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An evolving EPS

EPS 1992–2010: initial perturbations based on singular vectors (SVs)

Are SVs optimal?

Ideally, SVs should be computed with an initial time norm based on
the analysis uncertainty of the day.

However, if a good estimate of the analysis uncertainty of the day is
available, SVs may not be required any more for the initial
perturbations.

The goal is to obtain a sample of the distribution of initial uncertainty
from an ensemble of data assimilations
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Outline of this lecture

1 singular vectors?

2 perturbations?
3 some background:

I perturbation growth etc.
I norms
I singular value decomposition
I tangent-linear system

4 an idealised example: singular vectors in the Eady
model

5 SVs in the operational EPS

6 initial condition perturbations

Initial Uncertainties in the EPS (I) Training Course 2017 3 / 47



Singular Vectors?

analysis forecast

initial SVs evolved SVs

M
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Perturbations?
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Nonlinear Model

Consider the spatially discretised equations describing the atmospheric
dynamics and physics written in this form

d
dt

x = F (x), with x =

 x1
...

xn

 , F =

 F1
...

Fn


where x ∈ RN denotes the N-dimensional state vector and F (x) ∈ RN its
tendency. Integrate from t0 to t gives the nonlinear model:

x(t) = F (x(t0))
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Tangent-linear system

Let xr (t) be a solution of
d
dt

x = F (x), (1)

Then the tangent-linear system is given by

d
dt

x = A(xr (t)) x, (2)

where [A(x)]jk = (∂Fj/∂xk)(x) denotes the Jacobi matrix of F .

For any solution x of (2), xr + εx approximates a solution of (1) starting
at xr (t0) + εx(t0) to first order in ε.

The (tangent-linear) propagator from t0 to t1 is the matrix M[t0,t] such
that M[t0,t]x0 is a solution of (2) for any initial perturbation x0 and where
M[t0,t0] = I.
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Perturbation Growth
Perturbation growth is defined as:

σ
2 =

〈x(t),x(t)〉
〈x(t0),x(t0)〉

=
〈M[t0,t]x(t0),M[t0,t]x(t0)〉

〈x(t0),x(t0)〉

=
〈MT

[t0,t]M[t0,t]x(t0),x(t0)〉
〈x(t0),x(t0)〉

with inner product 〈·, ·〉 and growth factor σ2.

⇒ Largest growth is associated with eigenvectors of MT
[t0,t]M[t0,t].

These eigenvectors are determined by a singular value
decomposition of M[t0,t].
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Norms

The definition of singular vectors in the context of ensemble prediction
involves norms (based on an inner product or metric). These are required to
measure the amplitude of perturbations.

〈x,x〉C = xTCx

where C is symmetric (CT = C) and positive definite (xTCx > 0 for x 6= 0).

For predictability applications, the appropriate choice for the initial time
norm is the analysis error covariance metric, i.e. the norm that is based on
the inverse of the initial error covariance matrix (or some estimate thereof).

‖x‖2
i = xTC−1

0 x

The final time norm ‖x‖f is a convenient RMS measure of forecast error.

Total energy norm is used both at initial and final time for the operational
singular vector computations at ECMWF:

‖x‖2
E = xTEx =

1

2

∫ p1

p0

∫
S

(
u2 + v 2 +

cp
Tr

T 2

)
dp ds +

1

2
RdTrpr

∫
S

(lnpsfc)2 ds
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On the choice of the initial time norm

The structure of singular vectors depends on the choice of the norm, in
particular the initial time norm.

An enstrophy norm at initial time penalises perturbations with small spatial
scales, the initial SVs are planetary-scale structures.

A streamfunction variance norm at initial time penalises the large scales and
favours sub-synoptic scale perturbations.

With a total energy norm at initial time, the energy spectrum of the initial
SVs is “white” and best matches the spectrum of analysis error estimates
from analyses differences (Palmer et al. 1998)
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singular value decomposition of a matrix

Consider a matrix Q =

 q11 · · · q1n
...

