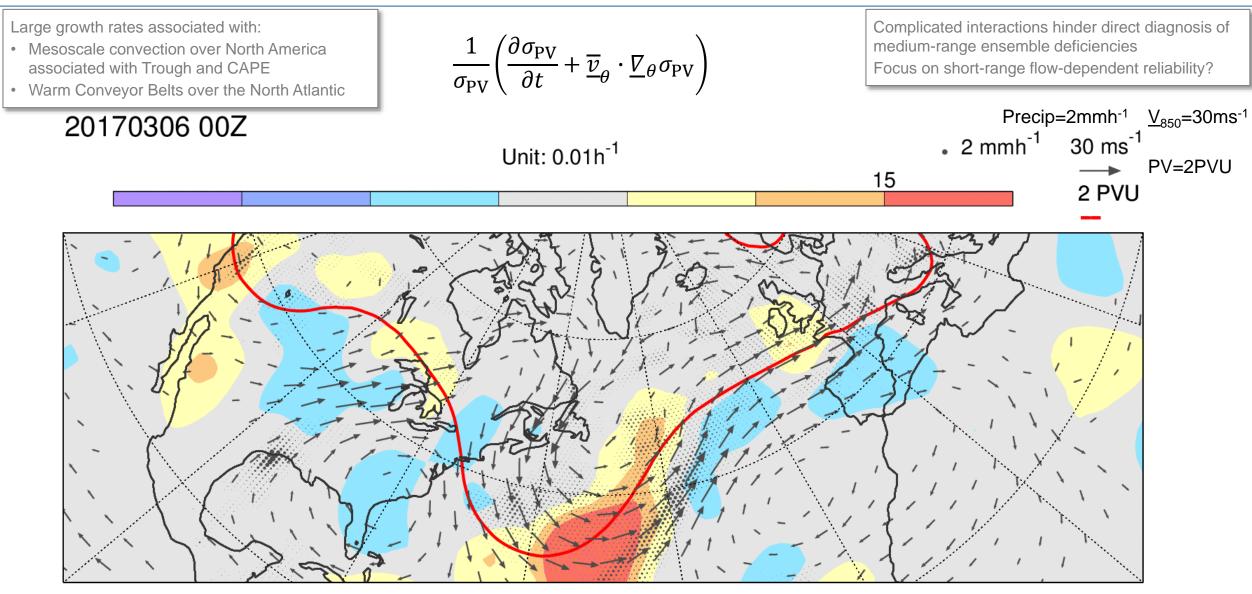
Z500

Rodwell et al (2018)



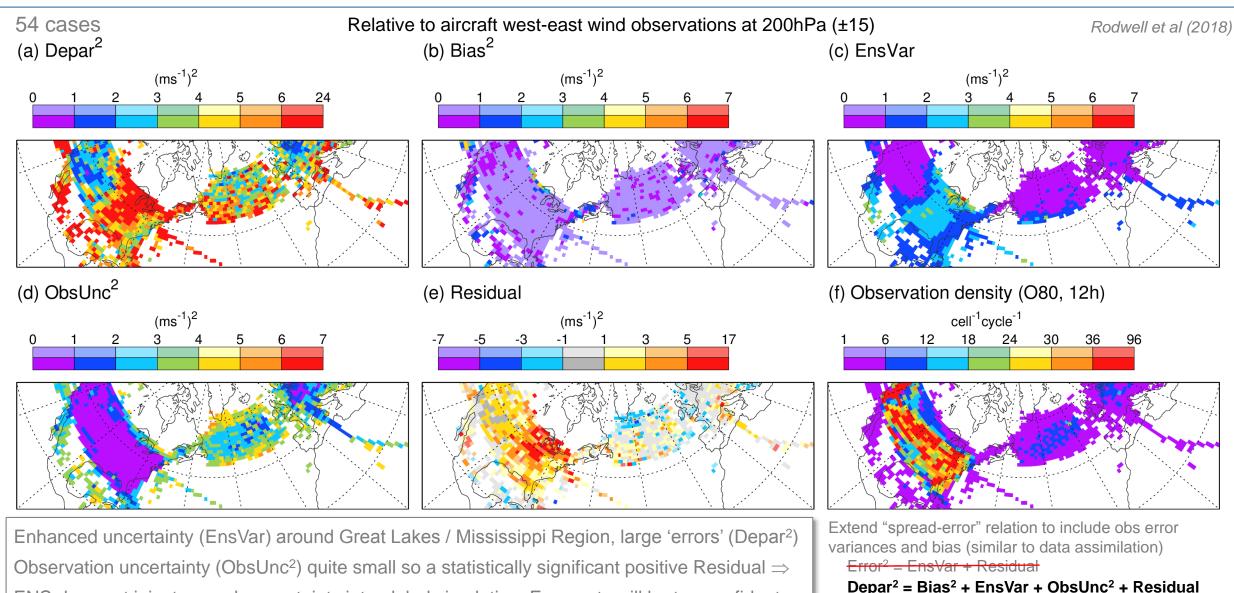
500 hPa geopotential height (Z500). "Error" is RMS of ensemble-mean error Spread = ensemble standard deviation (scaled to take account of finite ensemble size)

