
© ECMWF January 23, 2017

An Introduction to Parallel
Programming

Paul Burton

paul.burton@ecmwf.int

Introduction

• Syntax is easy

– And can always be found in books/web pages if you can’t remember!

• How to think about parallel programming is more difficult

– But it’s essential!

– A good mental model enables you to use the OpenMP and MPI we will teach
you

– It can be a struggle to start with

– Persevere!

• What this module will cover

– Revision : What does a parallel computer look like

– Different programming models and how to think about them

– What is needed for best performance

2EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

More than one way of looking at things!

• What can you see?

3EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

What does a computer do?

4EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Memory Memory

Processor

Program

How do we make a computer go faster? [1]

• Make the processor go faster

– Give it a faster clock (more operations per second)

• Give the processor more ability

– For example – allow it to calculate a square root

• But…

– It gets very expensive to keep doing this

– Need to keep packing more onto a single silicon chip

• Need to make everything smaller

– Chips get increasingly complex

• Take longer to design and debug

– Difficult and very expensive for memory speed to keep up

– Produce more and more heat

5EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

How do we make a computer go faster? [1]

• Introduce multiple processors

• Advantages:

– “Many hands make light work”

– Each individual processor can be less powerful

• Which means it’s cheaper to buy and run (less power)

• Disadvantages

– “Too many cooks spoil the broth”

– One task – many processors

• We need to think about how to share the task amongst them

• We need to co-ordinate carefully

– We need a new way of writing our programs

6EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

What limits parallel performance?

• Parallelisation is not a limitless way to infinite performance!

• Algorithms and computer hardware give limits on performance

• Amdahl’s Law

– Consider an algorithm (program!)

– Some parts of it (fraction “p”) can be run in parallel

– Some parts of it (fraction “s”) cannot be run in parallel

• Nature of the algorithm

• Hardware constraints (writing to a disk for example)

– Takes time “t” to run on a single processor

– On “n” processors it takes : T = s x t + (p x t)/n

7EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Consequences of Amdahl’s Law [1]

• T = s x t + (p x t)/n

– Looks simple, but “s” has devastating consquences!

• Consider the case as the number of processors “n” grows large, then we

get:

– T = s x t + [something small]

• So our performance is limited by the non-parallel part of our algorithm

8EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Consequences of Amdahl’s Law [2]

• For example, assume we can parallelise 99% of our algorithm, which takes

100 seconds on 1 processor.

• On 10 processors we get : T[10]= 0.01*100 + (0.99*100)/10

– T[10]=1 + 9.9 = 10.9 seconds

– 9.2 times speedup : not too bad - we’re “wasting” 8%

• But on 100 processors we get :

– T[100] = 1 + 0.99 = 1.99 seconds

– 50 times speedup : not so good – we’re “wasting” 50%

• And on 1000 processors we get :

– T[1000] = 1 + 0.099 = 1.099 seconds = 90 times speedup : terrible!

• We’re “wasting” 91%!

9EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

How do we program a parallel computer? [1]

• Decompose (split) into parts

• We can think both about the data and the algorithm…

– Apply the same operation to many different pieces of data simultaneously

• SIMD : SINGLE Instruction MULTIPLE Data

• Requires us to decompose (split) the data, but the algorithm can stay put

• eg. Factory making widgets – 1000 employees each producing 10 widgets per hour

– Apply different operations to many different pieces of data simultaneously

• MIMD : MULTIPLE Instruction MULTIPLE Date

• Now we need to decompose (split) the algorithm too

• eg. Factory assembly line making cars – split into stages with a few staff at each stage

doing a specific operation (Instruction)

• To maximise parallelism, typically we want to take a MIMD approach

10EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

How do we program a parallel computer? [2]

• We need to work out how to distribute the data

– Need to enable multiple processors work simultaneously

• Algorithmic Considerations

– Does the algorithm create a data dependency?

