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Analysis

Analysis: The process of approximating the true state of a
(geo)physical system at a given time.

For example:
I Hand analysis of synoptic observations (1850 LeVerrier, Fitzroy).
I Polynomial Interpolation (1950s Panofsky)

An important step forward was made by Gilchrist and Cressman
(1954), who introduced the idea of using a previous numerical
forecast to provide a preliminary estimate of the analysis.

This prior estimate was called the background.
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Optimal interpolation

Bergthorsson and Döös (1955) took the idea of using a background
field a step further by casting the analysis problem in terms of
increments which were added to the background.

The increments were weighted linear combinations of nearby
observation increments (observation minus background), with the
weights determined statistically.

This idea of statistical combination of background and synoptic
observations led ultimately to Optimal Interpolation.

The use of statistics to merge model fields with observations is
fundamental to all current methods of analysis.
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Data Assimilation

An important change of emphasis happened in the early 1970s with
the introduction of primitive-equation models.

Primitive equation models support inertia-gravity waves. This makes
them much more fussy about their initial conditions than the filtered
models that had been used hitherto.

The analysis procedure became much more intimately linked with the
model. The analysis had to produce an initial state that respected the
model’s dynamical balances.

Unbalanced increments from the analysis procedure would be rejected
as a result of geostrophic adjustment.

Initialization techniques (which suppress inertia-gravity waves)
became important.
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Data Assimilation

The idea that the analysis procedure must present observational
information to the model in a way in which it can be absorbed (i.e. not
rejected by geostrophic adjustment) led to the coining of the term data
assimilation.
Google define:Assimilate

To incorporate nutrients into the body after digestion

To incorporate or absorb knowledge into the mind

The social process of absorbing one cultural group into harmony with
another

The process by which the Borg integrate beings and cultures into
their collective.

The process of objectively adapting the model state to observations in
a statistically optimal way taking into account model and observation
errors
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Data Assimilation

A final impetus towards the modern concept of data assimilation
came from the increasing availability of asynoptic observations from
satellite instruments.

It was no longer sufficient to think of the analysis purely in terms of
spatial interpolation of contemporaneous observations.

The time dimension became important, and the model dynamics
assumed the role of propagating observational information in time to
allow a synoptic view of the state of the system to be generated from
asynoptic data.
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Elementary Statistics
Suppose we want to estimate the temperature of this room, given:

A prior estimate: Tb.
I E.g., we measured the temperature an hour ago, and we have some

idea (i.e. a model) of how the temperature varies as a function of time,
the number of people in the room, whether the windows are open, etc.

A thermometer: To .

Denote the true temperature of the room by T ∗.

The errors in Tb and To are:

εb = Tb − T ∗

εo = To − T ∗

We will assume that the error statistics of Tb and To are known, and
that Tb and To have been adjusted (bias corrected) so that their
mean errors are zero:

εb = εo = 0
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Elementary Statistics

We estimate the temperature of the room as a linear combination of
Tb and To :

Ta = αTo + βTb + γ

Denote the error of our estimate as εa = Ta − T ∗.

We want the estimate to be unbiased: εa = 0.

We have:

Ta = T ∗ + εa = α (T ∗ + εo) + β (T ∗ + εb) + γ

Taking the mean and rearranging gives:

εa = (α + β − 1)T ∗ + γ

Since this holds for any T ∗, we must have
I γ = 0, and
I α + β − 1 = 0.

I.e. Ta = αTo + (1− α)Tb
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Elementary Statistics

The general Linear Unbiased Estimate is:

Ta = αTo + (1− α)Tb

Now consider the error of this estimate.

Subtracting T ∗ from both sides of the equation gives

εa = αεo + (1− α)εb

The variance of the estimate is:

ε2a = α2ε2o + 2α(1− α)εoεb + (1− α)2ε2b

The quantity εoεb represents the covariance between the error of our
prior estimate and the error of our thermometer measurement.

There is no reason for these errors to be connected in any way.

We will assume that εoεb = 0.
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Elementary Statistics

ε2a = α2ε2o + (1− α)2ε2b

We can easily derive some properties of our estimate:

dε2a
dα = 2αε2o − 2(1− α)ε2b

For α = 0, ε2a = ε2b and dε2a
dα = −2ε2b < 0

For α = 1, ε2a = ε2o and dε2a
dα = 2ε2o > 0
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From this we can deduce:

For 0 ≤ α ≤ 1, ε2a ≤ max(ε2b, ε
2
o)

The minimum-variance estimate occurs for α ∈ (0, 1).