"Instantaneous" (0-12h) uncertainty growth-rates for $PV_{\theta=315K}$ following the flow



PV₃₁₅=2 & <u>v</u>₈₅₀ from control forecast, precipitation is ensemble-mean. 1d running-mean gives 12h-integrated growth rate with any diurnal cycle removed. T21 smoothed

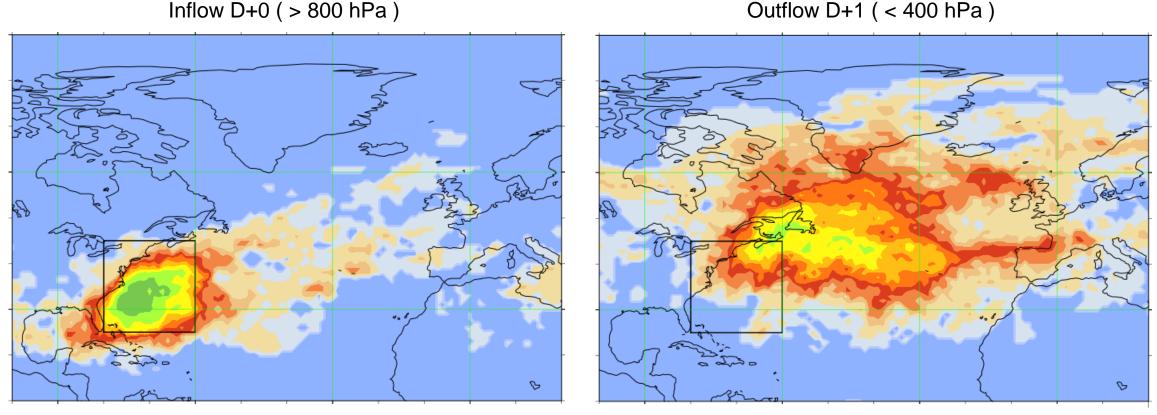
Short-range variance assessment for u200 in "trough/CAPE" situations using EDA



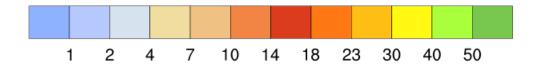
ENS does not inject enough uncertainty into global circulation. Forecasts will be too confident

Top 50 Warm Conveyor Belt inflow events in box indicated from Nov 15 – Oct 16

Inflow D+0 (> 800 hPa)



From Heini Werni. Based on trajectories ascending by more than 600 hPa in 2d



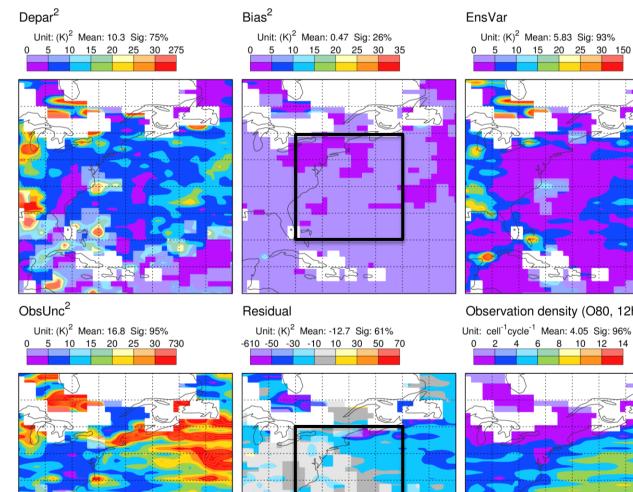
EDA variance assessment with MHS "all sky" mid-tropospheric humidity: Non-WCB

