
C O M P U T E | S T O R E | A N A L Y Z E

More on Application profiling
and optimization

1

Ilias Katsardis
ikatsardis@cray.com

C O M P U T E | S T O R E | A N A L Y Z E

Agenda

2

● A Tour of the Apprentice2 GUI

● Optimizations for MPI – Rank Reordering

C O M P U T E | S T O R E | A N A L Y Z E

A tour of the Apprentice2 GUI

3

C O M P U T E | S T O R E | A N A L Y Z E

The Three Stages of Profiling with perftools
and CrayPat

4

1. Instrumentation
● Build executable of an instrumented version of your application

2. Running your application and Data Collection
● Run the instrumented version of your application
● Transparent collection via CrayPat’s run-time library

3. Analysis: Sampling / Tracing
● Interpret and visualize data using post-mortem tools:

1. pat_report: a command line tool for generating text reports
2. Cray Apprentice2: a graphical performance analysis tool
3. Reveal: graphical performance analysis and code restructuring tool

C O M P U T E | S T O R E | A N A L Y Z E

Profile Visualization with
Cray Apprentice2

C O M P U T E | S T O R E | A N A L Y Z E

Cray Apprentice2

● Features:
● Call graph profile
● Communication statistics
● Time-line view

● Communication
● I/O

● Activity view
● Pair-wise communication

statistics
● Text reports
● Source code mapping

● Helps identify:
● Load imbalance
● Excessive communication
● Network contention
● Excessive serialization
● I/O Problems

6

C O M P U T E | S T O R E | A N A L Y Z E

To use Cray Apprentice2

7

● You can run app2 on the login nodes:
● You need an X session

● ssh -X <system name>
● and software to catch X windows on your local machine

● You need app2 in your path
● module load perftools-base

● The *.ap2 file contains the information (produced by pat_report)
● app2 data_file_name.ap2
● or you can load the ap2 file from the GUI

● There is also a client version of app2
● You can run this on your local machine
● Contact your site administrator for details on how to install this
● Then just need to copy the *.ap2 file to this machine

C O M P U T E | S T O R E | A N A L Y Z E

Installing Apprentice2 on Laptop

.

From a login node

● > module load perftools-base

● Go to:
● $CRAYPAT_ROOT/share/desktop_installers/

● Download .dmg or .exe installer to laptop

● Double click on installer and follow directions to install

C O M P U T E | S T O R E | A N A L Y Z E

Cray Apprentice2

.
9

C O M P U T E | S T O R E | A N A L Y Z E

Statistics Overview: Pie Chart

10

2
1

5

6

1. Data tab: shows the name
of the data file currently
displayed

2. Report toolbar: show the
reports that can be
displayed for the data
currently selected

3. Report tabs: show the
reports

4. On many reports, the total
duration of the experiment
is shown as a graduated
bar at the bottom of the
window

5. Change view from pie
chart to bar graph

6. Help menu

Note that report toolbar ONLY
what you have decide to collected
with pat_build

C O M P U T E | S T O R E | A N A L Y Z E

Statistics Overview: Bar Graph

11

C O M P U T E | S T O R E | A N A L Y Z E

Function Profile View

12

C O M P U T E | S T O R E | A N A L Y Z E

Load Balance View (Aggregated from Overview)

13

Min MaxAvg

±1	𝑠𝑡𝑑	𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛

By clicking on a give function, we can show the breakdown per each PE

Function

C O M P U T E | S T O R E | A N A L Y Z E

Call Tree View

.
14

Function
List

Load balance overview:
Height ó Max time
Middle bar ó Average
time
Lower bar ó Min time
Yellow represents
imbalance time

Zoom

Height ó exclusive time

Width ó inclusive time

DUH Button:
Provides hints
for performance
tuning

Filtered
nodes or
sub tree

C O M P U T E | S T O R E | A N A L Y Z E

Call Tree View – Function List

15

Function
List off

Right mouse click:
Node menu
e.g., hide/unhide
children

Sort options
% Time,
Time,
Imbalance %
Imbalance time

Right mouse click:
View menu:
e.g., Filter

C O M P U T E | S T O R E | A N A L Y Z E

Call Tree Visualization

16

C O M P U T E | S T O R E | A N A L Y Z E

Discrete Unit of Help (DUH Button)

