Model Physics

® A few basics

® High resolution
® A few problems
® A few products

for the Model Section: Peter Bechtold

http.://www.ecmwf.int/en/learning/education-material/introductory-lectures-nwp
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Parameterized processes in the ECMWF model
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Precipitation JJA: Sensitivity to Model Formulation
Seasonal integrations
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Model Tendencies - Tropics
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For Temperature, above the boundary layer, there is roughly an equilibrium
Radiation-Convection, but Dynamics and Clouds also important, whereas for
moisture there is roughly an equilibrium between dynamical transport (moistening)
and convective drying. - Global Budgets are very similar

All processes are important, nevertheless the driving force for
atmospheric dynamics and convection is the radiation
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The weather and thermal equilibria: exercises

® Suppose we have a series of fine day with an anticyclone, the temperature
above the boundary-layer barely changes, Why?

dt dz dt Irad "~ 864005 gubsidence
~0.5 K/100 m

® But what happens when it is raining 100 mm/day ?

10km
f Cp%pair' dZ = vawa‘rer' Pr'(m/ S)
surf

¢, = 1005]/k g/K; = 1000k g/m3; L, = 2.5x10° J/kg

pwater

mm 6
Pr=100——= 1.147m/sx10
day

100 mm/day precipitation heats the atmospheric column by 2867 W/m2 or by
25 K/day on average. This heating must be compensated by uplifting of
w ~ 10 cm/s => heavy precip/convection requires large-scale perturbation.
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The 2016 horizontal resolution upgrade:

The Grids and effects from improved
Numerics
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From TI1279 (16 km) to TCo1279 (9 km)

OROGRAPHY, GRID POINTS AND LAND_SEA MASK FOR N640 ORIGINAL GRID
orography shaded (height in m), land grid points (red), sea grid points (blue)
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Same max number of
waves on the
sphere=1279

Less spectral smoothing
applied to TC1279
orography than in T11279

In the linear=Tl grid 2
grid-points represent one
wave, while in the
cubic=TC grid, a wave is
represented by 4 grid-
points =>much more
accurate

note that most
computations are done in
grid-point space

The TC Gaussian grid is
further reduced toa TC
octahedral to save grid
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A new grid ....

and a more uniform resolution, ~9 km over Europe
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Improvements: ....

Strong reduction of spurious grid-scale rainfall events (LSP)
B
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Improvements: Numerics

* Instability in Numerics due to departure point calculation
in the semi-Lagrangian advection, leading to unrealistic
tropical cyclone structures

Tropical Cyclone Soudelor
Aug 2015

20150807 0z +12 Total precip.
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High Res 41r2, 3h precip

20150807 0z +12 Total precip.
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Physical processes: Surface temperatures
wind and snhow
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Land surface model evolution
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Snow Observations
Snow SYNOP and National Network data
SNOW Depth ECMWF (cm) and SYNOP obs (1) 20150101 at 06U 0
05 2 5 15 20 50

ITE; Step 0

100 150 4000 10001

10

gm‘:h ) Available on the 6TS (Global
eprh em Telecommunication System)
) 2015 01 01 at 06UTC
05 2 5 OGO O 88 ™ 150 4000 10001
i“ 4-‘"\ m
Additional data from national networks (7
countries):

Sweden (>300), Romania(78), The Netherlands (33),

Denmark (43), Hungary (61), Norway (183), Switzerland
(332). —

—~>Dedicated BUFR (2011)
(de Rosnay et al. ECMWF Res. Memo, R48.3/PdR/1139, 2011)
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Snow analysis uses Synop and Satellite
Obs

Analysis based on SYNOP

ECWYWF Analysis WT:Saturday 16 Felruany 2002 12UTC Surface: snow depth SWE [Cm]
aw - P s as

when it is based on SYNOP data only

However, satellite only gives snow cover!

