
C O M P U T E | S T O R E | A N A L Y Z E

Compilers and Libraries

1/23/17
1

Ilias Katsardis
ikatsardis@cray.com

C O M P U T E | S T O R E | A N A L Y Z E

Don’t forget

● Use the ftn, cc, and CC wrappers
● The wrappers uses your module environment to get all libraries and

include directories for you. You don’t have to know their real location.

● You select the your environment by selecting one of the
programming environments PrgEnv-X with
X=[cray|intel|gnu]
“module swap PrgEnv-cray PrgEnv-intel”

● Check that the craype-ivybridge module is loaded
● Use aprun to start your application on the compute nodes

C O M P U T E | S T O R E | A N A L Y Z E

Cross-compilation

● If the compute and login nodes have different CPUs, one
needs to cross-compile for the compute nodes
● The apps compiled for compute nodes might not run on login nodes

● Use the wrappers ftn, cc and CC to cross-compile
● If you really need to run something on the login nodes, switch the

module craype-network-aries to craype-network-none
● Or use the flag -target=local_host or -target-cpu=
● Or use the non-wrapper compiler commands (gfortran, gcc,...)

● One may run into trouble with GNU automake or cmake
● Add the specifier --host=x86_64-unknown-linux-gnu for the

configure tool
● With cmake, provide the CMAKE_SYSTEM_NAME and the used

compilers in a toolchain file or when invoking cmake, e.g.
cmake -DCMAKE_SYSTEM_NAME=Linux \
-DCMAKE_C_COMPILER=cc -DCMAKE_CXX_COMPILER=CC

C O M P U T E | S T O R E | A N A L Y Z E

Dynamic vs Static linking (1)

● Static Linking
● The linked places all library code into the final executable

● Dynamic Linking
● The library code is linked into the process at runtime

● Site preference sets dynamic or static linking as default
● However, you can decide how to link,

1. You can either set CRAYPE_LINK_TYPE to “static” or “dynamic”
(e.g. export CRAYPE_LINK_TYPE=dynamic) during compilation

2. Or pass the -static or -dynamic option to the linking compiler
● Features of dynamic linking :

● smaller executable, potential automatic use of new libs
● Might need longer startup time to load and find the libs
● Runtime loaded modules can potentially affect how the application

runs (see next slide)

C O M P U T E | S T O R E | A N A L Y Z E

Dynamic vs Static linking (2)

● Features of static linking :
● Larger executable (usually not a problem)
● Faster startup
● Application will run the same code every time it runs (independent of

environment)

C O M P U T E | S T O R E | A N A L Y Z E

The three styles of dynamic linking

6

Shared libraries mean applications may use a different
versions of a library at runtime than was linked at compile
time. On the Cray XC30 there are three ways to control
which version is used
1. Default – Follow the default Linux policy and at runtime

use the system default version of the shared libraries (so
may change as and when system is upgraded)

2. pseudo-static – Hardcodes the path of each library into
the binary at compile time. Runtime will attempt to use
this version when the application start (as long as lib is
still installed). Set CRAY_ADD_RPATH=yes at compile

3. Dynamic modules – Allow the currently loaded PE
modules to select library version at runtime. App must
not be linked with CRAY_ADD_RPATH=yes and must add
“export LD_LIBRARY_PATH=$CRAY_LD_LIBRARY_PATH” to
run script

C O M P U T E | S T O R E | A N A L Y Z E

The Cray Compilation Environment
(CCE)

C O M P U T E | S T O R E | A N A L Y Z E

CCE Overview

● Cray technology focused on scientific applications
● Takes advantage of automatic vectorization
● Takes advantage of automatic shared memory parallelization

● Standard conforming languages and programming models
● ANSI/ISO Fortran 2008 standards compliant
● ANSI/ISO C99 and C++2003 compliant
● OpenMP 3.1 compliant, working on OpenMP 4.0
● OpenACC 2.0

● OpenMP and automatic multithreading fully integrated
● Share the same runtime and resource pool
● Aggressive loop restructuring and scalar optimization done in the

presence of OpenMP
● Consistent interface for managing OpenMP and automatic multithreading

● PGAS languages (UPC & Fortran coarrays) fully optimized and
integrated into the compiler

