Generalised curvilinear coordinates, vertical discretisations, and moving mesh adaptivity in atmospheric numerical models

Christian Kühnlein

©ECMWF

Main topics of the lecture (2h)

Main topics of this lecture:

1. Governing PDEs of atmospheric dynamics in generalised curvilinear coordinates
2. Vertical coordinates/discretisation in atmospheric models
3. Adaptive (moving) meshes

Generalised curvilinear coordinate mappings

- ...transform governing PDEs to more convenient coordinates for solution
- ...accommodate complex boundaries
- ...apply a variable-resolution mesh
- ...apply dynamic mesh adaptivity

General curvilinear coordinate mappings

$$
(\bar{x}, \bar{y})=(E(x, y), D(x, y)): \quad \mathcal{D}_{p} \rightarrow \mathcal{D}_{t}
$$

©ECMWF

General curvilinear coordinate mappings

General bijective coordinate mapping:

$$
(\bar{t}, \overline{\mathbf{x}})=(t, \mathcal{F}(t, \mathbf{x})): \quad \mathcal{D}_{p} \rightarrow \mathcal{D}_{t}
$$

\mathcal{D}_{p} is subdomain of the physical space \mathbf{S}_{p} - with coordinates $(t, \mathbf{x}) \equiv(t, x, y, z)$ and metric tensor $g_{k j}$ - where the physical problem is posed. It is convenient to assume the physical system \mathbf{S}_{p} to be a stationary and orthogonal (e.g. Cartesian, geospherical, spheroidal,..)
\mathcal{D}_{t} is subdomain of transformed computational space \mathbf{S}_{t} - with generalised coordinates
 $(\bar{t}, \overline{\mathbf{x}}) \equiv(\bar{t}, \bar{x}, \bar{y}, \bar{z})$ and metric tensor $\bar{g}_{r s}$ - where the problem is solved

Governing equations in Lagrangian form

Symbolic vector-form of basic adiabatic governing PDEs:

$$
\begin{gathered}
\frac{D \mathbf{v}}{D t}=-c_{p} \theta \nabla \pi+\mathbf{g}+\mathbf{M} \\
\frac{D \theta}{D t}=0 \\
\frac{D \rho}{D t}=-\rho \nabla \cdot \mathbf{v}
\end{gathered}
$$

with

$$
\mathbf{v}=\left(v^{1}, v^{2}, v^{3}\right), \quad \mathbf{g}=(0,0,-g)
$$

Governing equations in Lagrangian form

Transformed governing PDEs in \mathbf{S}_{t} (e.g. Clark JCP 1977, Prusa et al. JCP 2003):

$$
\begin{gathered}
\frac{d v^{j}}{d \bar{t}}=-c_{p} \theta \tilde{G}_{j}^{k} \frac{\partial \pi}{\partial \bar{x}^{k}}-g \delta_{3}^{j}+M^{j} \quad j=1,2,3 \\
\frac{d \theta}{d \bar{t}}=0 \\
\frac{d \rho}{d \bar{t}}=-\frac{\rho}{\bar{G}}\left(\frac{\partial \bar{G} \bar{v}^{s^{k}}}{\partial \bar{x}^{k}}\right)
\end{gathered}
$$

with

$$
\begin{array}{rlr}
\frac{d}{d \bar{t}}=\frac{\partial}{\partial \bar{t}}+\bar{v}^{* k} \frac{\partial}{\partial \bar{x}^{k}}, & \tilde{G}_{j}^{k}:=\sqrt{g^{j j}} \frac{\partial \bar{x}^{k}}{\partial x^{j}} & \bar{G}=\left|\bar{g}_{j k}\right|^{1 / 2} \\
\bar{v}^{* j}=\frac{d \bar{x}^{j}}{d \bar{t}}=\bar{v}^{s j}+\frac{\partial \bar{x}^{j}}{\partial t} & \bar{v}^{s j}=\frac{\partial \bar{x}^{j}}{\partial x^{k}} v^{* k} & v^{k}=\sqrt{g_{k k}} v^{* k}
\end{array}
$$

