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Main topics of the lecture (2h)

Main topics of this lecture:

1. Governing PDEs of atmospheric dynamics in generalised curvilinear
coordinates

2. Vertical coordinates/discretisation in atmospheric models

3. Adaptive (moving) meshes
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Generalised curvilinear coordinate mappings

• ...transform governing PDEs to more convenient coordinates for solution

• ...accommodate complex boundaries

• ...apply a variable-resolution mesh

• ...apply dynamic mesh adaptivity
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General curvilinear coordinate mappings

(x , y) = (E(x , y),D(x , y)) : Dp → Dt
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General curvilinear coordinate mappings

General bijective coordinate mapping:

(t, x) = (t,F(t, x)) : Dp → Dt

· Dp is subdomain of the physical space Sp – with
coordinates (t, x)≡ (t, x , y , z) and metric tensor
gkj – where the physical problem is posed. It is
convenient to assume the physical system Sp to be
a stationary and orthogonal (e.g. Cartesian,
geospherical, spheroidal,..)

· Dt is subdomain of transformed computational
space St – with generalised coordinates
(t, x)≡ (t, x , y , z) and metric tensor g rs – where
the problem is solved
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Governing equations in Lagrangian form

Symbolic vector-form of basic adiabatic governing PDEs:

Dv

Dt
= −cpθ∇π + g + M

Dθ

Dt
= 0

Dρ

Dt
= −ρ∇ · v

with

v = (v 1, v 2, v 3) , g = (0, 0,−g)
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Governing equations in Lagrangian form

Transformed governing PDEs in St (e.g. Clark JCP 1977, Prusa et al. JCP
2003):

dv j

dt
= −cpθG̃ k

j
∂π

∂xk
− gδj3 + M j j = 1, 2, 3

dθ

dt
= 0

dρ

dt
= − ρ

G

(
∂Gv s k

∂xk

)
with

d

dt
=

∂

∂t
+ v∗

k ∂

∂xk
, G̃ k

j :=
√

g jj
∂xk

∂x j
G = |g jk |1/2

v∗
j

=
dx j

dt
= v s j +

∂x j

∂t
v s j =

∂x j

∂xk
v∗

k
v k =

√
gkkv

∗k

→ see e.g. textbook by Zdunkowski and Bott 2003 for fundamentals
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Governing equations in Eulerian conservation form

Transformed governing PDEs in St :

∂ρ∗v j

∂t
+∇·

(
v∗ρ∗v j

)
= −ρ∗cpθG̃ k

j
∂π

∂xk
−ρ∗gδj3+ρ∗M j j = 1, 2, 3

∂ρ∗θ

∂t
+∇ · (v∗ρ∗θ) = 0

∂ρ∗

∂t
+∇ · (v∗ρ∗) = 0

with

∇ ≡
(
∂

∂x
,
∂

∂y
,
∂

∂z

)
, v∗ ≡

(
v∗

1
, v∗

2
, v∗

3
)
, ρ∗ ≡ Gρ
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Tensor identities

1. Divergence in generalised coordinates:

∇ · A =
1

G

∂

∂xk

(
G A

k
)
− A

j
[
G

G

∂

∂xk

(
G

G

∂xk

∂x j

)]
Invariance of divergence uses multi-component geometric conservation law
(GCL):

G

G

∂

∂xk

(
G

G

∂xk

∂x j

)
≡ 0

2. Reciprocity of covariant and contravariant base vectors:

qr · qs =
∂x r

∂xq

∂xq

∂x s = δrs

→ Discrete model should respect these identities ! (see e.g. Thomas and
Lombard 1979, Prusa and Gutowski IJNMF 2006, Kühnlein et al. JCP 2012)
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Vertical coordinates in atmospheric models

→ Independent vertical variable ζ

(x , y , ζ) = (x , y , ζ(t, x , y , z))

· height z
· (hydrostatic) pressure p
· potential temperature θ
· ...

