An Introduction to Parallel
Programming

Paul Burton

paul.burton@ecmwf.int

_c EC MWF © ECMWEF Januar y 23, 2017



Introduction

« Syntax is easy

— And can always be found in books/web pages if you can’t remember!

* How to think about parallel programming is more difficult

But it's essential!

A good mental model enables you to use the OpenMP and MPI we will teach
you

It can be a struggle to start with

Persevere!

* What this module will cover

Revision : What does a parallel computer look like

Different programming models and how to think about them

— What is needed for best performance

g
- ECMWF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS



More than one way of looking at things!

« What can you see?

o
- ECMWF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS



What does a computer do?

Program

e
-y ECMWF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS



How do we make a computer go faster? [1]

* Make the processor go faster

— Give it a faster clock (more operations per second)

» Give the processor more ability

— For example — allow it to calculate a square root

 But...

— It gets very expensive to keep doing this
— Need to keep packing more onto a single silicon chip
* Need to make everything smaller
— Chips get increasingly complex
» Take longer to design and debug
— Difficult and very expensive for memory speed to keep up

— Produce more and more heat

o
- ECMWF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS



How do we make a computer go faster? [1]

* Introduce multiple processors

« Advantages:
— “Many hands make light work”

— Each individual processor can be less powerful

* Which means it's cheaper to buy and run (less power)
» Disadvantages

— “Too many cooks spoil the broth”

— One task — many processors

* We need to think about how to share the task amongst them
* We need to co-ordinate carefully

— We need a new way of writing our programs

o
- ECMWF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS



What limits parallel performance?

 Parallelisation is not a limitless way to infinite performance!

« Algorithms and computer hardware give limits on performance

« Amdahl’s Law

Consider an algorithm (program!)
Some parts of it (fraction “p”) can be run in parallel

Some parts of it (fraction “s”) cannot be run in parallel
* Nature of the algorithm

* Hardware constraints (writing to a disk for example)
Takes time “t” to run on a single processor

On “n” processors ittakes : T=sxt + (pxt)/n

o
- ECMWF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS



Consequences of Amdahl’s Law [1]

e T=sxt + (pxt)n

(1Pt

— Looks simple, but “s” has devastating consquences!

» Consider the case as the number of processors “n” grows large, then we
get:

— T=sxt +[something small]

« So our performance is limited by the non-parallel part of our algorithm

o
- ECMWF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS



Consequences of Amdahl’'s Law [2]

* For example, assume we can parallelise 99% of our algorithm, which takes
100 seconds on 1 processor.

« On 10 processors we get : T[10]= 0.01*100 + (0.99*100)/10
— T[10]=1 + 9.9 = 10.9 seconds

— 9.2 times speedup : not too bad - we're “wasting” 8%

* But on 100 processors we get :
— T[100] =1 + 0.99 = 1.99 seconds

— 50 times speedup : not so good — we're “wasting” 50%

* And on 1000 processors we get :
— T[1000] =1 + 0.099 = 1.099 seconds = 90 times speedup : terrible!

We’'re “wasting” 91%)!

o
- ECMWF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS



How do we program a parallel computer? [1]

« Decompose (split) into parts
» We can think both about the data and the algorithm...
— Apply the same operation to many different pieces of data simultaneously
* SIMD : SINGLE Instruction MULTIPLE Data
* Requires us to decompose (split) the data, but the algorithm can stay put
* eg. Factory making widgets — 1000 employees each producing 10 widgets per hour
— Apply different operations to many different pieces of data simultaneously
*  MIMD : MULTIPLE Instruction MULTIPLE Date

*  Now we need to decompose (split) the algorithm too

* eg. Factory assembly line making cars — split into stages with a few staff at each stage
doing a specific operation (Instruction)

« To maximise parallelism, typically we want to take a MIMD approach

o
- ECMWF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

10



How do we program a parallel computer? [2]

 We need to work out how to distribute the data

— Need to enable multiple processors work simultaneously

« Algorithmic Considerations

— Does the algorithm create a data dependency?
* This may be a function of how to decompose the data

* What is the most efficient decomposition to achieve this?

— Need to ensure the work is properly synchronised

* When there is a data dependency, we need to wait for dependencies to be satisifed

— Possibly need to communicate between processors

* As little as possible!
— Can we split the work equally between all processors?
« Hardware Considerations
— What parallel architecture (hardware) are we using?