\rightarrow see e.g. textbook by Zdunkowski and Bott 2003 for fundamentals

Governing equations in Eulerian conservation form

Transformed governing PDEs in \mathbf{S}_{t} :

$$
\begin{gathered}
\frac{\partial \rho^{*} v^{j}}{\partial \bar{t}}+\bar{\nabla} \cdot\left(\overline{\mathbf{v}}^{*} \rho^{*} v^{j}\right)=-\rho^{*} c_{\rho} \theta \tilde{G}_{j}^{k} \frac{\partial \pi}{\partial \bar{x}^{k}}-\rho^{*} g \delta_{3}^{j}+\rho^{*} M^{j} \quad j=1,2,3 \\
\frac{\partial \rho^{*} \theta}{\partial \bar{t}}+\bar{\nabla} \cdot\left(\overline{\mathbf{v}}^{*} \rho^{*} \theta\right)=0 \\
\frac{\partial \rho^{*}}{\partial \bar{t}}+\bar{\nabla} \cdot\left(\overline{\mathbf{v}}^{*} \rho^{*}\right)=0
\end{gathered}
$$

with

$$
\bar{\nabla} \equiv\left(\frac{\partial}{\partial \bar{x}}, \frac{\partial}{\partial \bar{y}}, \frac{\partial}{\partial \bar{z}}\right), \quad \bar{v}^{*} \equiv\left(\bar{v}^{* 1}, \bar{v}^{* 2}, \bar{v}^{* 3}\right), \quad \rho^{*} \equiv \bar{G} \rho
$$

Tensor identities

1. Divergence in generalised coordinates:

$$
\nabla \cdot \mathbf{A}=\frac{1}{\bar{G}} \frac{\partial}{\partial \bar{x}^{k}}\left(\bar{G} \bar{A}^{k}\right)-\bar{A}^{j}\left[\frac{G}{\bar{G}} \frac{\partial}{\partial \bar{x}^{k}}\left(\frac{\bar{G}}{G} \frac{\partial \bar{x}^{k}}{\partial x^{j}}\right)\right]
$$

Invariance of divergence uses multi-component geometric conservation law (GCL):

$$
\overline{\bar{G}} \frac{\partial}{\partial \bar{x}^{k}}\left(\frac{\bar{G}}{G} \frac{\partial \bar{x}^{k}}{\partial x^{j}}\right) \equiv 0
$$

2. Reciprocity of covariant and contravariant base vectors:

$$
\overline{\mathbf{q}}^{r} \cdot \overline{\mathbf{q}}_{s}=\frac{\partial \bar{x}^{r}}{\partial x^{q}} \frac{\partial x^{q}}{\partial \bar{x}^{s}}=\delta_{s}^{r}
$$

\rightarrow Discrete model should respect these identities! (see e.g. Thomas and Lombard 1979, Prusa and Gutowski IJNMF 2006, Kühnlein et al. JCP 2012)

Vertical coordinates in atmospheric models

\rightarrow Independent vertical variable ζ

$$
(\bar{x}, \bar{y}, \zeta)=(x, y, \zeta(t, x, y, z))
$$

height z
(hydrostatic) pressure p potential temperature θ
\rightarrow Terrain-following coordinates

+ levels do not intersect the earth's surface
+ specification of the lower boundary condition
+ uniform vertical mesh spacing near the surface
+ stretching easily allows higher resolution towards the surface
+ long time steps
$(-)$ potential errors in pressure gradient term

(-) mesh quality for steep orography

Gal-Chen and Somerville terrain-following vertical coordinate

Terrain-following coordinate of Gal-Chen and Somerville (1975):

$$
\bar{z}=\bar{z}(x, y, z)=H \frac{z-h(x, y)}{H-h(x, y)}
$$

with inverse mapping

$$
z=z(x, y, \bar{z})=\bar{z}+\left(1-\frac{\bar{z}}{H}\right) h=\bar{z}+b(\bar{z}) h(x, y)
$$

H : height of model top
$h(x, y)$: local height of orography
$b(\bar{z})$: vertical decay function of orography

Gal-Chen and Somerville terrain-following vertical coordinate

West-east cross section through the $\operatorname{Alps}\left(\Delta_{h} \sim 1.2 \mathrm{~km}\right)$