• This may be a function of how to decompose the data

• What is the most efficient decomposition to achieve this?

– Need to ensure the work is properly synchronised

• When there is a data dependency, we need to wait for dependencies to be satisifed

– Possibly need to communicate between processors

• As little as possible!

– Can we split the work equally between all processors?

• Hardware Considerations

– What parallel architecture (hardware) are we using?

– Does our decomposition map neatly onto our hardware (or future hardware?)

11EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Parallel programming techniques will reflect the architecture

12EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

M

P

M

P

M

P

M

P

Network

Distributed Memory

Architecture

M

P P P P

Shared Memory

Architecture

Shared memory programming

• Split (decompose) the computation

– “Functional parallelism”

• Each thread works on a subset of

the computation

• No explicit communication required

– Implicit through common memory

• Advantages

– Easier to program

• no communications

• no need to decompose data

• Disadvantages

– Memory contention?

– How do we split an algorithm?

13EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

M

P P P P

Each processor runs a

single independent

“thread”

A simple program

14EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

We’ll ignore these bits for now…

INTEGER, PARAMETER :: SIZE=100

REAL, DIMENSION (SIZE) :: A,B,C,D,E,F

INTEGER :: i

! Read arrays A,B,C,D from a disk

CALL READ_DATA (A , B , C , D , 100)

! Calculate E=A+B

DO i = 1 , SIZE

E(i) = A(i) + B(i)

ENDDO

! Calculate F=C*D

DO i = 1 , SIZE

F(i) = C(i) * D(i)

ENDDO

! Write results

CALL WRITE_DATA(E , F , 100)

A shared memory approach

• Split the function across the threads

– In the example we have two functions:
E=A+B and F=C*D

– But we have 4 processors (threads) – two would be idle 

• So what we do is split the computation of each loop between the threads

– Each thread will be responsible for executing a subset of the iterations

– Each iteration **MUST** be independent of the others for this to work

• We need some new syntax to tell the computer what we want it to do

– OpenMP – compiler directive

– For now we’ll just use some descriptive text

• We don’t really care which processor/thread does which computations

– The shared memory means that each processor/thread can read/write to any
array element

15EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Shared memory program

16EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

This is easy with shared memory

as all threads can read/write to

the whole of each array

INTEGER, PARAMETER :: SIZE=100

REAL, DIMENSION (SIZE) :: A,B,C,D,E,F

INTEGER :: i

! Read arrays A,B,C,D from a disk

CALL READ_DATA (A , B , C , D , 100)

! Calculate E=A+B and F=C*D

! (Merged loops to fit onto slide!)

! OpenMP : Distribute loop over NPROC threads

! OpenMP : Private variables : i

DO i = 1 , SIZE

E(i) = A(i) + B(i)

F(i) = C(i) * D(i)

ENDDO

! Write results

CALL WRITE_DATA(E , F , 100)

Directives

• Usually before a loop

• Tells the computer

– How many threads to split the iterations of the loop between

– Any variables which are “private” (default is that variables are “shared”)

• “private” – each thread has an independent version of the variable

• “shared” – all threads can read/write the same variable

• The loop index must be private - each thread must have its own independent loop index

so that it can keep track of what it’s doing

– Optionally some tips on how to split the iterations of the loop between threads

17EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

How you might want to try and think about it…

• The program runs on a single processor P1 – as a single thread.

• Until…

– It meets an OpenMP directive (typically before a loop)

– This starts up the other processors (P2,P3,P4) – each running a single “thread”

• Each thread takes a “chunk” of computations

• This is repeated until all the computations are done

– When the loop is finished (ENDDO) all the other processors (P2,P3,P4) go back

to sleep, and execution continues on a single thread running on processor P1

18EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

How to do it

• Identify parts of the algorithm (typically loops) which can be split

(parallelised) between processors

• Possibly rewrite algorithm to allow it to be (more efficiently) parallelised

– In our example we merged two loops – this can be more efficient than starting

up all the parallel threads multiple times

• For a given loop, identify any “private” variables

– eg. Loop index, partial sum etc.

