

- 2 reliability (statistical consistency)
- 3 dichotomous predictands (yes/no)
 - contingency tables
 - Brier score
 - relative operating characteristic (ROC)
 - logarithmic score
- **4** sensible probabilities: p=0 and p=1?

M. Leutbecher

Ensemble Verification I

Training Course 2016 1

Objectives of verification (... evaluation and diagnostics)

Assess the quality of a forecast system for

- administrative purposes
 - tool to monitor the system
- scientific/diagnostic purposes
 - Identify strengths and weaknesses of a forecast system
 - Guide the future development of a forecast system
- economic purposes/ support for decision making
 - Whether a forecast is useful or valuable for a specific user depends on error characteristics but also what other information the user has (eg. climatology) and the particular decision that (s)he needs to make.
 - An accurate forecast can be of little value (blue desert sky)
 - An inaccurate forecast can be of high value (an intense storm that is predicted but with position error)
 - The actual forecast value may differ from the potential forecast value (availability of relevant fc information, user's constraints: economic, time limits, lack of training, etc.)

Concepts

Forecast attributes and forecast skill

- Forecast verification is the investigation of the properties of the joint distribution of forecasts and observations (Murphy & Winkler 1987)
- Scalar aspects (attributes) of the forecast quality include:
 - accuracy (e.g. mean absolute error, mean squared error, threat score)
 - bias
 - reliability
 - resolution
 - discrimination
 - sharpness (property of forecast only, e.g. ensemble spread)
- Forecast skill: relative accuracy of one forecast system with respect to a reference forecast (e.g. climatology)
- More generally: observations → estimates of the true state (e.g. also analyses)

```
M. Leutbecher
```

Ensemble Verification I

Training Course 2016 3

Concepts (II)

Examples of scores for single forecasts

sample of N forecast-observation pairs (x_i, y_i) :

• root mean square error $\left(\frac{1}{N}\sum_{j=1}^{N}(x_j-y_j)^2\right)^{1/2}$

• mean absolute error
$$\frac{1}{N} \sum_{i=1}^{N} |x_i - y_i|$$

- mean error $\frac{1}{N} \sum_{i=1}^{N} (x_j y_j)$
- anomaly correlation coefficient
- scores for dichotomous events (e.g. rain/no rain)
 - Peirce skill score (= Hansen-Kuipers, true skill statistic)
 - Gilbert skill score (Equitable threat score)
 - frequency bias
- All of these scores can be applied to the ensemble mean.

- The ensemble predicted rain with a probability of 10%.
- It did rain on the day
- Is this a good forecasts?
 - Yes
 - No
 - I don't know

For probabilistic forecast, the prediction (an ensemble or a probability distribution) and the observation (a value) are different objects. The distribution is not known more precisely after the verifying observation becomes available.

M. Leutbecher

Ensemble Verification I

Training Course 2016 5

Classification

- by predicted object
 - discrete set of events: e.g. cloudy/clear sky; rain/no rain; temperature in lower, middle or upper tercile ...
 - continuous scalar variable: temperature in London
 - continuous field: 2-metre temperature field in Europe; profile of wind at Frankfurt airport
- discrete sample (an ensemble) or probability distribution
 - ensemble predicts 50 values of temperature in London
 - probability distribution for temperature in London fitted to an ensemble of forecasts
 - probability distribution of temperature in London determined from a single forecast
 + a fit of a Gaussian distribution to past errors of this single forecast.
 - climatological probability distribution estimated from reanalyses

Statistical consistency and reliability

- Are the true values (or observations) statistically indistinguishable from the members of the ensemble?
- Measures to assess reliability
 - bias

M. Leutbecher

- "spread" versus "error"
- rank histogram
- reliability diagram (for dichotomous (binary) prediction, e.g. rain/no rain or 0/1) definitions and examples ...
- Reliability alone does not imply skill. The climatological distribution is perfectly reliable for a stationary climate.