→ Terrain-following coordinates
+ levels do not intersect the earth’s surface
+ specification of the lower boundary condition
+ uniform vertical mesh spacing near the surface
+ stretching easily allows higher resolution

towards the surface
+ long time steps

(-) potential errors in pressure gradient term
(-) mesh quality for steep orography
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Gal-Chen and Somerville terrain-following vertical coordinate

Terrain-following coordinate of Gal-Chen and Somerville (1975):

z = z(x , y , z) = H
z − h(x , y)

H − h(x , y)

with inverse mapping

z = z(x , y , z) = z +

(
1− z

H

)
h = z + b(z)h(x , y)

H: height of model top

h(x , y): local height of orography

b(z): vertical decay function of orography
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Gal-Chen and Somerville terrain-following vertical coordinate

West-east cross section through the Alps (∆h∼1.2 km)
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Gal-Chen and Somerville terrain-following vertical coordinate

13/45



Gal-Chen and Somerville terrain-following vertical coordinate

Hybrid specification:
z(x , y , z) = z + b(z)h(x , y)

where

b(z) =

{
(1− z/Hr ) : z ≤ Hr

0 : z > Hr
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Smoothed height-based terrain-following coordinates

Smoothed coordinate – SLEVE (Schär et al. MWR 2002, Leuenberger et al.
MWR 2010):

z(x , y , z) = z + bshs(x , y) + brhr (x , y)

hs : smoothed terrain
hr = h − hs : residual containing small-scale variations of terrain

bs : vertical decay function for hs
br : vertical decay function for hr
with

bi (z) =
sinh [(H/si )

n − (z/si )
n]

sinh [(H/si )n]

⇒ Faster decay for br versus bs by defining smaller scale-height si

See also: Zängl MWR 2003, Klemp MWR 2011
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SLEVE coordinate
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SLEVE coordinate

SLEVE in hybrid setting with vertical stretching:

z̃ = C−1(z) → z = z(x , y , z̃)
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Pressure-based terrain-following coordinates

Pressure-based terrain-following vertical coordinate η of the form:

(x , y , η) ≡ (x , y , η(p, ps))

with ηs = η(ps , ps) ≡ 1 ηt = η(pt , ps) ≡ 0

p(t, x , y , z): pressure, ps(t, x , y): surface pressure, pt : top pressure
→ bijective mapping between p and η for a given ps .

One example is (Phillips JM 1957 “A coordinate system having some special
advantages for numerical forecasting”, Mintz 1965)

σ = η =
p − pt
ps − pt

commonly named as the σ-coordinate.
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Hybrid pressure-based terrain-following coordinates

Hybrid σ-p vertical coordinate (Simmons and Burridge MWR 1981) employed
in ECMWF’s operational IFS model (with pt ≡ 0):

p(t, x , y , z) = A(η) + B(η)ps(t, x , y)

with
A(ηt) = 0 , B(ηt) = 0 , A(ηs) = 0 , B(ηs) = 1

→ terrain-following σ-like levels near the earth’s surface with transition to
pressure levels in the upper troposphere and stratosphere

- different approaches to specify A and B coefficients (see e.g. Eckermann
MWR 2009)

- similar in non-hydrostatic models (Laprise MWR 1992, Bubnova et al.
MWR 1995)
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Hybrid pressure-based terrain-following coordinates

Evolution of hybrid σ − p levels of IFS over a 10 day T255/L91 forecast
(Zonal section at ∼60◦ N)
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Isentropic vertical coordinates

Potential temperature θ as independent vertical coordinate:

· for inviscid adiabatic flow Dθ/Dt = 0 isentropes represent material
surfaces

· more accurate representation of vertical transport

· adaptive vertical mesh spacing proportional to thermal stratification

· implemented as hybrid terrain-following-θ coordinate

· becomes more complicated for high resolution due to small-scale θ
variations

· regularisation of coordinate required to ensure monotonicity

→ see e.g. Hsu and Arakawa, MWR 1990; Konor and Arakawa, MWR 1997;
Benjamin et al. MWR 2004; Toy and Randall MWR 2009
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Pressure gradient term with terrain-following coordinates

⇒ horizontal pressure gradient

−cpθ ∂π
∂x

= −cpθ
(
∂π

∂x
+
∂z

∂x

∂π

∂z

)
susceptible to errors

+ subtraction of balanced state

+ satisfy tensor identities, consistency of discrete metrics and dynamics (see
e.g. Prusa and Gutowski IJNMF 2006; Klemp et al. MWR 2003)

+ boundary conditions (e.g. Smolarkiewicz et al. JCP 2007)

+ smoothed coordinate levels

+ truly horizontal evaluation of horizontal components of the pressure
gradient and horizontal diffusion using reconstructed quantities on
Cartesian mesh (Zängl MWR 2012, and references therein)

+ see also Weller and Shahrokhi MWR 2014
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Steep orography with a basic terrain-following vertical coordinate

Stratified flow past isolated mountain on a small planet (max. slope ∼37◦)