Gal-Chen and Somerville terrain-following vertical coordinate

NECMWF

Gal-Chen and Somerville terrain-following vertical coordinate

Hybrid specification:

$$
z(x, y, \bar{z})=\bar{z}+b(\bar{z}) h(x, y)
$$

where

$$
b(\bar{z})= \begin{cases}\left(1-\bar{z} / H_{r}\right) & : \bar{z} \leq H_{r} \\ 0 & : \bar{z}>H_{r}\end{cases}
$$

Smoothed height-based terrain-following coordinates

Smoothed coordinate - SLEVE (Schär et al. MWR 2002, Leuenberger et al. MWR 2010):

$$
z(x, y, \bar{z})=\bar{z}+b_{s} h_{s}(x, y)+b_{r} h_{r}(x, y)
$$

h_{s} : smoothed terrain
$h_{r}=h-h_{s}$: residual containing small-scale variations of terrain b_{s} : vertical decay function for h_{s}
b_{r} : vertical decay function for h_{r} with

$$
b_{i}(\bar{z})=\frac{\sinh \left[\left(H / s_{i}\right)^{n}-\left(\bar{z} / s_{i}\right)^{n}\right]}{\sinh \left[\left(H / s_{i}\right)^{n}\right]}
$$

\Rightarrow Faster decay for b_{r} versus b_{s} by defining smaller scale-height s_{i}

See also: Zängl MWR 2003, Klemp MWR 2011

SLEVE coordinate

SLEVE coordinate

SLEVE in hybrid setting with vertical stretching:

$$
\tilde{z}=C^{-1}(\bar{z}) \quad \rightarrow \quad z=z(x, y, \tilde{z})
$$

Pressure-based terrain-following coordinates

Pressure-based terrain-following vertical coordinate η of the form:

$$
(\bar{x}, \bar{y}, \eta) \equiv\left(x, y, \eta\left(p, p_{s}\right)\right)
$$

with

$$
\eta_{s}=\eta\left(p_{s}, p_{s}\right) \equiv 1 \quad \eta_{t}=\eta\left(p_{t}, p_{s}\right) \equiv 0
$$

$p(t, x, y, z)$: pressure, $p_{s}(t, x, y)$: surface pressure, p_{t} : top pressure \rightarrow bijective mapping between p and η for a given p_{s}.

One example is (Phillips JM 1957 "A coordinate system having some special advantages for numerical forecasting", Mintz 1965)

$$
\sigma=\eta=\frac{p-p_{t}}{p_{s}-p_{t}}
$$

commonly named as the σ-coordinate.

Hybrid $\sigma-p$ vertical coordinate (Simmons and Burridge MWR 1981) employed in ECMWF's operational IFS model (with $p_{t} \equiv 0$):

$$
p(t, x, y, z)=A(\eta)+B(\eta) p_{s}(t, x, y)
$$

with

$$
A\left(\eta_{t}\right)=0, \quad B\left(\eta_{t}\right)=0, \quad A\left(\eta_{s}\right)=0, \quad B\left(\eta_{s}\right)=1
$$

\rightarrow terrain-following σ-like levels near the earth's surface with transition to pressure levels in the upper troposphere and stratosphere

- different approaches to specify A and B coefficients (see e.g. Eckermann MWR 2009)
- similar in non-hydrostatic models (Laprise MWR 1992, Bubnova et al. MWR 1995)

Hybrid pressure-based terrain-following coordinates

Isentropic vertical coordinates

Potential temperature θ as independent vertical coordinate:

- for inviscid adiabatic flow $D \theta / D t=0$ isentropes represent material surfaces
- more accurate representation of vertical transport
- adaptive vertical mesh spacing proportional to thermal stratification
- implemented as hybrid terrain-following- θ coordinate
- becomes more complicated for high resolution due to small-scale θ variations
regularisation of coordinate required to ensure monotonicity
\rightarrow see e.g. Hsu and Arakawa, MWR 1990; Konor and Arakawa, MWR 1997;
Benjamin et al. MWR 2004; Toy and Randall MWR 2009