...
qm1 · · · qmn

 ∈ Rm×n

Its singular value decomposition is defined as

Q = USVT, (3)

where U and V are orthogonal m-by-m and n-by-n matrices.
Matrix S is a diagonal m-by-n matrix (sij = 0 if i 6= j , sjj ≡ σj). The values
σj on the diagonal of S are called singular values.
The columns uj of U are referred to as left singular vectors and the
columns vj of V are referred to as right singular vectors.
Eq. (3) implies that

Qvj = σjuj

One can show that the vj are the eigenvectors of QTQ!

see Golub and Van Loan: Matrix Computations for further details
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singular value decomposition of the propagator

M = USVT → Mvj = σjuj

with the (initial) singular vectors vj being the eigenvectors and the squared
singular values σ2

j being the eigenvalues of MTM. The uj are called the
evolved singular vectors.

Singular vectors are optimal perturbations in the following sense.

the ratio of the final time norm to the initial time norm is given by
the singular value:

‖Mvj‖f
‖vj‖i

= σj (4)

Singular vector j is the direction in phase space that maximises the
ratio of norms in the subspace orthogonal (with respect to C−1

0 ) to
the space spanned by singular vectors 1. . . j−1.
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The tangent-linear model and its adjoint

• For a numerical model with ∼ 105−108 variables it is not possible to
obtain the propagator M as a matrix.
• Instead algorithmic differentiation is used to obtain the first derivative of
the numerical algorithm that represents the forecast model.
For any initial perturbation x, the evolved perturbation Mx is obtained via
an integration of the tangent-linear model.
• Then, the numerical algorithm representing MT the adjoint (transpose)
of the propagator is constructed. The adjoint model is integrated
backward from t1 to t0.
• The reference solution xr (t) about which the equations are linearised is
referred to as trajectory.
• The time interval the SVs are calculated for is called the optimization
interval.
See also related presentations by Angela Benedetti, Marta Janisková and
the “Hands on: Coding of Tangent Linear and Adjoints” session in
Training Course on Data Assimilation & Use of Satellite Data
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SVs in the Eady model

channel with periodic boundary conditions in the zonal direction

linear shear of basic state flow U = Sz

10 km

10000 km

46.3 m/s

f -plane with f = 10−4 s−1

Brunt-Vaisala frequency N = 10−2 s−1

total energy norm at initial and final time

discretisation: 21 levels in the vertical , 16 wavenumbers in the
horizontal
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SVs in the Eady model: topt = 24 h

streamfunction perturbation, SV 1 (top), SV 2 (middle), SV 3 (bottom)

singular values: σ1 = 6.4, σ2 = 6.2, σ3 = 6.1.
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SVs in the Eady model: topt = 48 h

streamfunction perturbation, SV 1 (top), SV 2 (middle), SV 3 (bottom)

singular values: σ1 = 24.4, σ2 = 22.3, σ3 = 17.9.
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Eady model: topt = 48 h, t = 0 h

streamfunction perturbation, SV 1 (top), SV 2 (middle), SV 3 (bottom)

singular values: σ1 = 24.4, σ2 = 22.3, σ3 = 17.9.
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Eady model: topt = 48 h, t = 6 h

streamfunction perturbation, SV 1 (top), SV 2 (middle), SV 3 (bottom)

singular values: σ1 = 24.4, σ2 = 22.3, σ3 = 17.9.
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Eady model: topt = 48 h, t = 12 h

streamfunction perturbation, SV 1 (top), SV 2 (middle), SV 3 (bottom)

singular values: σ1 = 24.4, σ2 = 22.3, σ3 = 17.9.
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Eady model: topt = 48 h, t = 18 h

streamfunction perturbation, SV 1 (top), SV 2 (middle), SV 3 (bottom)

singular values: σ1 = 24.4, σ2 = 22.3, σ3 = 17.9.
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Eady model: topt = 48 h, t = 24 h

streamfunction perturbation, SV 1 (top), SV 2 (middle), SV 3 (bottom)

singular values: σ1 = 24.4, σ2 = 22.3, σ3 = 17.9.
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Eady model: topt = 48 h, t = 30 h

streamfunction perturbation, SV 1 (top), SV 2 (middle), SV 3 (bottom)

singular values: σ1 = 24.4, σ2 = 22.3, σ3 = 17.9.
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Eady model: topt = 48 h, t = 36 h

