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Predicting weather and climate: Why is it so hard?

National Geographic Creative

The Earth System is complex, huge and chaotic and we do not have
sufficient resolution to resolve all important processes.
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How do we treat uncertainties in weather forecasts?
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Ensemble forecasts can go wrong.

We introduce stochastic parametrisation schemes and perturbations
to initial conditions to improve ensemble spread.

These schemes are typically “local” and lack physical justification.
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Forecast skill is still improving

Higher resolution in weather models→ improved forecast skill.
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The future of High Performance Computing

I Weather and climate models are high performance computing
applications.

I Individual processors will not be faster.
→ Parallelisation (> 106 parallel processing units).

I Power consumption will be a big problem.

I Scalability and performance will influence decisions in model
development.

The free lunch is over.
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Less numerical precision→ more computing power

Double precision (64 bits) is used almost exclusively in weather and
climate modelling.

Reduce numerical precision

→ lower power, higher performance.

→ higher resolution or increased complexity.

→ more accurate predictions of future weather and climate.

Temperature in Reading:
double precision (64 bits): 14.561192512512207◦C
single precision (32 bits): 14.5611925◦C
half precision (16 bits): 14.5625◦C
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A short introduction to bit representation
I The computer represents an integer number as a string of 32

bits. Each bit represents a power of two:

102090 = 0·20+1·21+0·22+1·23+0·24+0·25+1·26... =
31∑

i=0

bi2i

I A real number a is represented as a 64 bit floating point number:

a = (−1)S

(
1 +

52∑
i=1

b−i2−i

)
2E , where E =

(
10∑

i=0

ei2i

)
− 1023.

1 2 3 4 5 6 7 8

sign exponent significand
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Approaches to inexact floating point units
Stochastic processor

I If we reduce the applied voltage or the wall clock time beyond a
certain level, we will get hardware errors, but we will save power.

I The error rate of a stochastic processor can be reduced
massively, if the architecture is changed.

sign exponent significand

Pruning
Parts of the CPU that are hardly used or do not have a strong
influence on significant bits are removed.
sign exponent significand

Field Programmable Gate Array (FPGA)

I FPGAs are integrated circuits that can be configured by the user.
I Numerical precision can be customised to the application.

sign exponent significand

Easiest way: double→ single→ half.
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Why should we use reduced precision in weather and
climate predictions?

This is what we want to represent in an atmosphere model.
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climate predictions?
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Why should we use reduced precision in weather and
climate predictions?

Can we represent the atmosphere like this?

Antibes 1916
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Two research questions
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Will our models fail if we reduce precision?

Can we identify the optimal level of precision?
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Lorenz ’96 on FPGAs

I We implemented the Lorenz ’96 model on FPGAs in cooperation
with the group of Wayne Luk at Imperial College.

I We scale the size of the Lorenz model to the size of a high
performance application with more than 100 million
degrees-of-freedom.

I Simulations with reduced precision (17 bits for X; 14 bits for Y)
are more than two times faster compared to simulations in single
precision.

I The error in these simulations is comparable to a parameter
change of 1%.

Düben et al. JAMES 2015, Russel et al. FCCM 2015.
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Data assimilation with reduced precision
PhD student Samuel Hatfield
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Data assimilation in Lorenz’95 using an Ensemble Kalman filter.

A large ensemble at low precision is better than a small ensemble at
high precision at the same computing cost.

We gain almost one “day” in terms of predictability.
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Reduced precision in an atmosphere model

I We calculate weather forecasts with a spectral dynamical core
(full 3D dynamics on the globe but no physics).

I Floating point precision is reduced to 20 bits (instead of 64)
using an emulator in almost the entire model.

I We estimate savings for reduced precision in cooperation with
computer scientists (the groups of Krishna Palem - Rice
University, Christian Enz - EPFL and John Augustine - IITM).

To save power a reduction in precision is much more efficient when
compared to a reduction in resolution.

Studies with programmable hardware (FPGAs) confirm this result.

Düben et al. MWR 2015; Düben et al. DATE 2015; Düben et al. JAMES 2015; Russel, Düben et al. FCCM 2015.
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Reduced precision in an atmosphere model

Resolution Precision in Normalised Mean error
number of bits Energy Demand Z500 at day 2

235 km 64 1.0 2.3
315 km 64 0.47 4.5
235 km 20 0.29 2.5
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ECMWF’s weather forecast model in single precision

I Ensemble forecasts and long-term simulations in double and
single precision are almost identical.

I 40% speed-up.
I Single precision for global simulations at 2.5 and 1.0 km

resolution.
Düben and Palmer MWR 2014; Váňa, Düben et al. MWR 2017
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Two research questions
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Will our models fail if we reduce precision? - No!

Can we identify the optimal level of precision?
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Rounding errors adjusted to model error

The uncertainty of initial conditions provides the level for precision at
the beginning of the forecast.

Error growth of errors in initial conditions is roughly exponential.

Rounding errors will decrease exponentially with the number of bits.

→ Precision should be reduced linearly with forecast lead time
proportional to the leading Lyapunov exponent.

This would reduce data volume by a factor of two.

Limitations: Linear error growth of model error and seasonal
predictions.
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Rounding errors adjusted to model error

Mean Square Error of simulations with Lorenz’95 and Continuous
Ranked Probability Skill for data of ECMWF’s ensemble forecasts.

Rounding errors are clearly linked to model error.

Promising! However, more tests are needed.