— Does our decomposition map neatly onto our hardware (or future hardware?)

o
- ECMWF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

11



Parallel programming techniques will reflect the architecture

Shared Memory
Architecture

Distributed Memory
Architecture

Y o
- ECMWF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

12



Shared memory programming

» Split (decompose) the computation

— “Functional parallelism”

Each processor runs a
single independent
“‘thread”

 Each thread works on a subset of
the computation

* No explicit communication required

— Implicit through common memory

« Advantages
— Easier to program
Nno communications

no need to decompose data

» Disadvantages

— Memory contention?
— How do we split an algorithm?

Y o
- ECMWF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS K]



A simple program

! Calculate F=C*D

DO i =1 , SIZE
F(i) = C(i) * D(1)
ENDDO

Y o
- ECMWF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

We'll ignore these bits for now...

14



A shared memory approach

 Split the function across the threads

— In the example we have two functions:
E=A+B and F=C*D

— But we have 4 processors (threads) — two would be idle ®
« So what we do is split the computation of each loop between the threads
— Each thread will be responsible for executing a subset of the iterations
— Each iteration be independent of the others for this to work
« WWe need some new syntax to tell the computer what we want it to do
— OpenMP — compiler directive
— For now we’'ll just use some descriptive text
» We don't really care which processor/thread does which computations

— The shared memory means that each processor/thread can read/write to any
array element

o
- ECMWF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS 15



Shared memory program

This is easy with shared memory

! (Merged loops to fit onto slide!) as all threads can read/write to
! OpenMP : Distribute loop over NPROC threads the whole of each array

! OpenMP : Private variables : i

DO 1 =1 , SIZE
E(i) = A(i) + B(1)
F(i) = C(i) * D(1)

Y o
- ECMWF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS 16



Directives

» Usually before a loop

* Tells the computer
— How many threads to split the iterations of the loop between

— Any variables which are “private” (default is that variables are “shared”)
+ ‘“private” — each thread has an independent version of the variable
+ ‘“shared” — all threads can read/write the same variable

* The loop index must be private - each thread must have its own independent loop index
so that it can keep track of what it’s doing

— Optionally some tips on how to split the iterations of the loop between threads

o
- ECMWF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

17



How you might want to try and think about it...

* The program runs on a single processor P1 — as a single thread.

« Until...
— It meets an OpenMP directive (typically before a loop)
— This starts up the other processors (P2,P3,P4) — each running a single “thread”

* Each thread takes a “chunk” of computations

* This is repeated until all the computations are done

— When the loop is finished (ENDDO) all the other processors (P2,P3,P4) go back
to sleep, and execution continues on a single thread running on processor P1

o
- ECMWF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

18



How to do it

* Identify parts of the algorithm (typically loops) which can be split
(parallelised) between processors

» Possibly rewrite algorithm to allow it to be (more efficiently) parallelised

— In our example we merged two loops — this can be more efficient than starting
up all the parallel threads multiple times

» For a given loop, identify any “private” variables

— eg. Loop index, partial sum etc.

* Insert a directive telling the computer how to split the loop between
processors

o
- ECMWF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

19



Distributed memory programming

» Split (decompose) the data

Each processor runs a — “Data Parallelism”

single independent “task” » Each processor/task works on a
subset of the data

* Processors communicate over the
network

« Advantages

— Easily scalable (assuming a good
network)

» Disadvantages

— Need to think about how to split our
data

— Need to think about dependencies
and communications

o
- ECMWF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

20



A distributed memory approach [1]

« Split (decompose) the data between the tasks

» We’ll need to do something clever for input/output of the data
— Each task will only read/write it's particularly subset of the data

— We'll ignore this for now

« Each task will compute its subset of the full data set

— Shouldn’t be any problem with load balance (if we decompose the data well!)

« Computation is easy in this example
— No dependencies between different elements of the arrays

— If we had expressions like A (i) =B (i-1)+B (i+1)
we would need to be a bit more clever...

o
- ECMWF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

21



A distributed memory approach [2]

« Split the data between processors

— Each processor will now have 25 (100 / 4) elements per array
— REAL, DIMENSION (SIZE/4) :: A,B,C,D,E,F

Processor 1

— A(1) .. A(25) which corresponds to
A(l) .. A(25) inthe original (single processor code)

Processor 2

— A(1l) .. A(25) which corresponds to
A(26) .. A(50) inthe original (single processor code)

Processor 3

— A(1) .. A(25) which corresponds to
A(51) .. A(75) inthe original (single processor code)

Processor 4

— A(1) .. A(25) which corresponds to
A(76) .. A(100) inthe original (single processor code)

o
- ECMWF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

22



Distributed memory data mapping (array “A”)

‘ A(1:25) _

Y o
- ECMWF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

23



Distributed memory program

! Calculate F=C*D
DO i =1 , SIZE

F(i) = C(i) * D(1)
ENDDO

Y o
- ECMWF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

WEe'll ignore these bits for now...
But it is very important and will
need attention

24



How you might want to try and think about it...