Pressure gradient term with terrain-following coordinates

\Rightarrow horizontal pressure gradient

$$
-c_{p} \theta \frac{\partial \pi}{\partial x}=-c_{p} \theta\left(\frac{\partial \pi}{\partial \bar{x}}+\frac{\partial \bar{z}}{\partial x} \frac{\partial \pi}{\partial \bar{z}}\right)
$$

susceptible to errors

+ subtraction of balanced state
+ satisfy tensor identities, consistency of discrete metrics and dynamics (see e.g. Prusa and Gutowski IJNMF 2006; Klemp et al. MWR 2003)
+ boundary conditions (e.g. Smolarkiewicz et al. JCP 2007)
+ smoothed coordinate levels
+ truly horizontal evaluation of horizontal components of the pressure gradient and horizontal diffusion using reconstructed quantities on Cartesian mesh (Zängl MWR 2012, and references therein)
+ see also Weller and Shahrokhi MWR 2014

Steep orography with a basic terrain-following vertical coordinate

Stratified flow past isolated mountain on a small planet (max. slope $\sim 37^{\circ}$)

\rightarrow Basic terrain-following coordinate, semi-implicit integration of Euler equations (Smolarkiewicz et al. 2014), finite-volume MPDATA scheme (Kühnlein and Smolarkiewicz 2017), no explicit diffusion

Steep orography with a basic terrain-following vertical coordinate

Stratified flow past isolated mountain on a small planet (max. slope $\sim 71^{\circ}$)

\rightarrow Basic terrain-following coordinate, semi-implicit integration of Euler equations (Smolarkiewicz et al. 2014), finite-volume MPDATA scheme (Kühnlein and Smolarkiewicz 2017), no explicit diffusion

Other techniques

\rightarrow Cut-cell method (e.g. Steppeler et al. 2002, Klein et al. 2009, Lock et al. 2012)

Other techniques

\rightarrow Slanted cell approach (Shaw and Weller MWR 2016, Shaw et al. 2017)

Other techniques

\rightarrow 3D unstructured mesh discretisation \rightarrow see J. Szmelter's lecture

※ECMWF

Multiscale atmospheric flows

\rightarrow Extremely different local scales in atmospheric flows
\rightarrow Standard approach in atmospheric solvers of uniform mesh not optimal
\rightarrow Variable mesh applying locally finer/coarser spacing more efficient
\rightarrow Solution-adaptive mesh is able to conform to flow evolution

r-adaptivity

$$
(\bar{x}, \bar{y})=(E(t, x, y), D(t, x, y)): \quad \mathcal{D}_{p} \rightarrow \mathcal{D}_{t}
$$

\rightarrow moving mesh or r-adaptive technique (see Budd et al. AN 2009 for comprehensive discussion)

NECMWF

Scalar advection experiment

Time-dependent deformational shear flow (Blossey and Durran, JCP 2008) using advection scheme MPDATA (Smolarkiewicz IJNMF 2006) with moving meshes (Kühnlein et al. JCP 2012):

\rightarrow mesh refinement indicator: $\Phi=\|\nabla \psi\|$

Scalar advection experiment

uniform mesh - $50^{2}, \mathrm{~T}_{\mathrm{rw}}=1$

uniform mesh $-250^{2}, \mathrm{~T}_{\mathrm{rw}}=133$


```
adaptive mesh - 50 2, Trrw = 5.5
```

$\rightarrow \mathrm{T}_{\mathrm{rw}}$ is relative wall clock time to uniform mesh run with 50^{2} mesh cells (leftmost panel)

Moving mesh PDEs

MMPDEs (Huang JCP 2001) govern time-dependent mapping (here 2D) from computational to physical space:

$$
P\left(\mathbf{x}_{h}, M\right) \frac{\partial \mathbf{x}_{h}}{\partial \bar{t}}=\sum_{i, j=1,2} D_{i j}\left(\mathbf{x}_{h}, M\right) \frac{\partial^{2} \mathbf{x}_{h}}{\partial \bar{x}^{i} \partial \bar{x}^{j}}+\sum_{i=1,2} C_{i}\left(\mathbf{x}_{h}, M\right) \frac{\partial \mathbf{x}_{h}}{\partial \bar{x}^{i}}
$$

