Post-Processing of Ensemble Forecasts

Tim Stockdale / Renate Hagedorn
European Centre for Medium-range Weather Forecasts

t.stockdale@ecmwf.int

_c EC MWF © ECMWF



Outline

* Motivation
* Methods
 Training data sets

* Results

This lecture is focussed on application to medium-range forecasts, but the
theory and methods are general.

e
- ECMWF PREDICTABILITY TRAINING COURSE 2017: POST-PROCESSING OF ENSEMBLE FORECASTS



Motivation

 Raw ENS forecasts are subject to forecast bias and dispersion errors, i.e. uncalibrated

» The goal of calibration is to correct for such known model deficiencies, i.e. to construct
predictions with statistical properties similar to the observations

* A number of statistical methods exist for post-processing ensembles
- Calibration needs a record of prediction-observation pairs

- Calibration is particularly successful at station locations with long historical data record
(-> downscaling)
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Calibration methods

Bias correction

Multiple implementation of deterministic MOS

Ensemble dressing

Bayesian model averaging

Non-homogenous Gaussian regression

Logistic regression

Analogue method
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‘i‘ Bias correction

e As a simple first order calibration a bias correction can be applied:
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e This correction is added to each ensemble member, i.e. spread

is not affected

e Particularly useful/successful at locations with features not resolved by

model and causing significant bias
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Bias correction

Station: ULAN-UDE (# 30823, Height: 515m) Lead: 120h
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Multiple implementation of deterministic MOS

* A possible approach for calibrating ensemble predictions is to simply correct each
iIndividual ensemble member according to its deterministic model output statistic (MOS)

« BUT: this approach is conceptually inappropriate since for longer lead-times the MOS
tends to correct towards climatology

— all ensemble members tend towards climatology with longer lead-times
— decreased spread with longer lead-times

— in contradiction to increasing uncertainty with increasing lead-times

* (Discontinued) experimental product at http://www.nws.noaa.gov/mdl/synop/enstxt.php
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Ensemble dressing

 Define a probability distribution around each ensemble member (“dressing”)
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« A number of methods exist to find appropriate dressing kernel (“best-member” dressing,
“error” dressing, “second moment constraint” dressing, etc.)

» Average the resulting n_.. distributions to obtain final pdf

ens
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‘i‘ Ensemble Dressing

e (Gaussian) ensemble dressing calculates the forecast probability for the
quantiles g as:

nens

Pv<g)=— 3 o 3%

ens 1=l Op

CDF of standard Gaussian distribution
bias-corrected ensemble-member

with: ®

X

e Key parameter is the standard deviation of the Gaussian dressing kernel

e Simple approach: “best member” dressing, take standard deviation from
r.m.s. difference of (obs-best member) from training set.
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‘i‘ Ensemble Dressing

e Common approach: second-moment constraint dressing
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error variance of the
ensemble-mean FC

average of the ensemble variances
over the training data

eBUT: this can give negative or unstable variances, if model is already
near to or over-dispersive.

eEnsemble dressing to generate a pdf is only suitable for under-dispersive
forecasts.

Training Course 2017: Post-Processing of Ensemble Forecasts 10




Bayesian Model Averaging

e BMA closely linked to ensemble dressing

e Differences:

» dressing kernels do not need to be the same for all ensemble members
> different estimation method for kernels

e Useful for giving different ensemble members (models) different weights:

P(v<0) =W1(I{q_xl}+wef®{q_x‘1

O, j=2 O,

with: w; +w,(n,c-1) =1

e Estimation of weights and kernels simultaneously via maximum
likelihood, i.e. maximizing the log-likelihood function:

N Nens
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0, 9. = Gaussian PDF's
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BMA: example

90% prediction interval of BMA
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Ref: Raftery et al., 2005, MWR
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BMA: recovered ensemble members

100 equally likely values
drawn from BMA PDF
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Non-homogenous Gaussian Regression

e In order to account for existing spread-skill relationships we model
the variance of the error term as a function of the ensemble spread s,:

q-(a+bx,,)
I \/ c+ds,..’

e The parameters a,b,c,d are fit iteratively by minimizing the CRPS of the
training data set

Piv<qg)=®

e Interpretation of parameters:
» bias & general performance of ens-mean are reflected inaand b
> large spread-skill relationship: ¢= 0.0, d= 1.0
» small spread-skill relationship: d= 0.0

e Calibration provides mean and spread of Gaussian distribution

(called non-homogenous since variances of regression errors not the same for all values
of the predictor, i.e. non-homogenous)
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Logistic regression

e Logistic regression is a statistical regression model for Bernoulli-

distributed dependent variables

P(V < q) — eXp (IBO +161)_(ens
- 1+ eXp (IBO T 181)_(ens

e P is bound by 0,1 and produces an s-shaped prediction curve

» steepness of curve (f;) increases with decreasing spread, leading to
sharper forecasts (more frequent use of extreme probabilities)

» parameter f, corrects for bias, i.e. shifts the s-shaped curve
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How does logistic regression work?

GP: 51N, 9E, Date: 20050915, Lead: 96h
1.0 W

o
o
|

probability
(@)
D

\

\

0.0

. ens-mean anomaly
L v PREDICTABILITY TRAINING COURSE 2017: POST-PROCESSING OF ENSEMBLE FORECASTS
s ECMWF

+ training data
100 cases (EnsMean)
(height = obs yes/no)

+ test data

(51 members)
(height = raw prob)

$ calibrated prob

event observed

Event did
not happen
in this case

yes/no (0/1)
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Example: LR-Probability worse!