Each task runs its own copy of the program

Each task’s data is private to it

Each task operates on a subset of the data

Sometimes there may be dependencies between data on different tasks
— Tasks must explicitly communicate with one another

— Message Passing key concepts
* One task sends a message to one or more other tasks
* These tasks receive the message

« Synchronisation : All (or subset of) tasks wait until they have all reached a certain point

o
- ECMWF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

25



How to do it

» Think about how to split (decompose) the data
— Minimize dependencies (which array dimension should we decompose?)
— Equal load balance (size of data and/or computation time required)
— May need different decompositions in different parts of the code
« Add code to distribute input data across tasks
— And to collect when writing out
» Watch out for end cases / edge conditions

— For example code which implements a wrap-around at the boundaries

— First/Last item in a loop isn’t necessarily the real “edge” of the data on every
task

— Maybe some extra logic required to check

* Identify data dependencies

— Communicate data accordingly

— Add code to transpose data if changing decomposition

o
- ECMWF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS 26



Decomposing Data [1]

]

1 2 3 4 5 6 7 8 9 10 11 12

NEW (1,3)=0.5*(OLD(1-1,3)+OLD(1+1,73))
ENDDO
ENDDO

Y o
- ECMWF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

27



Decomposing Data [2]

(13t
I

* Let's consider decomposing in the “I” dimension...

1 2 3 4 5 6 7 8 9 10 11 12

NEW (1,3)=0.5*(OLD(1-1,73)+OLD (1+1,73))

* How do we calculate element (3,1) —on P1?
— We need element (2,1) which is on P1 — OK

— And element (4,1) which is on P2 — how do we get that?

* Message passing will be required

o
- ECMWF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

28



Decomposing Data [3]

(1334

* Instead, let’'s consider decomposing in the “j” dimension...

1 2 3 4 5 6 g 8 9 10 11 12

NEW (i,3)=0.5* (OLD(1i-1,73)+OLD (i+1,7))
 Now no communication is required
— So this is a much better decomposition for this problem
» Real life is rarely this simple unfortunately!
— Real codes often have data dependencies across all dimensions

— So we attempt to identify the decomposition which will minimise the overall
communication traffic or transpose the data

o
- ECMWF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

29



Hybrid architecture : Shared & Distributed Memory

* Nearly all HPC systems combine architectures

— Many shared memory “nodes”
Each node has processors accessing a single shared memory

Each node behaves as a single (compound) processor with distributed memory
« Shared memory programming on a node (OpenMP)

* Distributed memory programming between nodes (Messaging Passing, MPI)

\feYo N~

o
- ECMWF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

30



Load Balancing

« Aim to have an equal computational load on each processor
— Maximum efficiency is gained when all processors are working
« Conseqguences of poor load balance:

— Some processors sit idle waiting for others to complete some work — inefficient

— Run time is determined by the slowest processor

Idle/Waste

c
O
)
(1]
i)
=
o
=
=
(8)
c

Idle/Waste

time

o
- ECMWF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

31



Causes of Load Imbalance

* Different sized data on different processors

— Array dimensions and NPROC mean it's impossible to decompose data equally
between processors

+ Change dimensions, or collapse loop:
A(13,7) -=>A(13*7)

— Regular geographical decomposition may not have equal work points (eg.
land/sea not uniformly distributed around globe)

» Different decompositions required

« Different computational load for different data points
— Physical parameterisations such as convection, short wave radiation

— Sometimes this load can be predetermined, sometimes it is effectively random
or unknowable

o
- ECMWF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS 32



Improving Load Balance : Distributed Memory

» Transpose data
— Change decomposition so as to minimize load imbalance

— Good solution if we can predict load per point (eg. land/sea)

« Implement a master/slave solution & distribute work dynamically

— If we don’t know the load per point

ELSEIF (L SLAVE) THEN
WHILE (“Finished” message not received) DO
Send “I'm ready for work” message to MASTER
Receive DATA (chunk size) from MASTER processor
Compute DATA
Send DATA back to MASTER
ENDWHILE
ENDIF