C O M P U T E | S T O R E | A N A L Y Z E

General Cray Compiler Flags

9

● Optimisation Options
● -O2 safe flags [enabled by default]
● -O3 aggressive optimization
● -O ipaN (ftn) or -hipaN (cc/CC) inlining, N=0-5 [default N=3]

● Create listing files with optimization info
● -hlist=a creates a listing file with all

optimization info
● -hlist=m produces a source listing with

loopmark information
● Parallelization Options

● -h omp Recognize OpenMP directives
[default]

● -h threadN control the compilation and
optimization of OpenMP directives,
N=0-3 [default N=2]

è More info: man crayftn, man craycc, man crayCC

C O M P U T E | S T O R E | A N A L Y Z E

Fortran Source Preprocessing

10

For a source file to be preprocessed automatically, it
must have an uppercase extension, either .F (for a file
in fixed source form), or .F90, .F95, .F03, .F08, or .FTN
(for a file in free source form). To specify preprocessing
of source files with other extensions, including
lowercase ones, use the -eP or -eZ options

● -eP: Performs source preprocessing on Fortran source
files, but does not compile. Generates file.1, which
contains the source code after the preprocessing has
been performed and the effects have been applied to the
source program.

● -eZ: similar to -eP, but it also performs compilation on
Fortran source files

C O M P U T E | S T O R E | A N A L Y Z E

Unrolling

11

● By default, the compiler attempts to unroll all loops,
unless the NOUNROLL directive is specified for a loop
● Generally, unrolling loops increases single processor performance at

the cost of increased compile time and code size

● -hunrollN where N=0,1,2, globally control loop unrolling
and changes the assertiveness of the UNROLL directive
● 0: No unrolling (ignore all UNROLL directives and do not attempt to

unroll other loops)
● 1: Attempt to unroll loops if there is proof that the loop will benefit
● 2: (Default) Attempt to unroll all loops (includes array syntax implied

loops), except those marked with the NOUNROLL directive.

C O M P U T E | S T O R E | A N A L Y Z E

Vectorization

12

● -hvectorN (cc/CC) where N=0…3, specify the level of
automatic vectorizing to be performed. Vectorization
results in significant performance improvements with a
small increase in object code size. Vectorization directives
are unaffected by this option
● 0: No automatic vectorization
● 1: Specifies conservative vectorization. Loop nests are restructured.

No vectorizations that might create false exceptions are performed.
Results may differ slightly from results obtained when N=0 is specified
because of vector reductions

● 2: (Default) Specifies moderate vectorization. Characteristics include
moderate compile time and size. Loop nests are restructured

● 3: Specifies aggressive vectorization. Loop nests are restructured.
Vectorizations that might create false exceptions in rare cases may be
performed.

C O M P U T E | S T O R E | A N A L Y Z E

Floating-Point Optimizations

13

● The -hfpN option, where N=0…4, controls the level of
floating-point optimizations: N=0 gives the compiler
minimum freedom to optimize floating-point operations,
while N=4 gives it maximum freedom. The higher the level,
the less the floating-point operations conform to the IEEE
standard.
● N=0 and N=1: Use this option only when your code pushes the limits

of IEEE accuracy or requires strong IEEE standard conformance.
Executable code is slower than higher floating-point optimization
levels

● N=2: default value. It performs various generally safe, non-conforming
IEEE optimizations

● N=3: This option should be used when performance is more critical
than the level of IEEE standard conformance provided by N=2. This is
the suggested level of optimization for many applications.

● N=4:You should only use this option if your application uses algorithms
which are tolerant of reduced precision.

C O M P U T E | S T O R E | A N A L Y Z E

Floating-Point Optimization Flags Comparison

Optimization fp0 fp1 fp2 (default) fp3 fp4
Safety Maximum High High Moderate Low

Complex
divisions

Accurate and
slower

Accurate and
slower

Fast Fast Fast

Exponentiation
rewrite

None None When benefit
is very high

Always Always

Strength
reduction

None None Fast Fast Fast

Rewrite division
as reciprocal

equivalent

None None Yes Aggressive Aggressive

Floating point
reductions

Slow Fast Fast Fast Fast

Expression
factoring

None Yes Yes Yes Yes

Expression tree
balancing

None None Yes Yes Yes

Inline 32-bit
operations

No No No Yes Yes

Fused multiply-
add

No Yes Yes Yes Yes

The -hfpN option, where N=0…4, controls the level of floating-point optimizations

C O M P U T E | S T O R E | A N A L Y Z E

Why are CCE’s results sometimes different?