• Insert a directive telling the computer how to split the loop between

processors

19EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Distributed memory programming

• Split (decompose) the data

– “Data Parallelism”

• Each processor/task works on a

subset of the data

• Processors communicate over the

network

• Advantages

– Easily scalable (assuming a good

network)

• Disadvantages

– Need to think about how to split our

data

– Need to think about dependencies

and communications

20EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

M

P

M

P

M

P

M

P

Network

Each processor runs a

single independent “task”

A distributed memory approach [1]

• Split (decompose) the data between the tasks

• We’ll need to do something clever for input/output of the data

– Each task will only read/write it’s particularly subset of the data

– We’ll ignore this for now

• Each task will compute its subset of the full data set

– Shouldn’t be any problem with load balance (if we decompose the data well!)

• Computation is easy in this example

– No dependencies between different elements of the arrays

– If we had expressions like A(i)=B(i-1)+B(i+1)

we would need to be a bit more clever…

21EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

A distributed memory approach [2]

• Split the data between processors

– Each processor will now have 25 (100 / 4) elements per array

– REAL, DIMENSION (SIZE/4) :: A,B,C,D,E,F

• Processor 1

– A(1) .. A(25) which corresponds to
A(1) .. A(25) in the original (single processor code)

• Processor 2

– A(1) .. A(25) which corresponds to
A(26) .. A(50) in the original (single processor code)

• Processor 3

– A(1) .. A(25) which corresponds to
A(51) .. A(75) in the original (single processor code)

• Processor 4

– A(1) .. A(25) which corresponds to
A(76) .. A(100) in the original (single processor code)

22EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Distributed memory data mapping (array “A”)

23EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

A(1:100)

A(1:25)

A(1:25)

A(1:25)

A(1:25)

P1

1

1

1

1

1

25

25

25

25

25

26 50 51 75 76 100Original Serial Code

P2

P3

P4

Distributed memory program

24EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

INTEGER, PARAMETER :: NPROC=4

INTEGER, PARAMETER :: SIZE=100/NPROC

REAL, DIMENSION (SIZE) :: A,B,C,D,E,F

INTEGER :: i

! Read arrays A,B,C,D from a disk

CALL READ_DATA (A , B , C , D , 100)

! Calculate E=A+B

DO i = 1 , SIZE

E(i) = A(i) + B(i)

ENDDO

! Calculate F=C*D

DO i = 1 , SIZE

F(i) = C(i) * D(i)

ENDDO

! Write results

CALL WRITE_DATA(E , F , 100)

We’ll ignore these bits for now…

But it is very important and will

need attention

How you might want to try and think about it…

• Each task runs its own copy of the program

• Each task’s data is private to it

• Each task operates on a subset of the data

• Sometimes there may be dependencies between data on different tasks

– Tasks must explicitly communicate with one another

– Message Passing key concepts

• One task sends a message to one or more other tasks

• These tasks receive the message

• Synchronisation : All (or subset of) tasks wait until they have all reached a certain point

25EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

How to do it

• Think about how to split (decompose) the data

– Minimize dependencies (which array dimension should we decompose?)

– Equal load balance (size of data and/or computation time required)

– May need different decompositions in different parts of the code

• Add code to distribute input data across tasks

– And to collect when writing out

• Watch out for end cases / edge conditions

– For example code which implements a wrap-around at the boundaries

– First/Last item in a loop isn’t necessarily the real “edge” of the data on every
task

– Maybe some extra logic required to check

• Identify data dependencies

– Communicate data accordingly

– Add code to transpose data if changing decomposition

26EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Decomposing Data [1]

27EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

i

j

1 2 3 4 5 6 7 8 9 10 11 12

1

2

3

4

REAL, DIMENSION (12,4) :: OLD,NEW

DO j=1,4

DO i=2,11

NEW(i,j)=0.5*(OLD(i-1,j)+OLD(i+1,j))

ENDDO

ENDDO

Decomposing Data [2]

• Let’s consider decomposing in the “i” dimension…

• How do we calculate element (3,1) – on P1?