→ Basic terrain-following coordinate, semi-implicit integration of Euler equations
(Smolarkiewicz et al. 2014), finite-volume MPDATA scheme (Kühnlein and
Smolarkiewicz 2017), no explicit diffusion
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Steep orography with a basic terrain-following vertical coordinate

Stratified flow past isolated mountain on a small planet (max. slope ∼71◦)

→ Basic terrain-following coordinate, semi-implicit integration of Euler equations
(Smolarkiewicz et al. 2014), finite-volume MPDATA scheme (Kühnlein and
Smolarkiewicz 2017), no explicit diffusion
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Other techniques

→ Cut-cell method (e.g. Steppeler et al. 2002, Klein et al. 2009, Lock et al.
2012)
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Other techniques

→ Slanted cell approach (Shaw and Weller MWR 2016, Shaw et al. 2017)
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Figure 6: Two dimensional x-z meshes created with the (a) basic terrain-following, (b) cut cell, and (c) slanted cell methods, and
used for the tracer transport tests in section 3.2. Cell edges are marked by thin black lines. The peak mountain height h0 = 5 km. The
velocity field is the same for all mesh types with streamlines marked on each panel by thick red lines. The velocity field (equation 29)
follows the lower boundary and becomes entirely horizontal above H1 = 10 km. Only the lowest 10 km for the central region of the
domain in shown. The entire domain is 301 km wide and 25 km high.

Peak mountain height h0 (km)
Mesh type 0 3 4 5 6
BTF 40 16 10 8 5
Cut cell 40 1.6 1.6 0.5 1.5
Slanted cell 40 8 6.25 5 4

Table 1: Time-steps (s) for the two-dimensional transport test over a mountainous lower boundary. The time-steps were chosen so
that the maximum Courant number was between 0.36 and 0.46.
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Figure 10: Longest stable time-steps, �tmax, for the two-dimensional tracer transport test over a mountainous lower boundary. Results
were obtained on basic terrain-following, cut cell and slanted cell meshes at mesh spacings between �x = 5000 m and �x = 125 m.
The tests were integrated with a maximum Courant number close to 1, while �tmax is calculated as the time-step corresponding to a
maximum Courant number of exactly 1.

that uses slanted cell meshes instead of BTF meshes is expected to calculate pressure gradients more accurately [13].
The transport tests presented in this section demonstrate that the cubicFit scheme is suitable for flows over very steep

terrain on two-dimensional terrain-following, cut cell and slanted cell meshes. The cubicFit scheme is less sensitive to
the mesh type and mountain steepness compared to the linearUpwind scheme. The linearUpwind scheme becomes
unstable over very steep slopes but the cubicFit scheme is stable for all tests. In the next section, we evaluate the
cubicFit scheme using more complex, deformational flows on icosahedral meshes and cubed-sphere meshes.

3.3. Deformational flow on a sphere
The tests so far have used flows that are mostly uniform on meshes that are based on rectangular cells. To

ensure that the cubicFit transport scheme is suitable for complex flows on a variety of meshes, we use a standard
test of deformational flow on a spherical Earth, as specified by Lauritzen et al. [36]. Results are compared between
linearUpwind and cubicFit schemes using hexagonal-icosahedra and cubed-spheres. Hexagonal-icosahedral meshes are
constructed by successive refinement of a regular icosahedron following the approach by [26]. Cubed-sphere meshes
are constructed using an equi-distant gnomic projection of a cube having a uniform Cartesian mesh on each panel [48].

Following appendix A9 in [29], the average equatorial spacing �� is used as a measure of mesh spacing. It is
defined as

�� = 360�
�x

2⇡Re
(35)

where �x is the mean distance between cell centres and Re = 6.3712 ⇥ 106 m is the radius of the Earth.
The deformational flow test specified by Lauritzen et al. [36] comprised six elements:

1. a convergence test using a Gaussian-shaped tracer
2. a “minimal” resolution test using a cosine bell-shaped tracer
3. a test of filament preservation
4. a test using a “rough” slotted cylinder tracer
5. a test of correlation preservation between two tracers
6. a test using a divergent velocity field

17
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Other techniques

→ 3D unstructured mesh discretisation → see J. Szmelter’s lecture
P.K. SMOLARKIEWICZ and J. SZMELTER16

Fig. 3. Meshes used in a simulations of a deep stratospheric gravity waves.