15

● We do expect applications to be conformant to language
requirements
● This include not over-indexing arrays, no overlap between Fortran

subroutine arguments, and so on
● Applications that violate these rules may lead to incorrect results or

segmentation faults
● Note that languages do not require left-to-right evaluation of arithmetic

operations, unless fully parenthesized
● This can often lead to numeric differences between different compilers
● Use -hadd_paren to add automatically parenthesis to select associative

operations (+,–,*). Default is -hnoadd_paren
● We are also fairly aggressive at floating point

optimizations that violate IEEE requirements
● Use -hfp[0-4] flag to control that

C O M P U T E | S T O R E | A N A L Y Z E

About reproducibility

● Results can vary with the number of ranks or threads
● Use -hflex_mp=option to control the aggressiveness of optimizations

which may affect floating point and complex repeatability when application
requirements require identical results when varying the number of ranks
or threads.

● option in order from least aggressive to most is:
● intolerant: has the highest probability of repeatable results, but also has the

highest performance penalty
● strict: uses some safe optimizations, with high probability of repeatable results.
● conservative: uses more aggressive optimization and yields higher performance

than intolerant, but results may not be sufficiently repeatable for some
applications

● default: uses more aggressive optimization and yields higher performance than
conservative, but results may not be sufficiently repeatable for some
applications

● tolerant: uses most aggressive optimization and yields highest performance, but
results may not be sufficiently repeatable for some applications

FA
ST

ER

C O M P U T E | S T O R E | A N A L Y Z E

Recommended CCE Optimization Options

● Default optimization levels should be good
● It’s the equivalent of most other compilers -O3
● It is also our most thoroughly tested configuration

● Use -O3,fp3 (or -O3 -hfp3, or some variation) if the
application runs cleanly with these options
● -O3 only gives you slightly more than the default -O2
● We also test this thoroughly
● -hfp3 gives you more floating point optimization (default is -hfp2)

● If an application is intolerant of floating point reordering,
try a lower -hfp number
● Try -hfp1 first, only -hfp0 if absolutely necessary (-hfp4 is the

maximum)
● Might be needed for tests that require strict IEEE conformance
● Or applications that have ‘validated’ results from a different compiler
● Higher numbers are not always correlated with better performance

C O M P U T E | S T O R E | A N A L Y Z E

Recommended for bit reproducibility

Start from this set

● -hflex_mp=conservative –hfp1 –hadd_paren

C O M P U T E | S T O R E | A N A L Y Z E

Fortran precision defaults

Use –s option

● -s real64
REAL (64bits), DOUBLE PRECISION (64bits)
COMPLEX (128bits), DOUBLE COMPEX (128 bits)

● -s integer64
Default integers to 64 bits

● See crayftn manpage for other precision options

C O M P U T E | S T O R E | A N A L Y Z E

Diagnostic Flags

● -Rb (ftn) or -h bounds (cc/CC)
● Fortran: Enables checking of array bounds at runtime
● C/C++: Enables checking of pointer and array references

at runtime. -h nobounds disables these checks
● -eo (ftn) or -hdisplay_opt (cc/CC)

● Display the compiler optimization settings currently in
force

● -ei (ftn)
● Initialize all undefined local stack, static, and heap variables

to an invalid value (signaling NaN)
● -T (ftn)

● Disables the compiler but displays all options currently in
effect

C O M P U T E | S T O R E | A N A L Y Z E

Threading

● OpenMP is on by default
● This is the opposite default behavior that you get from GNU and

Intel compilers
● Optimizations controlled by -OthreadN (ftn) or -hthreadN

(cc/CC), N=0-3 [default N=2]
● To shut off use -O/-h thread0 or -xomp (ftn) or -hnoomp

● Autothreading is off by default
● -hautothread to turn it on
● Interacts with OpenMP directives

● If you do not want to use OpenMP and have OMP
directives in the code, make sure to shut off OpenMP at
compile time

C O M P U T E | S T O R E | A N A L Y Z E

Other flags in brief

22

● -h restrict=[a|f]
● C/C++ option which tells the compiler to treat certain

classes of pointers as restricted pointers. You can use this
option to enhance optimizations (this includes
vectorization).