streamfunction perturbation, SV 1 (top), SV 2 (middle), SV 3 (bottom)

singular values: σ1 = 24.4, σ2 = 22.3, σ3 = 17.9.
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Eady model: topt = 48 h, t = 42 h

streamfunction perturbation, SV 1 (top), SV 2 (middle), SV 3 (bottom)

singular values: σ1 = 24.4, σ2 = 22.3, σ3 = 17.9.
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Eady model: topt = 48 h, t = 48 h

streamfunction perturbation, SV 1 (top), SV 2 (middle), SV 3 (bottom)

singular values: σ1 = 24.4, σ2 = 22.3, σ3 = 17.9.
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Growth mechanisms

PV unshielding

intensification of boundary thermal anomalies through winds
associated with interior PV anomalies

interaction of waves on upper and lower boundary

see Badger and Hoskins (2001); Morgan and Chen (2002); DeVries and
Opsteegh (2005); De Vries et al. (2009)
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Singular vectors in the operational EPS

topt ≡ t1− t0 = 48 h

resolution: T42L62

Extra-tropics: 50 SVs for N.-Hem. (30◦N–90◦N)
+ 50 SVs for S.-Hem.(30◦S–90◦S). Tangent-linear model with vertical
diffusion and surface friction only.

Tropical cyclones: 5 singular vectors per region targeted on active tropical
depressions/cyclones. Up to 6 such regions. Tangent-linear model with
representation of diabatic processes (large-scale condensation, convection,
radiation, gravity-wave drag, vert. diff. and surface friction).

Localisation is required to avoid that too many leading singular vectors are
located in the dynamically more active winter hemisphere (Buizza 1994).
Also required to obtain (more slowly growing) perturbations associated with
tropical cyclones (Puri et al. 2001). In order to optimise perturbations for a
specific region simply replace the propagator M in the equations by PM,
where P denotes the projection operator which sets the state vector (
T ,u,v , lnpsfc in grid-point space) to zero outside the region of interest and
is the identity inside it.
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Schematic Opt. Areas
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Singular values σj — extra-tropics

Northern Hem.
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Southern Hem.
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Singular vector growth characteristics

average energy of the leading 50 singular vectors
initial time (× 50), final time t =48 h (× 1)

: total energy; : kinetic energy
Northern hemisphere extra-tropics, 2006032100

vertical profile spectrum
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Regional distribution of Northern Hem. SVs

square root of vertically integrated total energy of SV 1–50 (shading)
500 hPa geopotential (contours)

initial singular vectors, 21 March 2006, 00 UTC
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evolved singular vectors, 23 March 2006, 00 UTC
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Singular vector 5: initial time

21 March 2006, 00 UTC
Temperature at ≈ 700 hPa
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Singular vector 5: final time

23 March 2006, 00 UTC
meridional wind component at ≈ 300 hPa
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Initial condition perturbations

• Initial condition uncertainty is represented by a (multi-variate) Gaussian
distribution in the space spanned by the leading singular vectors
• The perturbations based on a set of singular vectors v1, . . . ,vm are of the
form

xj =
m

∑
k=1

αjkvk (5)

• The αjk are independent draws from a truncated Gaussian distribution.

• The Gaussian is truncated at ±3
standard deviations to avoid numer-
ical instabilities for extreme values.
• The width of the distribution is set
so that the spread of the ensemble
matches the root-mean square error
in an average over many cases (β≈
10). −4 −3 −2 −1 0 1 2 3 4
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Initial condition perturbations (2)
• For the extra-tropical perturbations, the leading 50 initial singular vectors (in
each hemisphere) are combined with the leading 50 evolved singular vectors
(replaced by EDA perturbations since 22 June 2010)

EPS forecasts

initial SVsevolved SVs

0−2 +2 t (d)

• For each of the (up to 6) optimisation regions targeted on a tropical cyclone,
the leading 5 initial singular vectors are combined.
• To make sure that the ensemble mean is centred on the unperturbed analysis a
plus-minus symmetry has been introduced:

coefficients for members 1, 3, 5, . . . , 49 are sampled,

the perturbation for members 2, 4, 6, . . . 50 is set to minus the perturbation
of the member j−1 (xj =−xj−1).