1/Sθ. The ambient wind ve = (ue, 0) is constant with speed ue = U =

20 m s−1, and the ambient profile of potential temperature θe(z) = θ̄. The model
domain is 60 km deep, and 120 km wide. The wave is excited by a small hill em-
bedded in the ambient flow, with the height profile h(x) = h0[1+(x/L)2]−1 cen-
tered at the origin of the [−60L, 60L] × [0, 60L] (x, z)-domain; the hill’s height
and half-width are, respectively, h0 = 628.319 m and L = 1000 m. The prob-
lem is inherently nonhydrostatic because NL/U ≈ 1 or, in other words, the
dominant horizontal wavenumber of the problem, 1/L, equals the asymptotic
wavenumber N/U of the induced mountain wave; here N =

√
gSθ denotes

the buoyancy frequency. Furthermore, the problem is only weakly nonlinear
(the Froude number Fr = U/Nh0 ≈ 1.6) with respect to the linear Boussinesq
theory (Smith 1979). Notably, the selected stratification Sθ is four times larger
than in Smolarkiewicz and Margolin (1997), to better represent the realism of
the stratosphere. Increasing ambient wind U twofold permits other conditions
of the experiment in Smolarkiewicz and Margolin (1997) to be retained, ex-
cept for the rate of the wave development, which is now twice as fast due to the
group velocity scaling cgz ∼ U2/NL. Consequently, the inverse time scales of
the gravity-wave absorbers adjacent to the lateral and upper boundaries (Sec-
tion 3.2) change linearly from α = α� = 0 at the absorber edge 20 km away
from a boundary to α = α� = 1/300 s−1 at the boundary; the time step is
set to δt = 5 s; and the onset of wave breaking in the upper half of the model
domain (Fig. 2) is observed after half the simulated time of Smolarkiewicz and
Margolin (1997), i.e., after 90 min (as opposed to 180 min).

Figure 3 shows two different meshes with similar number of points, 59×103,
used in simulations with the edge-based model. On the left, the unstructured
mesh, generated explicitly in physical space, mimics the structured grid result-
ing from the standard terrain-following coordinate transformation. Thus, it cor-
responds to a geometric visualization of products of the uniform grid increment
δz = 377.36 m and appropriate metric coefficients employed in the EULAG
simulation highlighted in Fig. 29). On the right, a fully unstructured triangular

9)EULAG calculations employ a uniform grid with 320 × 160 data points, but the govern-
ing equations are modified in effect of the coordinate transformation (Prusa and Smolarkiewicz
2003).
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Multiscale atmospheric flows

→ Extremely different local scales in atmospheric flows

→ Standard approach in atmospheric solvers of uniform mesh not optimal

→ Variable mesh applying locally finer/coarser spacing more efficient

→ Solution-adaptive mesh is able to conform to flow evolution
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r-adaptivity

(x , y) = (E(t, x , y),D(t, x , y)) : Dp → Dt
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Dp

     

 

 

 

 

 

x

y

Dt

→ moving mesh or r-adaptive technique (see Budd et al. AN 2009 for
comprehensive discussion)
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Scalar advection experiment

Time-dependent deformational shear flow (Blossey and Durran, JCP 2008)
using advection scheme MPDATA (Smolarkiewicz IJNMF 2006) with moving
meshes (Kühnlein et al. JCP 2012):

→ mesh refinement indicator: Φ = ||∇ψ||
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Scalar advection experiment

uniform mesh - 502, Trw = 1

     

 

 

 

 

 

Max = 1.0020

Min  = 0.5000

L
2
 = 0.0593

L∞ = 0.6211

uniform mesh - 2502, Trw = 133

     

 

 

 

 

 

Max = 1.4256

Min  = 0.5000

L
2
 = 0.0071

L∞ = 0.0946

adaptive mesh - 502, Trw = 5.5

     

 

 

 

 

 

Max = 1.4608

Min  = 0.4997

L
2
 = 0.0065

L∞ = 0.0683

→ Trw is relative wall clock time to uniform mesh run with 502 mesh cells
(leftmost panel)
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Moving mesh PDEs

MMPDEs (Huang JCP 2001) govern time-dependent mapping (here 2D) from
computational to physical space:

P(xh,M)
∂xh
∂t

=
∑

i,j=1,2

Dij (xh,M)
∂2xh

∂x i∂x j
+

∑
i=1,2

Ci (xh,M)
∂xh

∂x i

with coefficients

Dij (xh,M) = ∇h x
i ·M−1∇h x

j
, Ci (xh,M) = −∇h x

i ·

∑
k=1,2

∂M−1

∂xk
∇h x

k

 ,

P(xh,M) = T
√

(D11)2 + (D22)2 + (C1)2 + (C2)2

⇒ MMPDEs are derived from variational principles as a minimiser of mapping
functional