● -h cacheN
● Specifies the levels of automatic cache management to

perform. Values for N are between 0 (cache blocking
turned off) and 3 (aggressive automatic cache
management). Symbols are placed in the cache when the
possibility of cache reuse exists. Default value is N=2.

C O M P U T E | S T O R E | A N A L Y Z E

Other flags in brief (cont)

23

● -h PIC
● Generate position independent code (PIC), which allows a

virtual address change from one process to another, as is
necessary in the case of shared, dynamically linked
objects. The virtual addresses of the instructions and data
in PIC code are not known until dynamic link time.

● -h[system|default]_alloc
● The -hsystem_alloc option causes the compiler to use

the native malloc implementation provided by the OS. By
default, the compiler uses a modified malloc
implementation which offers better support for Cray
memory needs. This is a link-time option.

C O M P U T E | S T O R E | A N A L Y Z E

Loopmark: Compiler Feedback

● –hlist=m …
● Compiler generates an <source file name>.lst file

● Contains annotated listing of your source code with letter indicating
important optimizations

%%% L o o p m a r k L e g e n d %%%
Primary Loop Type Modifiers
------- ---- ---- ---------

a - vector atomic memory operation
A - Pattern matched b – blocked
C - Collapsed f – fused
D - Deleted i – interchanged
E - Cloned m - streamed but not partitioned
I - Inlined p - conditional, partial and/or computed
M - Multithreaded r – unrolled
P - Parallel/Tasked s – shortloop
V - Vectorized t - array syntax temp used
W - Unwound w - unwound

C O M P U T E | S T O R E | A N A L Y Z E

Example: Cray loopmark messages

29. b-------< do i3=2,n3-1
30. b b-----< do i2=2,n2-1
31. b b Vr--< do i1=1,n1
32. b b Vr u1(i1) = u(i1,i2-1,i3) + u(i1,i2+1,i3)
33. b b Vr * + u(i1,i2,i3-1) + u(i1,i2,i3+1)
34. b b Vr u2(i1) = u(i1,i2-1,i3-1) + u(i1,i2+1,i3-1)
35. b b Vr * + u(i1,i2-1,i3+1) + u(i1,i2+1,i3+1)
36. b b Vr--> enddo
37. b b Vr--< do i1=2,n1-1
38. b b Vr r(i1,i2,i3) = v(i1,i2,i3)
39. b b Vr * - a(0) * u(i1,i2,i3)
40. b b Vr * - a(2) * (u2(i1) + u1(i1-1) + u1(i1+1))
41. b b Vr * - a(3) * (u2(i1-1) + u2(i1+1))
42. b b Vr--> enddo
43. b b-----> enddo
44. b-------> enddo

C O M P U T E | S T O R E | A N A L Y Z E

Example: Cray loopmark messages (cont)
ftn-6289 ftn: VECTOR File = resid.f, Line = 29
A loop starting at line 29 was not vectorized because a

recurrence was found on "U1" between lines 32 and 38.
ftn-6049 ftn: SCALAR File = resid.f, Line = 29
A loop starting at line 29 was blocked with block size 4.

ftn-6289 ftn: VECTOR File = resid.f, Line = 30
A loop starting at line 30 was not vectorized because a

recurrence was found on "U1" between lines 32 and 38.
ftn-6049 ftn: SCALAR File = resid.f, Line = 30
A loop starting at line 30 was blocked with block size 4.

ftn-6005 ftn: SCALAR File = resid.f, Line = 31
A loop starting at line 31 was unrolled 4 times.

ftn-6204 ftn: VECTOR File = resid.f, Line = 31
A loop starting at line 31 was vectorized.

ftn-6005 ftn: SCALAR File = resid.f, Line = 37
A loop starting at line 37 was unrolled 4 times.

ftn-6204 ftn: VECTOR File = resid.f, Line = 37
A loop starting at line 37 was vectorized.