17

C O M P U T E | S T O R E | A N A L Y Z E

Source Mapping from Call Graph view

18

C O M P U T E | S T O R E | A N A L Y Z E

pat_report Tables in Cray Apprentice2

19

● Complementary performance data available in one place

● Most reports easily accessible
● using drop-down menu for easy navigation

● Can easily generate new views of performance data

● Provides mechanism for more in depth explanation of data
presented

C O M P U T E | S T O R E | A N A L Y Z E

Example of pat_report Tables in Cray
Apprentice2

20

New text
table icon

Right click
for table

generation
options

C O M P U T E | S T O R E | A N A L Y Z E

Generating New pat_report Tables

21

C O M P U T E | S T O R E | A N A L Y Z E

Reduce ap2 file information

22

● Sometimes the amount of data in ap2 file can be large
● Very long-running applications
● Applications running on a large number of PEs

● The app2 command supports two options to help
● --limit and --limit_per_pe
● Restrict the amount of data being read in from the ap2 file
● use K, M, and G abbreviations for kilo, mega, and giga

● --limit sets a global limit on data size.
● --limit_per_pe sets limit per PE

● --limit_per_pe generally preferable (not always, but generally)
● preserves full parallism in analysis

● Example: first 3M data items
● app2 --limit 3M data_file_name.ap2 &

C O M P U T E | S T O R E | A N A L Y Z E

Timeline views with Cray Apprentice2

C O M P U T E | S T O R E | A N A L Y Z E

Tracing

24

● Show tracing results (Time Live View)
● Information broken out by communication type (read, write, barrier,

and so on)

● Only true function calls can be traced
● Functions that are inlined by the compiler or that have local scope in a

compilation unit cannot be traced

● Enabled with pat_build –g, -u, -T or –w options

● Full trace (sequence of events) enabled by setting
Pat_RT_SUMMARY=0

C O M P U T E | S T O R E | A N A L Y Z E

Time Line View (Sweep3D)

25

C O M P U T E | S T O R E | A N A L Y Z E

Time Line View (Zoom)

26

User Functions, MPI
& SHMEM Line

I/O Line

C O M P U T E | S T O R E | A N A L Y Z E

Time Line View (Fine Grain Zoom)

27

C O M P U T E | S T O R E | A N A L Y Z E

Other Cray Apprentice2 Reports

28

● Environment reports
● Provide general information about the conditions under which

the data file currently being examined was created
● Traffic Report

● shows internal PE-to-PE traffic over time. T
● information is broken down by comm. type (read, write, barrier etc.)

● I/O Rates Report
● table listing quantitative information about program's I/O usage.

● look for I/O activities that have low average rates and high data volumes;
● this may indicate that the file should be moved to a different file system.

● Hardware reports
● Available only if hardware counter information was captured

● Full description at: http://docs.cray.com/books/S-2376-
63/S-2376-63.pdf

C O M P U T E | S T O R E | A N A L Y Z E

I/O display in Apprentice2

.

● New feature which allows user
to study MPI I/O and file I/O
activity over time, associating
back to call tree

C O M P U T E | S T O R E | A N A L Y Z E

Compiler feedback and variable
scoping with

Reveal

C O M P U T E | S T O R E | A N A L Y Z E

● For an OpenMP port a developer has to understand the
scoping of the variables, i.e. whether variables are shared
or private.

● Reveal is Cray’s next-generation integrated performance
analysis and code optimization tool.
● Source code navigation using whole program analysis (data provided

by the Cray compilation environment.)
● Coupling with performance data collected during execution by

CrayPAT. Understand which high level serial loops could benefit from
parallelism.

● Enhanced loop mark listing functionality.
● Dependency information for targeted loops
● Assist users optimize code by providing

variable scoping feedback and suggested
compile directives.

31

Reveal

C O M P U T E | S T O R E | A N A L Y Z E

Input to Reveal

32

● You can omit the *.ap2 and inspect only compiler feedback.
● Note that the profile_generate option disables most automatic

compiler optimizations, which is why Cray recommends generating this
data separately from generating the program_library file.