Note: The sign of a singular vector itself is arbitrary.
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Initial condition perturbation for member 1

Temperature (every 0.2 K); 21 March 2006, 00 UTC
at ≈ 700 hPa
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Initial condition perturbation for member 2

Temperature (every 0.2 K); 21 March 2006, 00 UTC
at ≈ 700 hPa
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Initial condition perturbation for member 5

Temperature (every 0.2 K); 21 March 2006, 00 UTC
at ≈ 700 hPa
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Initial condition perturbation for member 50

Temperature (every 0.2 K); 21 March 2006, 00 UTC
at ≈ 700 hPa
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Appendix
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linear algebra

m-by-n matrix, m rows and n columns Q =

 q11 · · · q1n
...

...
qm1 · · · qmn

 ∈ Rm×n

matrix multiplication: entry in i-th row and j-th column is the inner
product of row i of A and col. j of B

C = AB ⇔ cij =
r

∑
k=1

aikbkj

matrix transpose: swap rows with columns

C = AT ⇔ cij = aji ; (AB)T = BT AT

column vector: m-by-1 matrix row vector: 1-by-m matrix

v =

 v1
...
vm

 vT = (v1 . . . vm)
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linear algrebra (cont.)
inner product:

xTy =
m

∑
j=1

xjyj or more generally xTCy =
m

∑
j=1

m

∑
k=1

xjCjkyk

where C is symmetric (CT = C) and positive definite (xTCx > 0 for x 6= 0).

orthogonal and orthonormal sets of vectors:
orthogonal: xTy = 0

orthonormal = orthogonal and normalised: vT
j vk = δjk =

{
0 if j 6= k

1 if j = k

orthogonal matrix: row vectors and column vectors are orthonormal sets
of vectors

VTV =


1 0 · · · 0 0
0 1 · · · 0 0
...

...
0 0 · · · 0 1

= I
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Singular vectors of the propagator

Consider an initial time norm ‖x‖2
i = xTC−1

0 x

and a final time norm ‖x‖2
f = xTDx,

where C0 and D are positive definite symmetric matrices. Then, we consider the
propagator for a fixed time interval M≡M(t0, t1) and apply scalings depending
on the norms (non-dimensionalisation). The reason for this particular scaling of
the propagator will become obvious later.
The singular value decomposition of the scaled propagator M̃ is

M̃≡D1/2MC
1/2
0 = ŨSṼ

T
(6)

Here, S is the diagonal matrix containing the decreasing singular values
σ1 ≥ σ2 ≥ . . .≥ σN ; Ũ and Ṽ contain the non-dimensional left and right singular
vectors, respectively (see slide 6).
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Singular vectors of the propagator (2)

Usually, the left and right singular vectors are transformed to physical space:

initial SVs V = C
1/2
0 Ṽ

normalised evolved SVs U = D−1/2Ũ

The initial SVs are orthonormal with respect to C−1
0 : vT

j C−1
0 vk = δjk .

The normalised evolved SVs are orthonormal with respect to D: uT
j Duk = δjk .

The singular value decomposition of the propagator in dimensional form reads

M = USVTC−1
0 . (7)

Let vj denote the j-th column of V. It is referred to as (initial) singular vector j .
From (7) it is obvious that

Mvj = σjuj︸︷︷︸
evolved SV

. (8)

Initial Uncertainties in the EPS (I) Training Course 2017 44 / 47



EOFs of a linear estimate of the FC error covariance matrix

The initial singular vectors are orthonormal with respect to the estimate of the
inverse initial error covariance matrix:

VTC−1
0 V = I (identity matrix); ⇒ C0 = VVT.

Using (7), the linear evolution of the covariance estimate from t0 to t1 can be
expressed as

C1 = MC0MT = US2UT. (9)

with scaling of errors with D1/2:

D1/2C1D1/2 = D1/2MVVTMTD1/2 = (D1/2U)S2(D1/2U)T. (10)

• Eqn. (10) provides the EOF decomposition of the (scaled) forecast error
covariance estimate.
• The leading singular vectors evolve into the directions of the leading EOFs of
the (scaled) forecast error covariance estimate.
• This property makes the singular vectors an attractive basis for sampling initial
condition uncertainties.
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