C O M P U T E | S T O R E | A N A L Y Z E

Compiler Message System

● The explain command displays an explanation of any message
issued by the compiler. The command takes as an argument,
the message number, including the number's prefix (ftn- for
ftn or CC- for cc/CC)
Example:
% cc bug.c
CC-24 cc: ERROR File = bug.c, Line = 1
An invalid octal constant is used.
int i = 018;

^
1 error detected in the compilation of "bug.c".
% explain CC-24
An invalid octal constant is used.
Each digit of an octal constant must be between 0 and 7,
inclusive. One or more digits in the indicated octal
constant are outside of this range. Change each digit in
the octal constant to be within the valid range.

è More info: man explain (when PrgEnv-cray loaded)

C O M P U T E | S T O R E | A N A L Y Z E

Compiler Message System (cont)

28

● -h [no]msgs
● Enables or disables the writing of optimization messages to stderr.

Default is -h nomsgs
● -h [no]negmsgs

● Enables or disables the writing of messages to stderr that indicate why
optimizations such as vectorization, inlining, or cloning did not occur in a
given instance. Default is -h nonegmsgs

● -m n (ftn) or -h msglevel_n (cc/CC)
● Specifies the lowest level of severity of messages to be issued. Messages

at the specified level and above are issued. Values of n are:
● 0: Comment
● 1: Note
● 2: Caution
● 3: Warning (default)
● 4: Error

● -M msgn[,…] (ftn) or -h nomessage=n[:...] (cc/CC)
● Suppresses specific messages at the warning, caution, note, and

comment levels, where n is the number of a message to be disabled
(multiple numbers are possible)

C O M P U T E | S T O R E | A N A L Y Z E

CCE Directives

29

● The Cray compiler supports a full and growing set of
directives and pragmas
● Fortran:

● !dir$ concurrent
● !dir$ ivdep
● !dir$ interchange
● !dir$ unroll
● !dir$ loop_info [max_trips] [cache_na] ... Many more
● !dir$ blockable

● For C/C++ replace !dir$ with #pragma [_CRI]
● The _CRI specification is optional; it ensures that the compiler will issue a

message concerning any directives that it does not recognize. Diagnostics
are not generated for directives that do not contain the _CRI specification.

è More info: man directives
man loop_info

C O M P U T E | S T O R E | A N A L Y Z E

Macros

30

● Cray compilers define the following macros:
● Fortran: _CRAYFTN
● C/C++: _CRAYC

● For example, the macros can be used to ensures that
other compilers will not interpret the directives by
encapsulating them inside #if … #endif

#if _CRAYC
#pragma _CRI directive

#endif

● Some compilers diagnose any directives that they do not
recognize. The Cray C/C++ compilers diagnose directives
that are not recognized only if the _CRI specification is
used.

C O M P U T E | S T O R E | A N A L Y Z E

Cray programming environment: assign

31

● Associates options with Fortran I/O unit numbers and file
names for use during the library open processing, i.e. you
can tell the Fortran runtime how to treat a file, without
changing your code
● assign [assign options] assign_object

● Interesting assign options
● -R removes all assign options for assign_object
● -N <numcon> specifies foreign numeric conversion

● assign_object used to specify the object of assign options
● f:<filename> applies to filename
● u:<unit> applies to Fortran unit number
● g:su applies to all Fortran sequential unformatted files

C O M P U T E | S T O R E | A N A L Y Z E

How to handle byte-swapped files with CCE

32

● Explicit usage of assign
● Can control which files are byte-swapped

export FILENV=.assign
assign -R
assign -N swap_endian f:aof
aprun a.out

● Link the application with –hbyteswapio
● Forces byte-swapping of all input and output files for direct and

sequential unformatted I/O
● This is equivalent to set

assign -N swap_endian g:su ßall sequential unformatted
assign -N swap_endian g:du ßall direct unformatted

è More info: man assign (when PrgEnv-cray loaded)

C O M P U T E | S T O R E | A N A L Y Z E

Default Output Formats

33

● List-directed output depends on the value being written
● assign command can be used to change that

● Let’s take this code for example
integer :: ia(4)
real :: ra(4)
ia = 102 ia= 4*102
ra = 200.10 ra= 4*200.100006
print *, ' ia=',ia
print *, ' ra=',ra

By setting
export FILENV=FILETMP
assign -U on g:sf

and rerunning the code (without recompiling it),
the output becomes

ia= 102 102 102 102
ra= 200.1000 200.1000 200.1000 200.1000

è More info: man assign (when PrgEnv-cray loaded)