Düben et al. JAMES 2015, Cooper, Düben et al. in prep. for MWR
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Compare rounding errors with stochastic
parametrisation schemes

I Stochastic parametrisation schemes use random forcing with
specific mean and variability to improve predictability.

I Rounding errors will generate a forcing that is added to the
differential equations that is uncorrelated in space and time.

Can we design noise from rounding errors to replace the random
forcing of stochastic parametrisation schemes.

We study a Burgers equation model with stochastic turbulent closure
scheme.

Peter Düben Page 19
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Compare ronding errors with stochastic
parametrisation schemes
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Rounding errors can be hidden by stochastic parametrisation
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Rounding errors can represent sub-grid-scale variability.

This study is extremely idealized.
Düben and Dolaptchiev TCFD 2015
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Two research questions
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Will our models fail if we reduce precision? - No!

Can we identify the optimal level of precision? - Yes!
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One more research questions

Can a study of numerical precision help to understand model
uncertainty and model error?

Peter Düben Page 22



A scale-selective approach

I Spectral models allow to treat different scales at different
precision.

I We can push the small scales harder than the large scales.

I This is intuitive due to the high inherent uncertainty in small
scale dynamics (parametrisation, viscosity, data-assimilation,...).

I The smallest scales are most expensive.

Peter Düben Page 23



A scale-selective approach
PhD student Tobias Thornes

A scale-dependent reduction in precision in the surface
quasi-geostropic equations.

Forecast simulations confirm that a scale-selective approach is much
more efficient than a uniform precision reduction.

Scale dependent levels of rounding errors should be used to develop
stochastic parametrisation schemes.

Thornes, Düben and Palmer QJRMS 2017
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Analyse precision to learn about error and uncertainty

I Superparametrisation is running a two-dimensional cloud
resolving model in each grid-cell of a global simulation.

I Superparametrisation improves tropical predictions but it is very
expensive.

I We integrate the cloud resolving model using emulated reduced
precision.

Figure source: http://www.ucar.edu/communications/quarterly/summer06/cloudcenter.jsp
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Analyse precision to learn about error and uncertainty
I We automate the search for reduced precision to find the optimal

level of precision for individual parameters and model fields.

I We compare model errors due to reduced precision with
ensemble spread.

Parameter/Variable Precision Error
specific heat of air 7 0.000%
gravitational acceleration 7 0.025%
gas constant water vapour 8 0.000%
diffusivity water vapour 7 0.209%
dynamic viscosity of air 3 0.022%
sub-grid-scale eddy viscosity 3 6.250%
zonal wind 17 3.81 · 10−4%

moist static energy 23 5.96 · 10−6%

pressure 22 1.19 · 10−5

temperature 23 5.96 · 10−6%

water vapour 17 3.81 · 10−4%
...

We should use results of the precision analysis to adjust “global”
stochastic parametrisation schemes.

Düben, Subramanian, Dawson and Palmer JAMES 2017
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Analyse precision to learn about error and uncertainty
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Analyse precision to learn about error and uncertainty

I We find that precision can be reduced significantly in the
turbulent kinetic energy scheme and for the high orders of the
water vapour saturation curve.

I We remove those parts from the model.

I The new model setup is approximately 12% faster.

A precision analysis can help to adjust model complexity.
Düben, Subramanian, Dawson and Palmer JAMES 2017

Peter Düben Page 27



Analyse precision to learn about error and uncertainty

I We find that precision can be reduced significantly in the
turbulent kinetic energy scheme and for the high orders of the
water vapour saturation curve.

I We remove those parts from the model.

I The new model setup is approximately 12% faster.

A precision analysis can help to adjust model complexity.
Düben, Subramanian, Dawson and Palmer JAMES 2017

Peter Düben Page 27



One more research questions

Can a study of numerical precision help to understand model
uncertainty and model error?

Yes!
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Bitwise information content and predictability

Information content of bits for a Lorenz’63 model using a single long
term integration and Shannon information theory.

It is possible to identify information content of individual bits and their
impact on predictability into the future.

Jeffress, Düben and Palmer in prep. for Proc. R. Soc. A
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Shallow water model with hardware faults

I We introduce a coarse backup grid to save prognostic fields.
I We test whether the fields on the backup grids are physically

meaningful and restore erroneous values on the model grid,
using the backup grid.

I We emulate soft errors in floating point operations and the loss
of information in large areas of the model domain.

I The backup system generates 13% overheads.
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How to approach full-blown GCMs?
Emulation of reduced precision

Method:
We define a new reduced-precision type that behaves like a floating
point number, but reduces the precision when it is operated on, this
allows the emulation of reduced precision and specific setups of
inexact hardware in large models (maybe IFS?) with no need for
extensive changes of model code.

Example:
Emulated 5 bit significand with reduced precision “+”

Standard Fortran:
REAL :: a,b,c
a = 1.442221
b = 2.136601
c = a+b
→ c=3.578822

Reduced precision declarations:
TYPE(reduced_precision) :: a,b,c
a = 1.442221
b = 2.136601
c = a+b
→ c=3.562500
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Conclusions
Scientific challenges to improve forecasts:

I The free lunch is over in high performance computing.

I We fail to provide a satisfying representation of model
uncertainty in weather and climate models.

Results suggest that...

I a reduction in precision is promising huge savings.

I savings can be reinvested to allow higher resolution/complexity
or more ensemble members to improve forecasts.

I our understanding of model error and model uncertainty helps to
adjust precision.

I precision should be reduced with spatial scale and forecast lead
time.

I a precision analysis helps to understand model uncertainty and
to adjust stochastic parametrisation schemes.
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