Bias and residual are not significant in absence of WCBs ✓

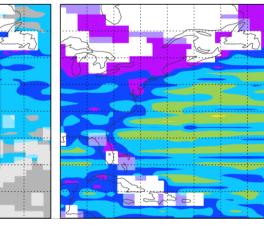
 $Depar^2 = Bias^2 + EnsVar + ObsUnc^2 + Residual$

Microwave channel 5

87 cases



Observation density (O80, 12h) Unit: cell⁻¹cycle⁻¹ Mean: 4.05 Sig: 96% 2 4 6 8 10 12 14



EDA variance assessment with MHS "all sky" mid-tropospheric humidity: WCB events

5

Bias²

50 cases

Increased Depar² and EnsVar in WCB situations

Negative residual largely due to large ObsUnc² (larger than the departures) in cloudy regions

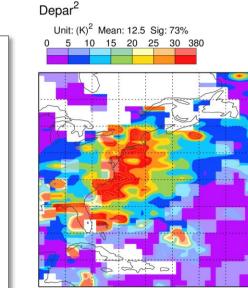
No simple fix here:

- Sometimes ObsUnc² inflated as surrogate for spatial and interchannel observation error correlations
- Good model representation of (e.q.) planetary boundary layer depth important for assimilation of observations with deep weighting functions

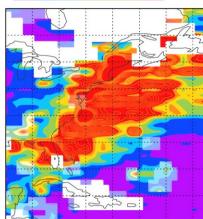
Diagnostic highlights potential and areas where work focus could help

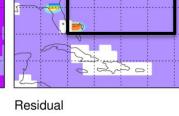
 $Depar^2 = Bias^2 + EnsVar + ObsUnc^2 + Residual$

Microwave channel 5



ObsUnc² Unit: (K)² Mean: 21.5 Sig: 92% 5 10 15 20 25 30 435

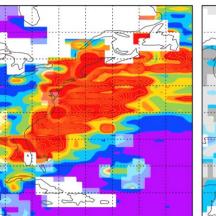


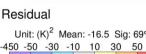


Unit: (K)² Mean: 0.87 Sig: 23%

10 15 20 25 30 70

Unit: (K)² Mean: -16.5 Sig: 69% -450 -50 -30 -10 10 30 50 210

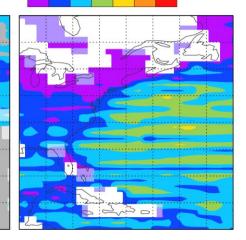




Unit: (K)² Mean: 6.62 Sig: 88% 10 15 20 25 30 90

EnsVar

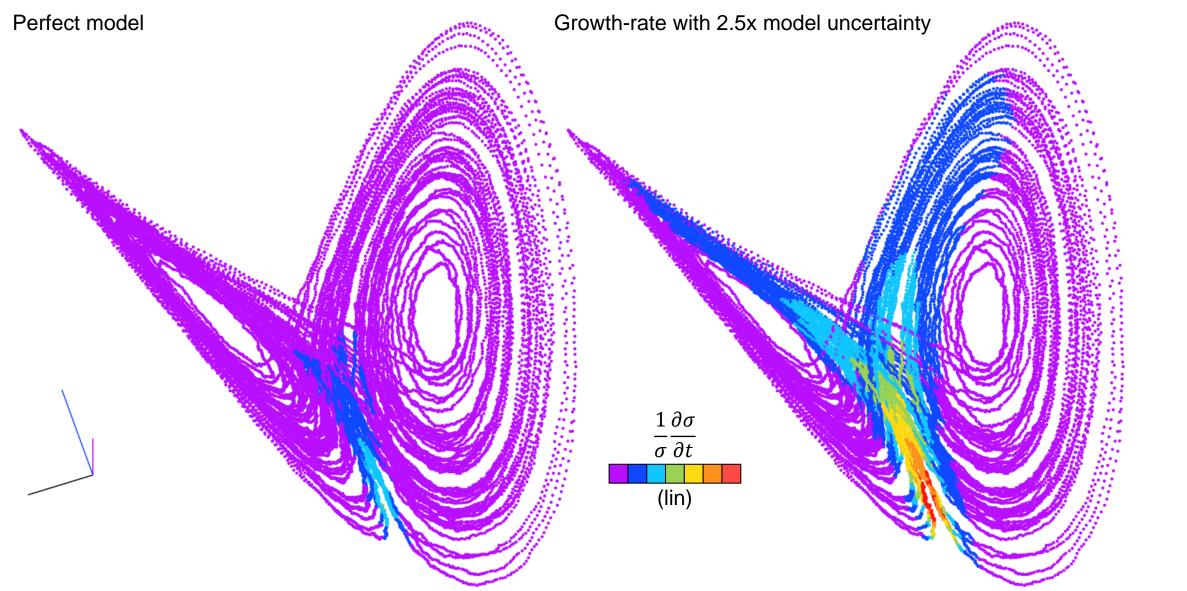
Observation density (O80, 12h) Unit: cell⁻¹cycle⁻¹ Mean: 3.95 Sig: 94% 4 6 8 10 12 14