Reliability of the ensemble spread

• Consider ensemble variance ("spread") for an *M*-member ensemble

$$\frac{1}{M}\sum_{j=1}^M (x_j - \overline{x})^2$$

and the squared error of the ensemble mean

$$(\overline{x} - y)^2$$

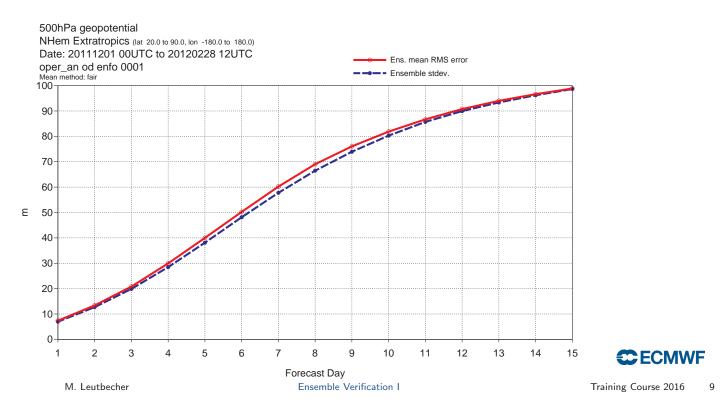
- Average the two quantities for many locations and/or start times.
- The averaged quantities have to match for a reliable ensemble (within sampling) uncertainty).
- Finite ensemble size can be corrected for in the estimation of the error of the ensemble mean and the ensemble variance.
- Cave: Even in a perfect ensemble, the correlation of ensemble spread and rms error is not 1.

Ensemble Verification I

Training Course 2016 7

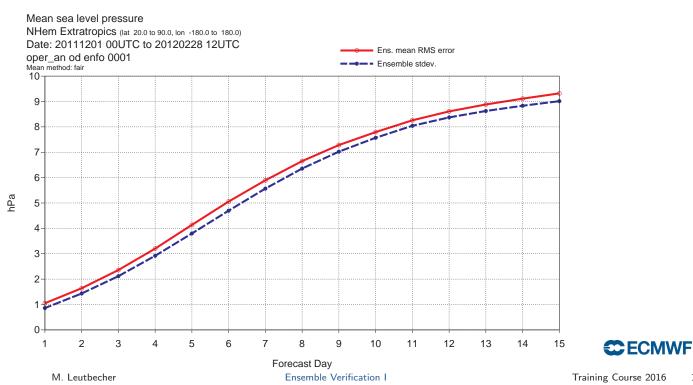
Examples of spread and error

ECMWF EPS — 500 hPa geopotential



Examples of spread and error

10



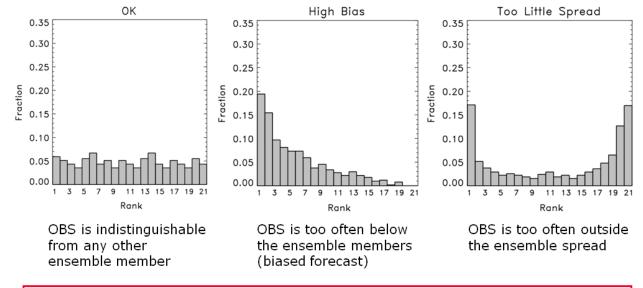
- Are the ensemble members statistically indistinguishable from the verification data?
- Determine where **observation** lies with respect to the ensemble members:



M. Leutbecher

Ensemble Verification I

Training Course 2016 11



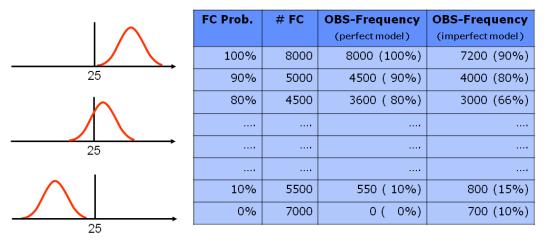
Rank Histogram

A uniform rank histogram is a necessary but not sufficient criterion for determining that the ensemble is reliable (see also: T. Hamill, 2001, MWR)

Dichotomous predictands

Joint distribution of forecasts and obs

- Consider the probabilistic prediction of the event that the temperature exceeds $25^{\circ}\,\text{C}.$
- Hypothetical verification sample of 30 start dates and 2200 grid points = 66000 forecasts.
- How often was the event ($T > 25^{\circ}$ C) predicted with probability p?



M. Leutbecher

Ensemble Verification I

Training Course 2016 13

Dichotomous predictands

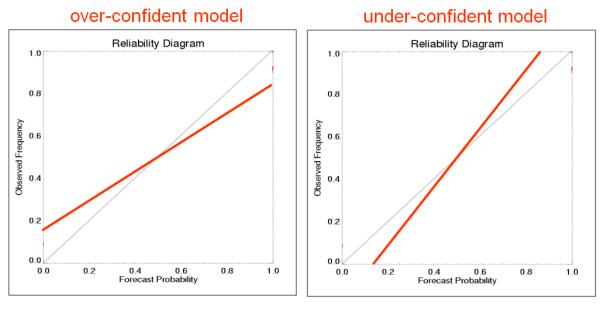
Reliability diagram

100 -		FC Pro
100 Jency	e e e	100
OBS-Frequency		80
B 0		
C) FC-Probability 100	10