– We need element (2,1) which is on P1 – OK

– And element (4,1) which is on P2 – how do we get that?

• Message passing will be required

28EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

i

j

1 2 3 4 5 6 7 8 9 10 11 12

1

2

3

4

P1 P2 P3 P4

NEW(i,j)=0.5*(OLD(i-1,j)+OLD(i+1,j))

Decomposing Data [3]

• Instead, let’s consider decomposing in the “j” dimension…

• Now no communication is required

– So this is a much better decomposition for this problem

• Real life is rarely this simple unfortunately!

– Real codes often have data dependencies across all dimensions

– So we attempt to identify the decomposition which will minimise the overall

communication traffic or transpose the data

29EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

i

j

1 2 3 4 5 6 7 8 9 10 11 12

1

2

3

4

P1

NEW(i,j)=0.5*(OLD(i-1,j)+OLD(i+1,j))

P2
P3
P4

Hybrid architecture : Shared & Distributed Memory

• Nearly all HPC systems combine architectures

– Many shared memory “nodes”

• Each node has processors accessing a single shared memory

• Each node behaves as a single (compound) processor with distributed memory

• Shared memory programming on a node (OpenMP)

• Distributed memory programming between nodes (Messaging Passing, MPI)

30EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Network

M

P P P P

Node M

P P P P

Node

M

P P P P

Node

M

P P P P

Node

Load Balancing

• Aim to have an equal computational load on each processor

– Maximum efficiency is gained when all processors are working

• Consequences of poor load balance:

– Some processors sit idle waiting for others to complete some work – inefficient

– Run time is determined by the slowest processor

31EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

P1

P2

P3

P4

Work

Work

Work

Work

time

s
y
n
c
h
ro
n
is
a
ti
o
n

Idle/Waste

Idle/Waste

Idle

Causes of Load Imbalance

• Different sized data on different processors

– Array dimensions and NPROC mean it’s impossible to decompose data equally

between processors

• Change dimensions, or collapse loop:

A(13,7) -> A(13*7)

– Regular geographical decomposition may not have equal work points (eg.

land/sea not uniformly distributed around globe)

• Different decompositions required

• Different computational load for different data points

– Physical parameterisations such as convection, short wave radiation

– Sometimes this load can be predetermined, sometimes it is effectively random

or unknowable

32EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Improving Load Balance : Distributed Memory

• Transpose data

– Change decomposition so as to minimize load imbalance

– Good solution if we can predict load per point (eg. land/sea)

• Implement a master/slave solution & distribute work dynamically

– If we don’t know the load per point

33EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

IF (L_MASTER) THEN

DO chunk=1,nchunks

Wait for “I’m ready for work” message from a slave

Send DATA(offset(chunk)) to that slave

ENDDO

Send “Finished” message to all slaves

ELSEIF (L_SLAVE) THEN

WHILE (“Finished” message not received) DO

Send “I’m ready for work” message to MASTER

Receive DATA(chunk_size) from MASTER processor

Compute DATA

Send DATA back to MASTER

ENDWHILE

ENDIF

Improving Load Balance : Shared memory

• Generally much easier

• In IFS we add an extra “artificial” dimension to arrays

– Distribute chunks of this dimension to threads

– Allows arrays to be easily handled using OpenMP

• It allows us write loops like this:

• Make NCHUNKS >> NPROC

– Load balancing will happen automatically

• Other performance benefits by tuning inner loop size

34EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

REAL, DIMENSION (SIZE/NPROMA,NCHUNKS) :: A,B

! OpenMP : Distribute loop over NPROC (NPROC<=NCHUNKS) processors

! OpenMP : Private variables : chunk,i

DO chunk=1,NCHUNKS

DO i=1,SIZE/NCHUNKS

B(i,chunk)=Some_Complicated_Function(A(I,chunk))

ENDDO

ENDDO

Steps to parallelisation (1)

• Identify parts of the program that can be executed in parallel

• Requires a thorough understanding of the algorithm

• Exploit any inherent parallelism which may exist

• Expose parallelism by

– Re-ordering the algorithm

– Tweaking to remove dependencies

– Complete reformulation to a new more parallel algorithm

– Google is your friend!