Outline

- The role of operational diagnostics
- Mean error
- Variance error (& predictability)
- A diagnostic framework for forecast system development

Attractor of Lorenz '63 model with stochastic noise. Shading = uncertainty growth-rate



Lorenz '63 model uses original parameter settings. Ensembles initial perturbations (to the truth run) σ_0 , and model uncertainty σ_{X_t} , with $\sigma_0 \sim \sigma_{X_t} \delta t$ where δt is timestep

"van Lorenz" attractor: Forecast with fastest uncertainty growth-rate (black)

Ensemble with perfect model

Ensemble with increased model uncertainty

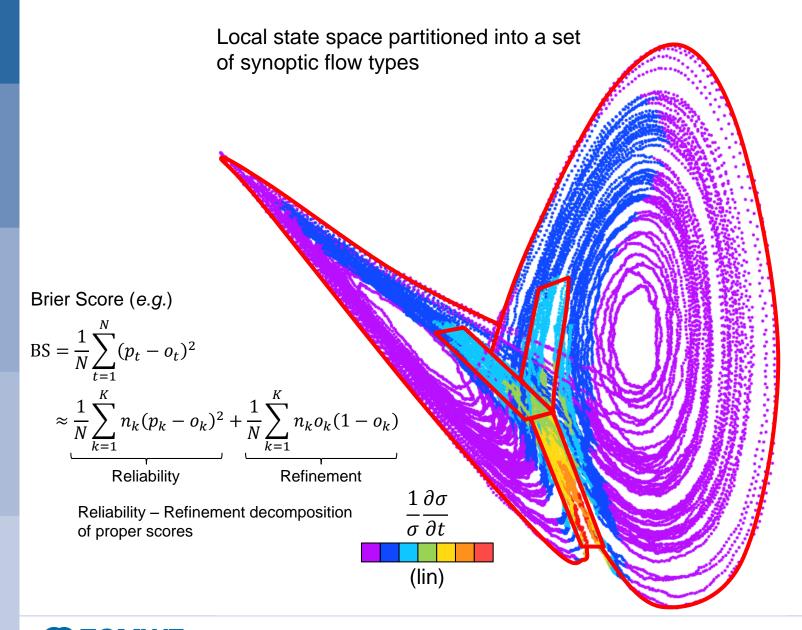
 $\frac{1}{\sigma} \frac{\partial \sigma}{\partial t}$

(lin)

Here, the truth will lie within the ensemble, but we know it is a poor forecast (we prescribed it)

The highlighted ensemble forecast is the one with largest uncertainty growth-rate (fortuitously this is the same for both models)

Possible useful framework for diagnosis of ensemble forecasting systems



Focusing on short-range local flowdependent reliability, we should obtain:

- Better skill at short-ranges (and thus into the medium-range)
- Better model and representation of uncertainty at all lead-times