Output

C O M P U T E | S T O R E | A N A L Y Z E

Brief notes on
Intel and GNU Compilers

C O M P U T E | S T O R E | A N A L Y Z E

GNU and Intel compiler flags

● More or less all optimizations and features provided by
CCE are available in Intel and GNU compilers

● GNU compiler serves a wide range of users & needs
● Default compiler with Linux, some people only test with GNU
● Defaults are conservative
● -O3 includes vectorization and most inlining

● Intel compiler is typically more aggressive in the
optimizations
● Defaults are more aggressive (e.g -O2), to give better performance

“out-of-the-box”
● Includes vectorization; some loop transformations such as unrolling; inlining

within source file
● Options to scale back optimizations for better floating-point

reproducibility, easier debugging, etc.
● Additional options for optimizations less sure to benefit all applications

C O M P U T E | S T O R E | A N A L Y Z E

Compiler feedback

● Intel
● ftn/cc -opt-report 3 -vec-report 6
● If you want this into a file: add -opt-report-file=filename
● See ifort --help reports

● GNU
● -ftree-vectorizer-verbose=9

C O M P U T E | S T O R E | A N A L Y Z E

Recommended compiler optimization levels

● Intel compiler
● The default optimization level (equal to -O2) is safe and gives

usually good performance
● Try with -O3 (verify correctness & performance)

● If that works still, you may try with -Ofast
● Also setting -fp-model fast=2 (or =1) may give some

additional performance
● Further relaxed precision with -fno-prec-div -fno-prec-sqrt

● Loop unrolling with -funroll-loops or -unroll-aggressive
may also be beneficial

C O M P U T E | S T O R E | A N A L Y Z E

WARNING – Intel Helper Threads

38

● The Intel OpenMP runtime creates more threads than you
might expect
● It creates an extra helper thread (n+1 threads in total)
● It also has it’s own method of binding to CPUs (KMP_AFFINITY)

● Unfortunately both of these options can cause
complications with CLE binding

● Cray advice…
● Don’t use KMP_AFFINITY to bind threads:

● export KMP_AFFINITY=disabled
● aprun –cc [numa_node|none] <exe>

C O M P U T E | S T O R E | A N A L Y Z E

Recommended compiler optimization levels

● GNU compiler
● Add -mavx -march=core-avx-i -mtune=core-avx-i
● Almost all HPC applications compile correctly with using
-O3, so do that instead of the cautious default
● -Ofast may give minor extra performance on top of -O3

● -ffast-math may give some extra performance (but verify
results)

● -funroll-loops or -funroll-all-loops benefit most
applications

C O M P U T E | S T O R E | A N A L Y Z E

Compiler man pages

● The cc(1), CC(1), and ftn(1) man pages contain information
about the compiler driver commands

● Cray compiler: man craycc(1), crayCC(1), and crayftn(1)
● GNU compiler: gcc(1), g++(1), and gfortran(1)
● Intel: icc(1), icpc(1), ifort(1)

● To verify that you are using the correct version of a
compiler, use:
● -V option on a cc, CC, or ftn command with CCE
● --version option on a cc, CC, or ftn command with GNU

C O M P U T E | S T O R E | A N A L Y Z E

Cray, Intel and GNU compiler flags

41

Feature Cray Intel GNU
Listing -hlist=a -opt-report3 -fdump-tree-all

Free format (ftn) -f free -free -ffree-form
Vectorization By default at -O1

and above
By default at -O2
and above

By default at -O3 or using
-ftree-vectorize

Inter-Procedural
Optimization

-hwp -ipo -flto (note: link-time
optimization)

Floating-point
optimizations

-hfpN, N=0...4 -fp-model
[fast|fast=2|precis
e| except|strict]

-f[no-]fast-math or
-funsafe-math-optimizations

Suggested Optimization (default) -O2 -xAVX -O2 -mavx -ftree-vectorize
-ffast-math -funroll-loops