I[x] =
1

2

∫
Dp

2∑
k=1

(∇xk )T M−1∇xk dx
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Moving mesh PDEs

One-dimensional stationary view on the MMPDE:

I[x ] =
1

2

∫
Dp

1

m

(
∂x

∂x

)2

dx

with Euler-Lagrange equation

∂

∂x

(
m(x)

∂x

∂x

)
= 0 + BCs

m(x) : Sp → R+ is monitor function to control local mesh spacing
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Moving mesh PDEs

Example:

x(0) = 0, x(1) = 1
x(0) = 0, x(1) = 1

m(x) = 1

∂

∂x

(
m(x)

∂x

∂x

)
= 0

⇒ x = x(x)

Number of grid increments: N =20
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x(xc)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

m
(x

)



Moving mesh PDEs

Example:

x(0) = 0, x(1) = 1
x(0) = 0, x(1) = 1

m(x) = exp (x ln 2)

∂

∂x

(
m(x)

∂x

∂x

)
= 0

⇒ x = x(x)

Number of grid increments: N =20

0.0                   1.0
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Moving mesh PDEs

Example:

x(0) = 0, x(1) = 1
x(0) = 0, x(1) = 1

m(x) = exp (x ln 4)

∂

∂x

(
m(x)

∂x

∂x

)
= 0

⇒ x = x(x)

Number of grid increments: N =20

0.0                   1.0
x(xc)
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3.0
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4.0

m
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Moving mesh PDEs

→ Monitor function M (2×2 matrix in 2D):

M = I q

with scalar weighting function

q(t, xh) = 1 +
β

1− β
Φ

〈Φ〉h
, I is identity matrix

→ Φ is mesh refinement indicator; 〈Φ〉h denotes its horizontal average

→ 0 ≤ β < 1 controls strength of adaptation

→ q is filtered to obtain good quality mesh

→ boundary conditions of 2D MMPDEs are either of Dirichlet-type for xh found by
means of 1D MMPDEs

p(s, µ)
∂s

∂t
= µ

∂2s

∂s2
+
∂µ

∂s

∂s

∂s

along boundary segments or are assumed periodic, depending on BC of the model
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Adaptive moving mesh solver

• Mesh adaptation module

· Compute monitor matrix Mn using Ψn

· Advance boundary mesh xn
b →xn+1

b

using 1D MMPDEs (3.9)

· Advance mesh xn→xn+1 using 2D
MMPDEs (3.6)

• Compute metric coefficients from xn+1

• Predict advective flux (ρ∗v∗)n+1/2

• Advance all physical fields Ψn→Ψn+1

• Time step adaptation δtn→ δtn+1

· In framework of two-time-level flow solver EULAG (Prusa et al. CF 2008,
Kühnlein et al. JCP 2012)
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Adaptive simulation of convective bubble

Combining the soundproof and compressible PDE solver (Smolarkiewicz et al.
JCP 2014) with adaptive moving meshes:

(x , z) = (E(t, x , z),D(t, x , z)) : Dp → Dt

Durran SI compressible SI

→ mesh refinement indicator: Φ = ||∇θ||
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Baroclinic wave life cycle experiments with adaptive moving meshes

→ zonally-periodic channel
10000 km × 8000 km ×
18 km

→ baroclinically unstable jet
flow (Bush and Peltier, JAS
1994)

→ perturb initial state by local
θ-anomaly at tropopause

→ integrate for 12 days

→ Coordinate mapping:

(x , y , z) = (E(t, x , y),D(t, x , y),C(t, x , y , z)) : Dp → Dt

-4 -2 0 2 4
y (1000 km)

0

5

10

15

z 
(k

m
)
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Baroclinic wave life cycle experiments with adaptive moving meshes

(Kühnlein et al. JCP 2012)

→ mesh refinement indicator: Φ = ||∇hθ(z =600 m)||
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Baroclinic wave life cycle experiments with adaptive moving meshes
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Domain-averaged kinetic energetics with integration time

total kinetic energy 〈KE〉
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eddy kinetic energy 〈EKE〉
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zonal kinetic energy 〈ZKE〉
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Sensitivity to mesh refinement indicator

Simulation Refinement indicator Φ(t, x, y) E〈KE〉 E〈ZKE〉 E〈EKE〉
S7050 - 6.43 4.99 4.84