with coefficients

$$
\begin{gathered}
D_{i j}\left(\mathrm{x}_{h}, M\right)=\nabla_{h} \bar{x}^{i} \cdot M^{-1} \nabla_{h} \bar{x}^{j}, \quad C_{i}\left(\mathrm{x}_{h}, M\right)=-\nabla_{h} \bar{x}^{i} \cdot\left(\sum_{k=1,2} \frac{\partial M^{-1}}{\partial \bar{x}^{k}} \nabla_{h} \bar{x}^{k}\right), \\
P\left(\mathbf{x}_{h}, M\right)=\mathcal{T} \sqrt{\left(D_{11}\right)^{2}+\left(D_{22}\right)^{2}+\left(C_{1}\right)^{2}+\left(C_{2}\right)^{2}}
\end{gathered}
$$

Moving mesh PDEs

MMPDEs (Huang JCP 2001) govern time-dependent mapping (here 2D) from computational to physical space:

$$
P\left(\mathbf{x}_{h}, M\right) \frac{\partial \mathbf{x}_{h}}{\partial \bar{t}}=\sum_{i, j=1,2} D_{i j}\left(\mathbf{x}_{h}, M\right) \frac{\partial^{2} \mathbf{x}_{h}}{\partial \bar{x}^{i} \partial \bar{x}^{j}}+\sum_{i=1,2} C_{i}\left(\mathbf{x}_{h}, M\right) \frac{\partial \mathbf{x}_{h}}{\partial \bar{x}^{i}}
$$

with coefficients

$$
\begin{gathered}
D_{i j}\left(\mathrm{x}_{h}, M\right)=\nabla_{h} \bar{x}^{i} \cdot M^{-1} \nabla_{h} \bar{x}^{j}, \quad C_{i}\left(\mathrm{x}_{h}, M\right)=-\nabla_{h} \bar{x}^{i} \cdot\left(\sum_{k=1,2} \frac{\partial M^{-1}}{\partial \bar{x}^{k}} \nabla_{h} \bar{x}^{k}\right), \\
P\left(\mathbf{x}_{h}, M\right)=\mathcal{T} \sqrt{\left(D_{11}\right)^{2}+\left(D_{22}\right)^{2}+\left(C_{1}\right)^{2}+\left(C_{2}\right)^{2}}
\end{gathered}
$$

\Rightarrow MMPDEs are derived from variational principles as a minimiser of mapping functional

$$
\mathcal{I}[\overline{\mathbf{x}}]=\frac{1}{2} \int_{\mathcal{D}_{p}} \sum_{k=1}^{2}\left(\nabla \bar{x}^{k}\right)^{T} M^{-1} \nabla \bar{x}^{k} d \mathbf{x}
$$

Moving mesh PDEs

One-dimensional stationary view on the MMPDE:

$$
\mathcal{I}[\bar{x}]=\frac{1}{2} \int_{\mathcal{D}_{p}} \frac{1}{m}\left(\frac{\partial \bar{x}}{\partial x}\right)^{2} d x
$$

with Euler-Lagrange equation

$$
\frac{\partial}{\partial \bar{x}}\left(m(x) \frac{\partial x}{\partial \bar{x}}\right)=0+\mathrm{BCs}
$$

$m(x): \mathbf{S}_{p} \rightarrow \mathbb{R}^{+}$is monitor function to control local mesh spacing

Moving mesh PDEs

Number of grid increments: $N=20$

- Example:

$$
\begin{aligned}
& x(0)=0, \\
& \begin{array}{l}
\bar{x}(0)=0, \\
m(1)=1 \\
x(1)=1 \\
m(x)=1
\end{array} \\
& \frac{\partial}{\partial \bar{x}}\left(m(x) \frac{\partial x}{\partial \bar{x}}\right)=0 \\
& \quad \Rightarrow \quad x=x(\bar{x})
\end{aligned}
$$