FC Prob.	# FC	OBS-Frequency	OBS-Frequency	
		(perfect model)	(imperfect model)	
100%	8000	8000 (100%)	7200 (90%)	
90%	5000	4500 (90%)	4000 (80%)	
80%	4500	3600 (80%)	3000 (66%)	
10%	5500	550 (10%)	800 (15%)	
0%	7000	0 (0%)	700 (10%)	

Over- and under-confidence

Reliability diagram



CECMWF

M. Leutbecher

Ensemble Verification I

Training Course 2016 15

Scores for dichotomous predictions

- Extended contingency tables
- Scores
 - Brier score (reliability and resolution)
 - Logarithmic score (reliability and resolution)
 - Relative Operating Characteristic (discrimination)

- Consider an event e (e.g. $T>25^\circ$ C)
 - The joint distribution of forecasts and observations can be condensed in a 2×2 contingency table:

	e observed		
e predicted	Yes	No	
Yes	hits <i>a</i>	false alarms <i>b</i>	
No	misses <i>c</i>	correct rejections d	

- hit rate $H = \frac{a}{a+c}$
- false alarm rate $F = \frac{b}{b+d}$
- N = a + b + c + d sample size

 $\mathsf{M}. \ \mathsf{Leutbecher}$

Ensemble Verification I

(Extended) contingency table

 ${\sf ensemble}$

The joint distribution of forecasts and observations for a *M*-member ensemble can be summarized in a $(M + 1) \times 2$ contingency table **T**

M M	e pred. by	e obs	erved
sample size $\textit{N} = \sum_{j=1}^{m} \textit{n}_j + \sum_{j=1}^{m} \widetilde{\textit{n}}_j$	<i>m_e</i> members	Yes	No
$\sum_{j=0}^{j=0}$ $j=0$	М	n _M	ñ _M
Each row corresponds to a probability	M-1	n_{M-1}	\tilde{n}_{M-1}
value, e.g. $p = j/M \longrightarrow$			
	Ĵ	nj	ñj
	1	<i>n</i> 1	$ ilde{n}_1$
	0	<i>n</i> 0	ñ ₀

Contingency tables are additive:

 $T(sample1 \cup sample2) = T(sample1) + T(sample2)$

Brier score definition and decomposition

$$BS = \frac{1}{N} \sum_{k=1}^{N} (p_k - o_k)^2$$

- p_k is the predicted probability of the k-th forecast and $o_k = 1$ (0) if the event occurred (did not occur)
- The Brier score BS is the mean squared error of the probability forecast.
- The BS can be decomposed in three components that measure
 - reliability
 - resolution
 - uncertainty

CECMWF

M. Leutbecher

Ensemble Verification I

Training Course 2016 19

Brier score components BS=REL-RES+UNC

stratify sample in terms of the rows j in the contingency table

Reliability: deviation of observed relative frequency from forecasted probability

$$ext{REL} = rac{1}{N} \sum_{j=0}^{M} \ell_j (\overline{o}_j - p_j)^2$$

Uncertainty: Variance of obs. (0/1) in sample

 $\text{UNC} = \overline{o}(1 - \overline{o})$

M. Leutbecher

Resolution: ability of forecast to identify periods in which observed frequencies differ from average $1 \int_{-\infty}^{M} dt$

$$\text{RES} = \frac{1}{N} \sum_{j=0}^{m} \ell_j (\overline{o}_j - \overline{o})^2$$

M number of probability bins -1

- $p_j = j/M$ probability in bin j
- $\ell_j = n_j + \tilde{n}_j$ number of cases in bin j
- $\overline{o}_i = n_i / \ell_i$ frequency of event occuring when fore
 - casted with probability *p_i*
- \overline{o} event frequency in whole sample Ensemble Verification I

- Skill scores are used to compare the performance of forecasts with that of a reference forecast (e.g. climatological distribution)
- They are defined so that the perfect forecast has a skill score of 1 and the reference forecast has the skill score of 0

skill score =
$$\frac{\text{actual fc} - \text{ref}}{\text{perfect fc} - \text{ref}}$$

• BS for perfect forecast is 0 \Rightarrow

M. Leutbecher

$$\mathrm{BSS} = 1 - \frac{\mathrm{BS}}{\mathrm{BS}_{\mathrm{ref}}}$$

• positive (negative) BSS \Rightarrow forecast is better (worse) than the reference forecast