S15429 - 2.58 1.66 1.90

A6254a 1
H

∫H
0

∥∥∇hθ∥∥ dz 2.82 1.67 1.80

A6254b
∥∥∇hθ(z = 600 m)

∥∥ 3.75 2.64 2.28

A6254c
∥∥∇hθ(z = 3000 m)

∥∥ 2.91 1.57 1.92

A6254d
∥∥∇hθ(z = 5100 m)

∥∥ 2.98 2.43 1.98

A6254e 1
H

∫H
0 ‖∇ × v‖ dz 2.90 2.10 1.83

A6254f 1
H

∫H
0 |PV | dz 3.81 2.31 2.45

A6254g |PV (z = 5100 m)| 4.65 2.48 2.97

A6254h |PV (z = 9000 m)| 4.22 2.62 2.64

A6254i 1
H

∫H
0

∥∥∇hPV∥∥ dz 3.82 2.36 2.65

A6254j 1
H

∫H
0 |PV | dz , 1

H

∫H
0

∥∥∇hPV∥∥ dz 3.84 2.27 2.52

A6254k 1
H

∫H
0 |EPV | dz 10.77 5.43 8.57

A6254l |EPV (z = 5100 m)| 9.50 4.60 7.56

Eϑ =

 1

No

No∑
i=1

(
ϑi − ϑ

R
i

)2

1/2

∀ ϑ = 〈KE〉 , 〈ZKE〉 , 〈EKE〉

→ ϑR is high-resolution reference simulation S62217 with static uniform mesh
→ No = 48 is number of 6-hourly model outputs over integration period of 12 days

42/45



Multiscale performance

→ Representation of internal gravity waves occurring in response to imbalances in the
evolving baroclinic wave flow:
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vertical velocity field at z = 12 km and t = 246 h
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Adaptive moving meshes on the sphere

→ Mesh generation using optimal transport (Weller et al. JCP 2016):

122 H. Weller et al. / Journal of Computational Physics 308 (2016) 102–123

Fig. 17. Meshes of 2562 and 10,242 cells generated based on the monitor function of precipitation on 9 Oct 2012. The colours show the precipitation rate 
in kg m−2 s−1. The surface of the entire sphere is displayed using a Hammer equal-area projection [41]. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.)

of the Monge–Ampère equation is proposed which includes a Laplacian term and the resulting Poisson equation is solved at 
each fixed-point iteration.

To validate the novel aspects of the numerical method, we first reproduce some known solutions of the Monge–Ampère 
equation on a two dimensional plane and find that the geometric interpretation of the Hessian leads to more accurate 
equidistribution than a finite difference discretisation. We also generate OT meshes of polygons on the sphere to com-
pare with the centroidal Voronoi meshes generated by Ringler et al. [32]. The geometric Hessian accurately equidistributed 
meshes on the surface of the sphere. The algorithm is found to be sensitive to the numerical method used to calculate the 
gradient of the mesh potential (the map to the new mesh) with a compact stencil leading to non-convexity and a large 
stencil leading to very slow convergence. The mesh tangling can be eliminated by creating a Voronoi tessellation of the 
cell centres of the final mesh. The exact solution of the OT problem on the sphere is c-convex which means that the mesh 
should not tangle. A numerical method which reproduces this property will be the subject of future work.

The meshes generated have advantages and disadvantages relative to centroidal Voronoi meshes generated using Lloyd’s 
algorithm. In principle, OT meshes should be much faster to generate, although we do not yet have timing comparisons. OT 
meshes do not change their connectivity with respect to the base, uniform mesh, so these meshes can be used in r-adaptive 
simulations. In comparison to centroidal Voronoi meshes, the OT meshes are non-orthogonal and less isotropic but have 
less face skewness. In order to overcome the non-orthogonality of OT meshes, the OT technique can be used to generate 
Voronoi meshes.

Finally, we generate a mesh using a monitor function based on reanalysis precipitation. This mesh refines smoothly along 
atmospheric fronts and convergence zones and provides inspiration for using r-adaptivity for global atmospheric modelling. 
Suitable monitor functions for r-adaptive simulations is also the subject of future work.
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Adaptive moving meshes

Adaptive moving meshes:

+ efficient way of employing mesh adaptivity

+ keeps grid/data structure

- less flexible than h- or hr-adaptive techniques

→ Mesh refinement criteria ?

→ Subgrid-scale parameterisations ?

→ ...

• Behrens, “Adaptive atmospheric modeling”, Springer 2006
• Weller et al. BAMS 2010
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