Moving mesh PDEs

Number of grid increments: $N=20$

- Example:

$$
\begin{aligned}
& x(0)=0, \quad x(1)=1 \\
& \bar{x}(0)=0, \quad \bar{x}(1)=1 \\
& m(x)=\exp (x \ln 2) \\
& \frac{\partial}{\partial \bar{x}}\left(m(x) \frac{\partial x}{\partial \bar{x}}\right)=0 \\
& \quad \Rightarrow \quad x=x(\bar{x})
\end{aligned}
$$

Moving mesh PDEs

Number of grid increments: $N=20$

- Example:

$$
\begin{aligned}
& x(0)=0, \quad x(1)=1 \\
& \bar{x}(0)=0, \quad \bar{x}(1)=1 \\
& m(x)=\exp (x \ln 4) \\
& \frac{\partial}{\partial \bar{x}}\left(m(x) \frac{\partial x}{\partial \bar{x}}\right)=0 \\
& \Rightarrow \quad x=x(\bar{x})
\end{aligned}
$$

Moving mesh PDEs

\rightarrow Monitor function $M(2 \times 2$ matrix in 2 D$)$:

$$
M=I q
$$

with scalar weighting function

$$
q\left(t, \mathbf{x}_{h}\right)=1+\frac{\beta}{1-\beta} \frac{\Phi}{\langle\Phi\rangle_{h}}, \quad I \text { is identity matrix }
$$

$\rightarrow \Phi$ is mesh refinement indicator; $\langle\Phi\rangle_{h}$ denotes its horizontal average
$\rightarrow 0 \leq \beta<1$ controls strength of adaptation
$\rightarrow q$ is filtered to obtain good quality mesh

Moving mesh PDEs

\rightarrow Monitor function $M(2 \times 2$ matrix in 2 D$)$:

$$
M=I q
$$

with scalar weighting function

$$
q\left(t, \mathbf{x}_{h}\right)=1+\frac{\beta}{1-\beta} \frac{\Phi}{\langle\Phi\rangle_{h}}, \quad l \text { is identity matrix }
$$

$\rightarrow \Phi$ is mesh refinement indicator; $\langle\Phi\rangle_{h}$ denotes its horizontal average
$\rightarrow 0 \leq \beta<1$ controls strength of adaptation
$\rightarrow q$ is filtered to obtain good quality mesh
\rightarrow boundary conditions of 2D MMPDEs are either of Dirichlet-type for x_{h} found by means of 1D MMPDEs

$$
p(s, \mu) \frac{\partial s}{\partial \bar{t}}=\mu \frac{\partial^{2} s}{\partial \bar{s}^{2}}+\frac{\partial \mu}{\partial \bar{s}} \frac{\partial s}{\partial \bar{s}}
$$

along boundary segments or are assumed periodic, depending on $B C$ of the model

Adaptive moving mesh solver

- In framework of two-time-level flow solver EULAG (Prusa et al. CF 2008, Kühnlein et al. JCP 2012)

Adaptive simulation of convective bubble

Combining the soundproof and compressible PDE solver (Smolarkiewicz et al. JCP 2014) with adaptive moving meshes:

$$
(\bar{x}, \bar{z})=(E(t, x, z), D(t, x, z)): \quad \mathcal{D}_{p} \rightarrow \mathcal{D}_{t}
$$

\rightarrow mesh refinement indicator: $\Phi=\|\nabla \theta\|$

Baroclinic wave life cycle experiments with adaptive moving meshes

\rightarrow zonally-periodic channel $10000 \mathrm{~km} \times 8000 \mathrm{~km} \times$ 18 km
\rightarrow baroclinically unstable jet flow (Bush and Peltier, JAS 1994)
\rightarrow perturb initial state by local θ-anomaly at tropopause
\rightarrow integrate for 12 days

\rightarrow Coordinate mapping: $(\bar{x}, \bar{y}, \bar{z})=(E(t, x, y), D(t, x, y), C(t, x, y, z)): \quad \mathcal{D}_{p} \rightarrow \mathcal{D}_{t}$

Baroclinic wave life cycle experiments with adaptive moving meshes

\rightarrow zonally-periodic channel $10000 \mathrm{~km} \times 8000 \mathrm{~km} \times$ 18 km
\rightarrow baroclinically unstable jet flow (Bush and Peltier, JAS 1994)
\rightarrow perturb initial state by local θ-anomaly at tropopause
\rightarrow integrate for 12 days