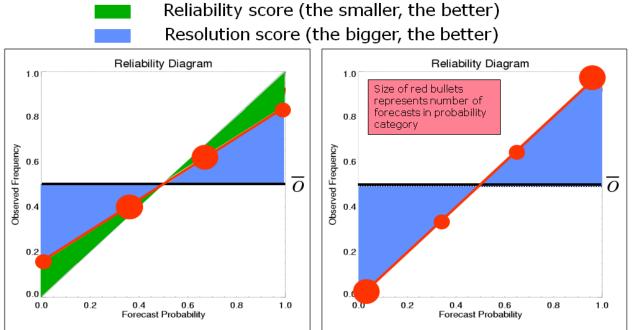
Ensemble Verification I

CECMWF

Training Course 2016 21

Brier score

Attributes diagram



CECMWF

Positive contribution to skill

diagnosed from the attributes diagram

$$BSS = 1 - \frac{BS}{BS_c}$$

= $1 - \frac{REL - RES + UNC}{UNC} = \frac{RES - REL}{UNC}$
perfect reliability
fine of no skill
climatological frequency (line of no resolution)
Forecast Probability

Cave: Using sample climatology as reference can lead to ficticious skill

M. Leutbecher

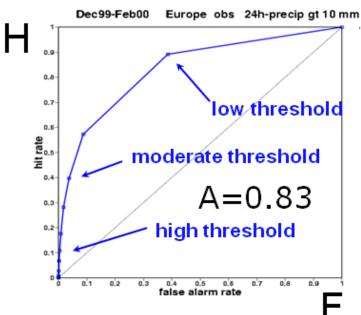
Ensemble Verification I

Training Course 2016 23

Discrimination and ROC

- until now, we looked at question:
 What is the distribution of observations o if the forecast system predicts an event to occur with probability p?
- To measure the ability of a forecast system to *discriminate* between occurrence and non-occurrence of an event, one has to ask:
 What distributions of probabilities have been predicted when the event occurred and when it did not occur?
- For any probability threshold p_i one can then determine the hit rate $H_i = \frac{a}{a+c}$ and the false alarm rate $F_i = \frac{b}{b+d}$
- The *relative operating characteristic* (ROC, also referred to as receiver operating characteristic) is the diagram that shows *H* versus *F* for all probability thresholds.

Relative Operating Characteristic



- random forecast (independent of observed event) on diagonal
- summary measure: area under the $\mathsf{ROC} \in [0.5, 1]$

M. Leutbecher

Ensemble Verification I

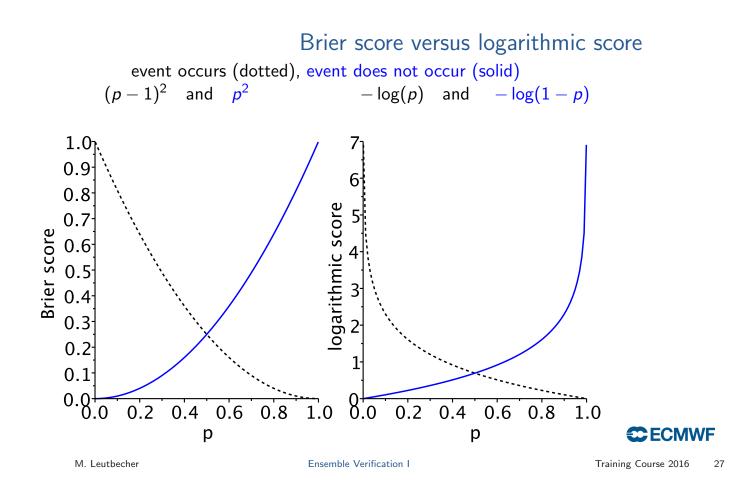
Training Course 2016 25

Logarithmic score

• also known as ignorance score (Good 1952, Roulston and Smith 2002)

$$LS = -\frac{1}{N} \sum_{k=1}^{N} [o_k \log p_k + (1 - o_k) \log(1 - p_k)]$$

- The score ranges between 0 and ∞. The latter happens if the predicted probability is zero and the event occurs (or if p = 1 and the event does not occur).
- The ignorance score is more sensitive to the cases with probability close to 0 and close to 1 than the Brier score.



Sensible probabilities

- Never forecast p = 0 or p = 1 unless you are really certain!
- If the true probability is not equal to zero (or one), there will still be cases when no member (or all members) predict(s) the event.
 Sampling uncertainty!
- Wilks proposed to estimate cumulative probabilities using Tukey's plotting positions

threshold

• When *n* members of an *M*-member ensemble have a value less than the threshold θ , the probability to not exceed θ is set to

$$p^{(T)}(n) = rac{n+2/3}{M+4/3}$$

Consider for example M = 10: 5 8 n 0 1 2 3 4 6 7 9 10 0.06 0.15 0.24 0.32 0.41 0.50 0.59 0.68 0.76 0.85 0.94 p