Aggressive
Optimization

-O3 -hfp3 -fast -Ofast -mavx
-funroll-loops

OpenMP recognition (default) -fopenmp -fopenmp
Variables size (ftn) -s real64

-s integer64
-real-size 64
-integer-size 64

-freal-4-real-8
-finteger-4-integer-8

C O M P U T E | S T O R E | A N A L Y Z E

Summary - Compilers

● Three compiler environments available: Cray, Intel, GNU
● All of them accessed through the wrappers ftn, cc and CC – just

do module swap to change a compiler!
● There is no universally fastest compiler – but performance

depends on the application, even input
● We try however to excel with the Cray Compiler Environment
● If you see a case where some other compiler yields better

performance, let us know!
● Compiler flags do matter – be ready to spend some effort

for finding the best ones for your application

C O M P U T E | S T O R E | A N A L Y Z E

Cray Scientific Libraries

Overview

C O M P U T E | S T O R E | A N A L Y Z E

FFT

FFTW

Sparse
Trilinos

PETSc

CASK

Dense
BLAS

LAPACK

ScaLAPACK

IRT

Scientific libraries on XC – functional view

C O M P U T E | S T O R E | A N A L Y Z E

What makes Cray libraries special

1. Node performance
● Highly tuned routines at the low-level (ex. BLAS)

2. Network performance
● Optimized for network performance
● Overlap between communication and computation
● Use the best available low-level mechanism
● Use adaptive parallel algorithms

3. Highly adaptive software
● Use auto-tuning and adaptation to give the user the known best (or

very good) codes at runtime
4. Productivity features

● Simple interfaces into complex software

C O M P U T E | S T O R E | A N A L Y Z E

LibSci

● LibSci
● The compiler wrappers should do it all for you – no need to explicitly

link
● For threads, set OMP_NUM_THREADS

● Threading is used within LibSci
● If you call within a parallel region, single thread used

● FFTW
● module load fftw (there are also wisdom files available)

● PETSc
● module load petsc (or module load petsc-complex)
● Use as you would your normal PETSc build

● Trilinos
● module load trilinos

● Cray Adaptive Sparse Kernels (CASK)
● You get optimizations for free

C O M P U T E | S T O R E | A N A L Y Z E

Third-party libraries

● The modules cray-trilinos and cray-petsc / cray-petsc-
complex contain the popular Trilinos and PETSc packages
● These will automatically employ the Cray Adaptive Sparse Kernels

● The module cray-tpsl contains ready builds of some other
quite common libraries and solvers:
● MUMPS, ParMetis, SuperLU, SuperLU_DIST, Hypre, Scotch, Sundials
● These are for your convenience (i.e. no need to build the library

yourself) but do not feature Cray-specific modifications

C O M P U T E | S T O R E | A N A L Y Z E

A Note on Intel MKL

● The Intel Math Kernel Libraries (MKL) is an alternative to
LibSci
● Features tuned performance for Intel CPUs as well

● Linking quite complicated, but the Intel MKL Link Line
Advisor can tell you what to add to your link line
● http://software.intel.com/sites/products/mkl/

● Using MKL together with the Intel compilers (PrgEnv-intel)
is usually straightforward

C O M P U T E | S T O R E | A N A L Y Z E

Linking with MKL and PrgEnv-cray

● PrgEnv-cray compatible with sequential, not threaded,
MKL

● Examples assume you have loaded the intel module (to
define the env var INTEL_PATH)
● Typical case: You want to use MKL BLAS and/or LAPACK

-L ${INTEL_PATH}/mkl/lib/intel64/ \
-Wl,--start-group \
-lmkl_intel_lp64 -lmkl_sequential -lmkl_core \
-Wl,--end-group

● Another typical case: You want to use MKL serial FFTs/DFTs
Same as above (need more for FFTW interface)

● A less typical case: You want to use MKL distributed FFTs
-L ${INTEL_PATH}/mkl/lib/intel64/ \
-Wl,--start-group \
-lmkl_cdft_core -lmkl_intel_lp64 -lmkl_sequential \
-lmkl_core -lmkl_blacs_intelmpi_lp64 \
-Wl,--end-group

C O M P U T E | S T O R E | A N A L Y Z E

Take-home messages regarding libraries

● Do not re-invent the wheel but use scientific libraries
wherever you can!

● All the most widely used library families and frameworks
readily available as XC optimized versions
● And if the cornerstone library of your application is still missing, let us

know about it!

● Make sure you use the optimized version provided by the
system instead of a reference implementation