\rightarrow Coordinate mapping:

$$
(\bar{x}, \bar{y}, \bar{z})=(E(t, x, y), D(t, x, y), C(t, x, y, z)): \quad \mathcal{D}_{p} \rightarrow \mathcal{D}_{t}
$$

Baroclinic wave life cycle experiments with adaptive moving meshes

(Kühnlein et al. JCP 2012)

Baroclinic wave life cycle experiments with adaptive moving meshes

Domain-averaged kinetic energetics with integration time

Sensitivity to mesh refinement indicator

Simulation	Refinement indicator $\Phi(t, x, y)$	$\mathcal{E}_{\langle\mathrm{KE}\rangle}$	$\mathcal{E}_{\langle\text {ZKE }}{ }^{\text {a }}$	$\mathcal{E}^{\langle\mathrm{EKE}}{ }^{\text {e }}$,		
S7050	-	6.43	4.99	4.84		
S15429	-	2.58	1.66	1.90		
A6254a	$\frac{1}{H} \int_{0}^{H}\left\\|\nabla_{h} \theta\right\\| d z$	2.82	1.67	1.80		
A6254b	$\left\\|\nabla_{h} \theta(z=600 \mathrm{~m})\right\\|$	3.75	2.64	2.28		
A6254c	$\left\\|\nabla_{h} \theta(z=3000 \mathrm{~m})\right\\|$	2.91	1.57	1.92		
A6254d	$\left\\|\nabla_{h} \theta(z=5100 \mathrm{~m})\right\\|$	2.98	2.43	1.98		
A6254e	$\frac{1}{H} \int_{0}^{H}\\|\nabla \times v\\| d z$	2.90	2.10	1.83		
A6254f	$\frac{1}{H} \int_{0}^{H}\|P V\| d z$	3.81	2.31	2.45		
A6254g	$\|P V(z=5100 \mathrm{~m})\|$	4.65	2.48	2.97		
A6254h	$\|P V(z=9000 \mathrm{~m})\|$	4.22	2.62	2.64		
A6254i	$\stackrel{1}{H} \int_{0}^{H}\left\\|\nabla_{h} P V\right\\| d z$	3.82	2.36	2.65		
A6254j	$\frac{1}{H} \int_{0}^{H}\|P V\| d z, \frac{1}{H} \int_{0}^{H}\left\\|\nabla_{h} P V\right\\| d z$	3.84	2.27	2.52		
A6254k	$\frac{1}{H} \int_{0}^{H}\|E P V\| d z$	10.77	5.43	8.57		
A6254	$\|E P V(z=5100 \mathrm{~m})\|$	9.50	4.60	7.56		
$\mathcal{E}_{\vartheta}=\left(\frac{1}{N}\right.$	$\left.\sum_{i=1}^{N_{o}}\left(\vartheta_{i}-\vartheta_{i}^{R}\right)^{2}\right)^{1 / 2}$	$\vartheta=$	$\rangle,\langle\mathrm{ZK}$,$\langle\mathrm{EKE}\rangle$		

$\rightarrow \vartheta^{R}$ is high-resolution reference simulation S62217 with static uniform mesh
$\rightarrow N_{o}=48$ is number of 6-hourly model outputs over integration period of 12 days

Multiscale performance

\rightarrow Representation of internal gravity waves occurring in response to imbalances in the evolving baroclinic wave flow:

vertical velocity field at $z=12 \mathrm{~km}$ and $\mathrm{t}=246 \mathrm{~h}$

Adaptive moving meshes on the sphere

\rightarrow Mesh generation using optimal transport (Weller et al. JCP 2016):

©ECMWF

Adaptive moving meshes

Adaptive moving meshes:

+ efficient way of employing mesh adaptivity
+ keeps grid/data structure
- less flexible than h- or hr-adaptive techniques
\rightarrow Mesh refinement criteria ?
\rightarrow Subgrid-scale parameterisations ?
\rightarrow...
- Behrens, "Adaptive atmospheric modeling", Springer 2006
- Weller et al. BAMS 2010