• You’re unlikely to be the first person to try and parallelise a given algorithm!

35EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Steps to parallelisation (2)

• Decompose the program

• Probably a combination of

– Data parallelism (hard!) for distributed memory

– Functional parallelism (easier, hopefully!) for shared memory

• If you’re likely to need more than a few 10’s of processors to run your

problem then a distributed memory solution will be required

– Shared memory parallelism can be added as a second step, and can be added

to individual parts of the algorithm in stages

• Identify the key data structures and data dependencies and how best to

decompose them

36EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Steps to parallelisation (3)

• Code development

– Parallelisation may be influenced by your machine’s architecture

• But try to have a flexible design – you won’t use this machine for ever!

– Decompose key data structures

– Add new data structures to describe and control the decomposition (eg. offsets,

mapping to/from global data, neighbour identification)

– Identify data dependencies and add the necessary communications

• And finally, the fun bit : CAT & DOG

– Compile And Test

– Debug, Optimise and Google!

37EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Some questions to think about

• Which do you think is easier to understand?

– Distributed memory parallelism (message passing) or Shared memory

parallelism

• Which do you think is easier is implement?

• Which do you think might be easier to debug?

– Can you imagine the kind of errors that you might make and how you might be

able to find them?

• Do you think one may be more scalable than the other? Why?

• Why should we have to do all this work anyway. Why can’t the compiler do

it all for us?

38EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Parallel Computing Game

• A chance to put your understanding of parallel computers to the test!

• Your chance to be part of a “human computer”!

• Two equal sized teams

– Team A : Distributed Memory Computer

– Team B : Shared Memory Computer

• Plus a “team” of 1 person representing a non-parallel single-processor computer

• Your task : Add together 36 single-digit integers as fast (& accurately!) as possible

• You will have some time within your teams before we start the game to formulate

your “algorithm” or strategy – a set of instructions on how you are going to complete

the problem

– These must be agreed and briefly written down before the game starts

39EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Game : General Rules

• The data will be supplied from a disk

– Each team has its own disk

– Each disk is an envelope containing 12 pieces of paper, each piece has 3 integers on it

– Only one player can come to the disk at a time to get some numbers

– Each player can take as many pieces of paper as they wish on any visit to the disk

– A player can come to the disk more than once if they wish to

• The game is played in silence

– Once the game starts, no talking or hand-gestures are allowed

– The only communication allowed is via writing as described in your team’s rules

– So all team members must understand and agree on the algorithm before the game starts!

• The final answer (sum of integers) must be supplied written on a sheet of paper to the disk

• Each team will be timed. A penalty of 5 seconds is added for any errors (SUM-TRUTH)*5

40EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Game : Team Rules

• TEAM A : DISTRIBUTED MEMORY

– Each player must sit at least one empty seat away from their neighbour(s)

– Each player is supplied with many pieces of blank paper (their distributed “memory”)

– The only permitted communication is by writing information onto a piece of paper and giving it

to any other team member

• TEAM B : SHARED MEMORY

– All players to sit closely around a shared desk

– Each player has pieces of blank paper to use if necessary (private variables)

– There is a single, shared sheet of paper on the desk (shared variable) and a single special

pen. The only permitted communication is by writing information onto this piece of paper with

the special pen

• TEAM C : SINGLE PROCESSOR

– Good luck!

41EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