GP 51N, 9E Date 2005091 ,Lead 168h

100 - R TR ]
I ~
0.8+ ]
> 0.6 |
s I
S /
S 0.4 /
I
e —
0 5

ens-mean anomaly

- ECMWF PREDICTABILITY TRAINING COURSE 2017: POST-PROCESSING OF ENSEMBLE FORECASTS

+ training data
100 cases (EM)
height of obs y/n

+ test data
(51 members)
(height = raw prob)

< calibrated prob

event observed
yes/no (0/1)
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Example: LR-Probability (much) better!

GP: 15.5S, 149.5W, Date: 20050915, Lead: 168h
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+ training data
100 cases (EM)
(height = obs y/n)

+ test data
(51 members)
(height = raw prob)

 calibrated prob

event observed
yes/no (0/1)
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Analogue method

 Full analogue theory assumes a nearly infinite training sample
« Justified under simplifying assumptions:

— Search only for local analogues

— Match the ensemble-mean fields

— Consider only one model forecast variable in selecting analogues

» General procedure:

— Take the ensemble mean of the forecast to be calibrated and find the n,, closest forecasts to this in the
training dataset

— Take the corresponding observations to these n_ re-forecasts and form a new calibrated ensemble

— Construct probability forecasts from this analogue ensemble

R
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Analogue method

Forecast to be calibrated

Closest re-forecasts

Corresponding obs

Probabilities of analog-ens

Verifying observation
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Training datasets

« All calibration methods need a training dataset, containing a number of forecast-observation pairs
from the past

— The more training cases the better

— The model version used to produce the training dataset should be as close as possible to the
operational model version

* For research applications often only one dataset is used to develop and test the calibration
method. In this case cross-validation has to be applied.

* For operational applications one can use:
— Operational available forecasts from e.g. past 30-40 days

— Data from a re-forecast dataset covering a larger number of past forecast dates / years

R
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“Perfect” Reforecast Data Set
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Early motivating results from Hamill et al., 2004

(a) Week 2 Sfc T, Raw Ens (b) Sfc T, Bias Corr. Ens.
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The 45-day unified ENS ensemble system

 Unified ENS ensemble system enables the production of a unified reforecast
data set, to be used by:

— EFI model climate
— 15 day ENS calibration
— Monthly forecasts anomalies and verification

« Efficient use of resources (computational and operational)

 “Realistic” reforecast system has to be an optimal compromise between
affordability and needs of all three applications

» Use 11 member ensemble, twice per week, for last 20 years

R
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Unified ENS Reforecasts
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Testing the benefits of reforecast calibration

(Reference: Hagedorn et al, 2012)

* One goal of the TIGGE project is to investigate whether multi-model predictions are an
improvement to single model forecasts

» The goal of using reforecasts to calibrate single model forecasts is to provide improved
predictions

* Questions:
— What are the relative benefits (costs) of both approaches?
— What is the mechanism behind the improvements?

— Which is the “better” approach?

* TIGGE stands for: THORPEX Interactive Grand Global Ensemble

R
Nt ECMWF PREDICTABILITY TRAINING COURSE 2017: POST-PROCESSING OF ENSEMBLE FORECASTS

26



Comparing 9 TIGGE models & the MM
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Comparing 4 TIGGE models & the MM
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Comparing 4 TIGGE models, MM, EC-CAL
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Comparing 4 TIGGE models, MM, EC-CAL
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Mechanism behind improvements
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Mechanism behind improvements

RMSE & SPREAD / K
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Mechanism behind improvements

RMSE & SPREAD / K
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What about station data?

T-2m, 250 European stations
DJF 2008/09
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Impact of calibration & MM in EPSgrams
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A separate study ...

* (Reference: Hamill, 2012)
« Examining precipitation forecasts over the US

* Four high skill models; compare ECMWF “re-forecast calibrated” with multi-model (no re-
forecasts)

e Conclusions:

» “Raw multimodel PQPFs were generally more skillful than reforecast-calibrated ECMWF PQPFs
for the light precipitation events but had about the same skill for the higher-precipitation events”

» “Multimodel ensembles were also postprocessed using logistic regression and the last 30 days of
prior forecasts and analyses; Postprocessed multimodel PQPFs did not provide as much
improvement to the raw multimodel PQPF as the reforecast-based processing did to the ECMWF
forecast.”

* “The evidence presented here suggests that all operational centers, even ECMWEF, would benefit
from the open, real-time sharing of precipitation forecast data and the use of reforecasts.”
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Summary on MM vs. calibration

* What are the relative benefits/costs of both approaches?

— Both multi-model and a reforecast calibration approach can improve predictions, in particular
for (biased and under-dispersive) near-surface parameters

* What is the mechanism behind the improvements?
— Both approaches correct similar deficiencies with a similar level of improvement
* Which is the “better” approach?

— On balance, reforecast calibration seems to be the easier option for a reliable provision of
forecasts in an operational environment

— Both approaches can be useful in achieving the ultimate goal of an optimized, well tuned
forecast system

R
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Overall summary

» The goal of calibration is to correct for known model deficiencies
« A number of statistical methods exist to post-process ensembles
- Each method has its own strengths and weaknesses

— Analogue methods seem to be useful when large training dataset available
— Logistic regression can be helpful for extreme events not seen so far in training dataset

— NGR method useful when strong spread-skill relationship exists, but relatively expensive in
computational time

« Greatest improvements can be achieved on local station level

* Bias correction constitutes a large contribution for all calibration methods

- ECMWEF reforecasts are a very valuable training dataset for calibration

R
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