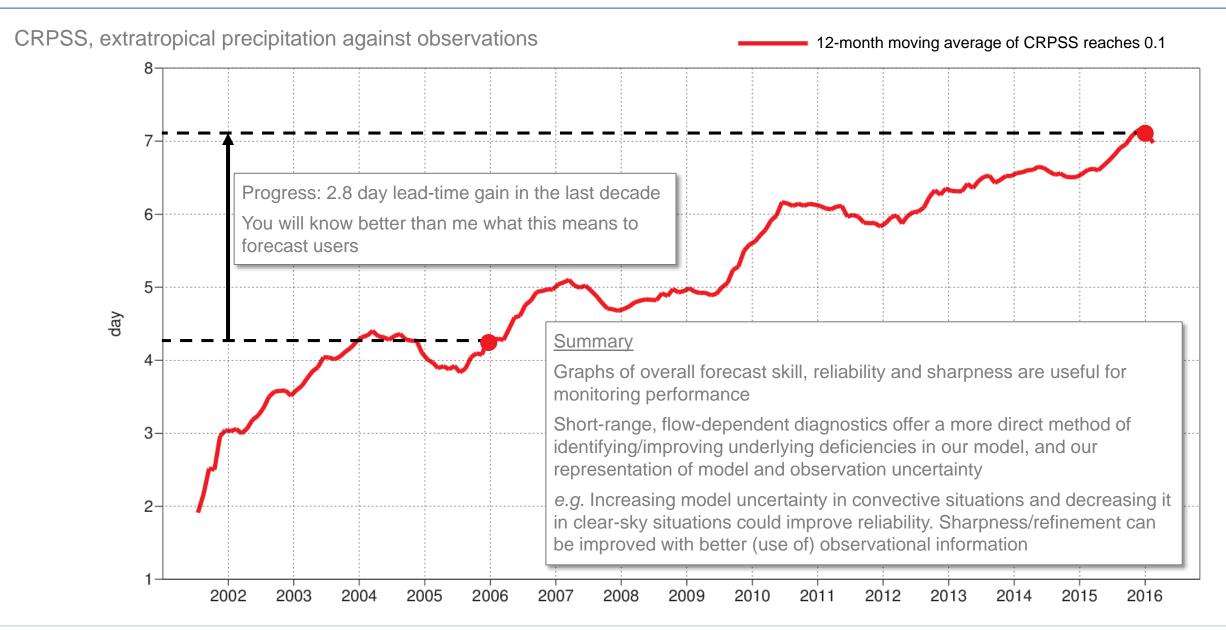
Can prioritise efforts on flow-types that contribute most to reliability aspect of a proper score

(Better observational information should improve the refinement aspect)

Thought experiment:

- Think of the k = 1, ..., K as a partition of initial local flow types
- (Probabilities will be reasonably constant for a given flow type if the flow-types are defined tightly-enough, and the event is local and at short-range).
- Improving reliability for a given flow type k_1 (bring p_{k_1} closer to o_{k_1}) will improve overall reliability but leave refinement essentially unchanged (definition of synoptic flow-type does not change).
- Hence local short-range skill should improve and we have a better model.

Trend in probabilistic forecast performance & Summary



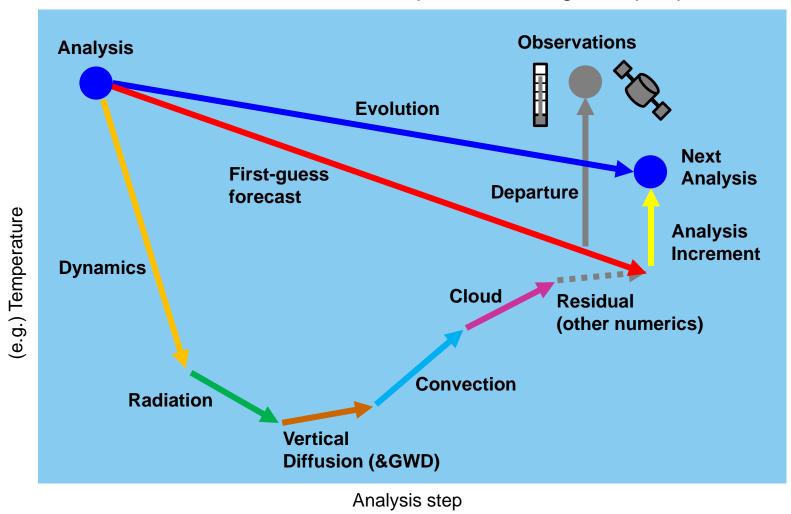
Thank you

The Initial Tendency approach to diagnosing model error

Analysis increment corrects firstguess error, and draws next analysis closer to observations.

First-guess = sum of all processes

Relationship between increment and individual process tendencies can help identify key errors.



29

Schematic of the data assimilation process – a diagnostic perspective

"Initial Tendency" approach discussed by Klinker & Sardeshmukh (1992). Refined by Rodwell & Palmer (2007)