$> module load perftools
$> ftn -O3 -hpl=my_program.pl -c my_program_file1.f90
$> reveal my_program.pl my_program.ap2 &

● Recompile to generate program library
● Performance data from a separate loop timing trace experiment
● Launch Reveal

C O M P U T E | S T O R E | A N A L Y Z E

Visualize CCE’s Loopmark with Performance Profile

Performance
feedback

Loopmark and optimization
annotations

Compiler feedback

33

C O M P U T E | S T O R E | A N A L Y Z E
34

Visualize CCE’s Loopmark with Performance
Profile (2)

Integrated
message

‘explain support’

Integrated
message

‘explain support’

C O M P U T E | S T O R E | A N A L Y Z E

View Pseudo Code for Inlined Functions

35

Inlined call
sites marked

Expand to
see pseudo

code

C O M P U T E | S T O R E | A N A L Y Z E

Scoping Assistance – Review Scoping Results

User addresses
parallelization

issues for
unresolved
variables

Loops with
scoping

information are
highlighted – red

needs user
assistance

Parallelization inhibitor
messages are provided to
assist user with analysis

36

C O M P U T E | S T O R E | A N A L Y Z E

Scoping Assistance – User Resolves Issues

Click on variable to
view all

occurrences in loopUse Reveal’s
OpenMP

parallelization tips

37

C O M P U T E | S T O R E | A N A L Y Z E

Scoping Assistance – Generate Directive

Automatically
generate
OpenMP
directive

Reveal generates
example OpenMP

directive

38

C O M P U T E | S T O R E | A N A L Y Z E

Automatic paralellization
with Reveal

39

C O M P U T E | S T O R E | A N A L Y Z E

Reveal Auto-Parallelization

.

● Use an automated procedure to create loop work
estimates for use with Reveal

● Build an experimental binary that includes automatic
runtime-assisted parallelization

● Explore if high-level loops that contain subroutine calls
can be automatically parallelized

● Goal is to assist the user with adding additional levels of
parallelism to their program

C O M P U T E | S T O R E | A N A L Y Z E

Reveal Auto-Parallelization Recipe

Perform performance analysis run
• Loop level tracing using module load perftools-lite-loops

Auto parallelize important loops
• Recompile with program library option, i.e. -hpl=objcode.exe.pl
• reveal objcode.exe.pl *.ap2, select loops, perform loop scoping

Run experimental binary and compare wallclock
against performance baseline

Optionally add parallel directives to code

C O M P U T E | S T O R E | A N A L Y Z E

Reveal: Create Experimental Binary

42

277 Loop
Candidates for
Parallelization

Thread Count to
Use at Runtime

One Step to
Create New

Binary
(only from

perftools 6.3.2)

C O M P U T E | S T O R E | A N A L Y Z E

Reveal: Example of Parallelization Hints

43

C O M P U T E | S T O R E | A N A L Y Z E

Reveal: New Autothread Directive

44

C O M P U T E | S T O R E | A N A L Y Z E

Reveal: New Autothread Directive

.

● Optional directive available when loop cannot be
parallelized via OpenMP directives (without code rewrite)

● Loop directive

● Inlines all calls within a loop

● No runtime threshold for directive

● Correctness ensured

C O M P U T E | S T O R E | A N A L Y Z E

Optimisations for MPI

46

C O M P U T E | S T O R E | A N A L Y Z E

Rank Reordering

26-Jan-17
47

● Sometimes an MPI application is not well balanced

● The MPI library can reorder the ranks at runtime based on
the setting of MPICH_RANK_REORDER_METHOD

C O M P U T E | S T O R E | A N A L Y Z E

Rank Placement
● Start with a list of nodes to run on

● 0: Round-robin placement
● Sequential ranks are allocated one per node in sequence
● Placement starts again on first node if we reach the last node

● 1: SMP-style placement (default)
● Sequential ranks fill up each node in turn
● Only then move on to the next node

● 2: Folded rank placement
● Similar to round-robin placement
● except each pass over node list is in the opposite direction

● 3: Custom ordering
● The location of each rank in turn is specified in a list

● Examples of these are shown on the next slide
● For a simplified example of four cores per node