And the big change in 2014 was the way satellite data is used, i.e
it is assimilated with large observation error, also if

FG =no snow, Sat=snow => Sat snow=5cm

Fc errors (scores) very sensitive to snow (analysis)

See also ECMWEF Newsletter no 143, article pp 26-31, Spring 2015
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Archived prognostic snow related quantities
® Snow depth (water equivalent), Sd => actual depth=Sd*(RI=1000)/Rsn

® Snow density (typically factor 10 lower than water-> 1 mm precip~1 cm
snow), Rsn (mixture old/new snow, wind compression)

® Snow temperature, Tsn

® Show albedo, Asn

Sunday 15 January 2017 0000 UTC ECMWF t+0 VT:Sunday 15 January 2017 0000 UTC Wednesday 11 January 2017 0000 UTC ECMWF t+56 VT:Sunday 15 January 2017 0000 UTC
Snow depthincm (using varying snow density). Sea ice fraction in % Snow depthincm (using varying snow density). Sea ice fraction in %%

e 20E e 20

http://www.ecmwf.int/en/forecasts/charts/medium/snow-depth-and-sea-ice



Impact of water bodies in IFS version June 2015
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Ocean surface currents at various
resolutions
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Coupled ocean vs uncoupled
simulation

Tropical cyclone Neoguri with TCo1279 (HRES)

(d)
/ uncoupled
32 5
30°N =3 BT e T
g 30 -
N ."-.,'_
B 2 N || == coupled
20°N , 26 - :‘. rals ., =
. e e e S,
24 T T
Sun Mon 7 Tue 8 Wed 9

Day (July 2014)

Buoy observation
at 22°N, 128°E

4-day forecast SSTs from the coupled forecast initialised at OUTC on 6 July 2014 at the
location of a buoy with approximate position 22°N, 128°E.

(Roadwell et al, EEMWF Technical Report 759, 2015)
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T and q interpolation to the 2m level

q T ® 9; and T, are determined by
the land surface scheme or by

level 137 SST
(10 m)
® Main purpose of land surface
scheme is to provide correct
area averaged fluxes of heat
and moisture.
® Land surface scheme
4, 1, i .
2m level considers different sub-areas
(diagnostic)  (tiles) but effect on screen
level variables is not
accounted for yet.
surface
q I

ECMWF 2017 FD Training Course: Model Physics Slide 19 & ECMWF




T2m mean errors (K) 20 Dec 2016- 25. Jan 2017

& A5 5 45 4 A5 3 25 2 S 45 5 5k &

5UW o°E 5°E 10°E 15°E

Diff Ana-E40clim mean 2T (C) 20161220-2017¢  Diff Fc-Ana mean 12 UTC 2T (C) 20161220-20-

5 T 65 -6 A5 5 45 4 a5 A 2% 2 -8

0 |

3CE__35°E

—

-

« T
ot sy hES KD

=
Qq‘.. ]
—
-
-
-
L=

55N |- £y
---[50°N
~fas N

S Qe T

—4{35°N

land mask applied (contour interval 0.5 K, start at +- 0.5 K)
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Temperature negative error reduction in 41r2 resolution
upgrade:

Coastal T-errors reduced through approximate radiation updates in
space and time
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Summary of wintertime 2m T errors

Overall not bad, mean error < 0.5 K, improved over
previous years but still

*Regional differences, now mainly too cold, particular
night-time problem, especially apparent over
orography

Various possible reasons: coupling (coefficient) with
ground heat flux, error in lake temperatures (not
frozen), stable boundary-layer mixing, low-level clouds,
snow

*Overestimation of summertime night temperatures
(coupling with soil, vegetation not shown) ... should have
been partly addressed (to be seen)
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10 m wind

iy S ‘—r /\/\ * Local wind depends strongly on

woodland grass mountains local exposure.
* ECMWEF model has roughness
— length parametrisation to obtain
realistic “area averaged” surface
— — drag.
— j * Resulting wind is low over land
because rough elements dominate.

Post-processing of wind at 10 m

* Post-processed 10 m wind interpolates wind
from 40 m (was 75 m before Nov. 2011) )
assuming roughness length for grassland.

° Note: this exposure correction is only a partial
correction to account for local effects (which
tend to be more complex).

40 m

< ECMWF
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Changes to the roughness length table (Nov 2011)

T+60 Standard deviation of forecast error
T+72 Standard deviation of forecast error
10m wind speed

Europe N Africa (at 25.0 0 70.0, lon -10.0to 28.0)
12 UTC forecasts
=

o

T+60 Mean error

T+72 Mean error

PR S W O G N S S N N H

N Y A : '

2002 2002 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
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Wind Gusts: what is it ?