Y o
- ECMWF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

33



Improving Load Balance : Shared memory

» Generally much easier

 In IFS we add an extra “artificial” dimension to arrays
— Distribute chunks of this dimension to threads

— Allows arrays to be easily handled using OpenMP

« It allows us write loops like this:

T b

DO chunk=1, NCHUNKS
DO i=1,SIZE/NCHUNKS
B (i, chunk)=Some Complicated Function (A (I,chunk))
ENDDO
ENDDO

e Make NCHUNKS >> NPROC

— Load balancing will happen automatically

» Other performance benefits by tuning inner loop size

P
- ECMWF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

34



Steps to parallelisation (1)

« Identify parts of the program that can be executed in parallel
* Requires a thorough understanding of the algorithm
« Exploit any inherent parallelism which may exist

» Expose parallelism by
— Re-ordering the algorithm
— Tweaking to remove dependencies
— Complete reformulation to a new more parallel algorithm

— Google is your friend!

* You’re unlikely to be the first person to try and parallelise a given algorithm!

o
- ECMWF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

35



Steps to parallelisation (2)

« Decompose the program

* Probably a combination of
— Data parallelism (hard!) for distributed memory

— Functional parallelism (easier, hopefully!) for shared memory

* If you're likely to need more than a few 10’s of processors to run your
problem then a distributed memory solution will be required

— Shared memory parallelism can be added as a second step, and can be added
to individual parts of the algorithm in stages

« |dentify the key data structures and data dependencies and how best to
decompose them

o
- ECMWF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

36



Steps to parallelisation (3)

* Code development

— Parallelisation may be influenced by your machine’s architecture

« Buttry to have a flexible design — you won’t use this machine for ever!
— Decompose key data structures

— Add new data structures to describe and control the decomposition (eg. offsets,
mapping to/from global data, neighbour identification)

— ldentify data dependencies and add the necessary communications

* And finally, the fun bit : CAT & DOG
— Compile And Test
— Debug, Optimise and Google!

o
- ECMWF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

37



Some questions to think about

» Which do you think is easier to understand?

— Distributed memory parallelism (message passing) or Shared memory
parallelism

» Which do you think is easier is implement?

« Which do you think might be easier to debug?

— Can you imagine the kind of errors that you might make and how you might be
able to find them?

» Do you think one may be more scalable than the other? Why?

« Why should we have to do all this work anyway. Why can’t the compiler do
it all for us?

o
- ECMWF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

38



Parallel Computing Game

« A chance to put your understanding of parallel computers to the test!
* Your chance to be part of a “human computer”!

* Two equal sized teams
— Team A : Distributed Memory Computer

— Team B : Shared Memory Computer

* Plus a “team” of 1 person representing a non-parallel single-processor computer
* Your task : Add together 36 single-digit integers as fast (& accurately!) as possible

 You will have some time within your teams before we start the game to formulate
your “algorithm” or strategy — a set of instructions on how you are going to complete
the problem

— These must be agreed and briefly written down before the game starts

o
- ECMWF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

39



Game : General Rules

» The data will be supplied from a disk
— Each team has its own disk
— Each disk is an envelope containing 12 pieces of paper, each piece has 3 integers on it
— Only one player can come to the disk at a time to get some numbers
— Each player can take as many pieces of paper as they wish on any visit to the disk

— A player can come to the disk more than once if they wish to

* The game is played in silence
— Once the game starts, no talking or hand-gestures are allowed
— The only communication allowed is via writing as described in your team’s rules

— So all team members must understand and agree on the algorithm before the game starts!
» The final answer (sum of integers) must be supplied written on a sheet of paper to the disk

« Each team will be timed. A penalty of 5 seconds is added for any errors (SUM-TRUTH)*5

o
- ECMWF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS 40



Game : Team Rules

« TEAMA : DISTRIBUTED MEMORY
— Each player must sit at least one empty seat away from their neighbour(s)
— Each player is supplied with many pieces of blank paper (their distributed “memory”)

— The only permitted communication is by writing information onto a piece of paper and giving it
to any other team member

« TEAM B : SHARED MEMORY
— All players to sit closely around a shared desk
— Each player has pieces of blank paper to use if necessary (private variables)

— There is a single, shared sheet of paper on the desk (shared variable) and a single special
pen. The only permitted communication is by writing information onto this piece of paper with
the special pen

« TEAM C : SINGLE PROCESSOR
— Good luck!

o
- ECMWF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS 41