48

C O M P U T E | S T O R E | A N A L Y Z E

0: Round Robin Placement

Node 0
0 12

24 36
Node 1

1 13

25 37
Node 2

2 14

26 38
Node 3

3 15

27 39

Node 4
4 16

28 40
Node 5

5 17

29 41
Node 6

6 18

30 42
Node 7

7 19

31 43

Node 8
8 20

32 44
Node 9

9 21

33 45
Node 10

10 22

34 46
Node 11

11 23

35 47

49

C O M P U T E | S T O R E | A N A L Y Z E

Node 7

Node 8 Node 9 Node 10 Node 11

Node 6

Node 3

1: SMP Placement (default)

Node 0
0 12

24

36

Node 1
1

13

25

37

Node 2
2

14

26

38

3 15

27

39

Node 4

4

16 28

40

Node 5

5

17 29

41

6

18 30

42

7

19 31

43

8

20

32 44

9

21

33 45

10

22

34 46

11

23

35 47

50

C O M P U T E | S T O R E | A N A L Y Z E

Node 10 Node 11

2: Folded Placement

Node 0
0

12

24
Node 1

1

13

25
Node 2

2

26
Node 3

3

27

Node 4
4

28
Node 5

5

29
Node 6

6

30
Node 7

7

31

Node 8
8

32
Node 9

9

33

10

34

11

35

1415

36

16

40

1718

42

202122

41

444546

23

47

373839

19

43

51

C O M P U T E | S T O R E | A N A L Y Z E

3: Custom Example

● MPICH_RANK_REORDER=3 enables this
● Ordering comes from file MPICH_RANK_ORDER

● comma separated ordered list
● can optionally be condensed into hyphenated ranges

● all ranks should be included in the list once and only once
● Nodes are filled up SMP-style

● but not with sequential rank numbers
● instead, take ranks sequentially from the MPICH_RANK_ORDER list

Node 3Node 0
0 10

Node 1
1

14
Node 2

4

11

5 15

2 3

6 7

8 9

12 13

MPICH_RANK_ORDER: 0,1,4,5,2,3,6,7,8,9,12,13,10,11,14,15

MPICH_RANK_ORDER: 0,1,4,5,2,3,6-9,12,13,10,11,14,15

52

C O M P U T E | S T O R E | A N A L Y Z E

Rank placement with CrayPat

53

MPI grid detection:

There appears to be point-to-point MPI communication in a 20 X 16
grid pattern. The 27.5% of the total execution time spent in MPI
functions might be reduced with a rank order that maximizes
communication between ranks on the same node. The effect of several
rank orders is estimated below.

A file named MPICH_RANK_ORDER.Grid was generated along with this
report and contains usage instructions and the Custom rank order
from the following table.

Rank On-Node On-Node MPICH_RANK_REORDER_METHOD
Order Bytes/PE Bytes/PE%

of Total
Bytes/PE

Custom 8.092e+09 75.00% 3
SMP 4.580e+09 42.45% 1
Fold 2.290e+08 2.12% 2

RoundRobin 0.000e+00 0.00% 0
When testing this the time went only
down to 348 from 360 seconds, but
approach might become important
when scaling higher

C O M P U T E | S T O R E | A N A L Y Z E

Further information from CrayPat

Metric-Based Rank Order:

When the use of a shared resource like memory bandwidth is
unbalanced across nodes, total execution time may be reduced
with a rank order that improves the balance. The metric used
here for resource usage is: USER Time

For each node, the metric values for the ranks on that node
are summed. The maximum and average value of those sums are
shown below for both the current rank order and a Custom rank
order that seeks to reduce the maximum value.

A file named MPICH_RANK_ORDER.USER_Time was generated
along with this report and contains usage instructions and the
Custom rank order from the following table.

Rank Maximum Average Max:Ave Reduction in Max
Order Value Value Ratio

Custom 3.491e+03 3.393e+03 1.03 8.77%
Current 3.827e+03 3.393e+03 1.13

54

C O M P U T E | S T O R E | A N A L Y Z E

Rank reordering

● Easy to experiment with
● defaults at least should be tested with every application…
● CrayPat can help generate the reorder file

● When might rank reordering be useful?
● If point-to-point communication consumes a significant fraction of

program time and a load imbalance detected
● e.g. for nearest-neighbour exchanges (see next slide)

● Also shown to help for collectives (alltoall) on subcommunicators
● Spread out I/O servers across nodes
● If there is a good use case for exploiting the Intel hyperthreads

● Have used this for I/O servers (NEMO) and
radiation colocation (IFS)

55