WMO definition:

Gusts are defined as wind extremes observed by anemometer. A 3
second running average is applied to the data. The report practice is such
that gusts are reported as extremes over the previous hour, or the
previous 3 or 6 hours.

The mean wind is reported as a 10 min average which is the last 10-
minute interval of the hour; it should be comparable with instant output
of the model 10 m wind, as it can be interpreted as some space and/or
time average.
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Wind Gusts in the IFS

Gusts are computed by adding a turbulence component and a convective
component to the mean wind:

Uy =Uo + 771U, £ (/L) +Q.6maxfOf = U

deep convection

where U,, is the 10m wind speed (obtained as wind speed at first model
level, or interpolated down from 40m level), U. is the friction velocity -

itself obtained from the wind speed at the first model level, and L is a
stability parameter.

The convective contribution is set proport. to the wind shear between
model levels corresponding to 850 hPa and 950hpa, respectively.
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Wind gusts

Time series against anemometer 24 January 2009 (storm Klaus)

Toulouse station UPS 20080124 ECKWEF wersus Ohs
150 T T T

— o ogust
E_ ===FC mean
E 100 Ohbs gust |
= === hs mean
= —#— Conv gust
o = Rl B
T [ LB ™
5 sof R 4 ,.._-._rm.--—f'ﬁ"‘{==-.q__ -
= - - "-Q-.
E — - ’i" h-lh----=___-_.
R \ - ‘---i-h
. ”"‘ oy —--_I _"\_‘% . !
0 B 12 18 24

time (h)

Observed mean wind speed (dashed black line) and maximum wind speed (solid black line)
for 24 January 2009 at a meteorological station at Toulouse University, France
(courtesy Jean-Luc Attié and Pierre Durand), together with corresponding 3-hourly
forecast values (red lines) from the operational deterministic forecast from 23 January
12 UTC. The blue line denotes the convective contribution to the gusts.
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Physical processes: Summer and winter
convection
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Parcel convective In(stability): CAPE (CIN)

Idealised Profile
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In the IFS convection parameterization the amount of CAPE determines the intensity of convection
(rainfall) - the computation of CAPE depends on the specified entrainment and the departure level of
the air parcel (LCL=lifting condensation level, LFC=level of free convection, LNB=level of neutral buoyancy)
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Convective Indices
requested by Member States (User Meeting June 2011)

Fc 20110608 00UTC +12h

CAPE (J/kg) Fc 20110608 00UTC +12h  CIN (J/kg)

Fc 20110608 00UTC +12h  K-Index (C)

k- .
10w o= 10°E 20°E 30




Diurnal cycle: realistic since Nov 2013

A Europe

!
i JJA 2011-2012 hourly rainfall
"o 6 12 T: 24 composite against Radar
b M. America
il
i See ECMWF Newsletter No 136 Summer 2013
r Bechtold et al., 2014, J. Atmos. Sci.

LET
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Diurnal cycle: Impact on weather forecasts

@ Meteosat 920120705 12 UITC b CTL 20120705 00 UTC +12h € MEW 20120705 00 UTC +1.2h
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Wmter convectlon- snow showers
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Summary: issues for improvement

® T2m winter can still be difficult: stable boundary-layer, coupling with surface (ground, lakes)
and low-level clouds

® Still underestimation of convective night-time precip and some overestimation of light
precipitation (drizzle)

® |nland penetration of (convective) showers and convective organisation improved but can still
be improved

® Too strong Indian and SE Asian Summer Monsoon (some positive effect from new aerosol
climatology in 2017)

® Melting of fresh snow on ground somewhat too slow

® and for long-range forecasts the coupling between the stratosphere and the troposphere
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New products and things coming up in 2017

® New products: Ceiling (m), convective cloud top height (m), height of 0 and 1 Deg C wet bulb
temperature, direct beam surface radiation

® New radiation scheme and Aerosol climatology -> improved (reduced precipitation) Indian summer
monsoon

® Revised mixed phase for microphysics in convection

® Possible: coupling of HRES from t=0

® Possible: revised warm phase microphysics and revised boundary-layer clouds — shallow convection
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Model tendencies during an inversion
situation

22-23 Jan 2017 [48.2-48.8,8-11]
700 — ; .
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00

go0
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950 F

1,000

-5 -2.5 0 2.5 5 5 10
dT/dt (Kiday)
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