The minimum-variance estimate satisfies ε2a < min(ε2b, ε
2
o)
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Elementary Statistics

The minimum-variance estimate occurs when

dε2a
dα

= 2αε2o − 2(1− α)ε2b = 0

⇒ α =
ε2b

ε2b + ε2o

It is not difficult to show that the error variance of this minimum-variance
estimate is:

ε2a =

(
1

ε2b
+

1

ε2o

)−1
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Extension to Multiple Dimensions

Now, let’s turn our attention to the multi-dimensional case.

Instead of a scalar prior estimate Tb, we now consider a vector xb.

We can think of xb as representing the entire state of a numerical
model at some time.

The elements of xb might be grid-point values, spherical harmonic
coefficients, etc., and some elements may represent temperatures,
others wind components, etc.

We refer to xb as the background

Similarly, we generalize the observation to a vector y.

y can contain a disparate collection of observations at different
locations, and of different variables.
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Extension to Multiple Dimensions

The major difference between the simple scalar example and the
multi-dimensional case is that there is no longer a one-to-one
correspondence between the elements of the observation vector and
those of the background vector.

It is no longer trivial to compare observations and background.

Observations are not necessarily located at model gridpoints

The observed variables (e.g. radiances) may not correspond directly
with any of the variables of the model.

To overcome this problem, we must asume that our model is a
more-or-less complete representation of reality, so that we can always
determine “model equivalents” of the observations.
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Extension to Multiple Dimensions

We formalize this by assuming the existance of an observation
operator, H.

Given a model-space vector, x, the vector H(x) can be compared
directly with y, and represents the “model equivalent” of y.

For now, we will assume that H is perfect. I.e. it does not introduce
any error, so that:

H(x∗) = y∗

where x∗ is the true state, and y∗ contains the true values of the
observed quantities.
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Extension to Multiple Dimensions

As we did in the scalar case, we will look for an analysis that is a
linear combination of the available information:

xa = Fxb + GH(xb) + Ky + c

where F, G and K are matrices, and where c is a vector.

If H is linear, we can proceed as in the scalar case and look for a
linear unbiased estimate.

In the more general case of nonlinear H, we will require that error-free
inputs (xb = x∗ and y = y∗) produce an error-free analysis (xa = x∗):

x∗ = Fx∗ + GH(x∗) + KH(x∗) + c

Since this applies for any x∗, we must have c = 0 and

F + GH(·) ≡ I−KH(·)

Our analysis equation is thus:

xa = xb + K (y −H(xb))
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Extension to Multiple Dimensions

xa = xb + K (y −H(xb))

Remember that in the scalar case, we had

Ta = αTo + (1− α)Tb

= Tb + α(To − Tb)

We see that the matrix K plays a role equivalent to that of the
coefficient α.

K is called the gain matrix.

It determines the weight given to the observations

It handles the transformation of information defined in “observation
space” to the space of model variables.
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Extension to Multiple Dimensions

The next step in deriving the analysis equation is to describe the
statistical properties of the analysis errors.

We define

εa = xa − x∗

εb = xb − x∗

εo = y − y∗

We will assume that the errors are small, so that

H(xb) = H(x∗) + Hεb + O(ε2b)

where H is the Jacobian of H.
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Extension to Multiple Dimensions

Substituting the expressions for the errors into our analysis equation,
and using H(x∗) = y∗, gives (to first order):

εa = εb + K (εo −Hεb)

As in the scalar example, we will assume that the mean errors have
been removed, so that εb = εo = 0. We see that this implies that
εa = 0.

In the scalar example, we derived the variance of the analysis error,
and defined our optimal analysis to minimize this variance.

In the multi-dimensional case, we must deal with covariances.
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Covariance

The covariance between two variables xi and xj is defined as

cov(xi , xj) = (xi − xi )(xj − x j)

Given a vector x = (x1, x2, · · · , xN)T, we can arrange the covariances
into a covariance matrix, C, such that Cij = cov(xi , xj).

Equivalently:
C = (x− x)(x− x)T

Covariance matrices are symmetric and positive definite

Mike Fisher (ECMWF) Assimilation Algorithms Lecture 1 March 4, 2016 20 / 31



Extension to Multiple Dimensions

The analysis error is:

εa = εb + K (εo −Hεb)

= (I−KH)εb + Kεo

Forming the analysis error covariance matrix gives:

εaεTa = [(I−KH)εb + Kεo ] [(I−KH)εb + Kεo ]T

= (I−KH)εbε
T
b (I−KH)T + (I−KH)εbεTo K

T

+KεoεTb (I−KH)T + KεoεTo K
T

Assuming that the backgound and observation errors are uncorrelated
(i.e. εoεTb = εbεTo = 0), we find:

εaεTa = (I−KH)εbε
T
b (I−KH)T + KεoεTo K

T
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Extension to Multiple Dimensions

εaεTa = (I−KH)εbε
T
b (I−KH)T + KεoεTo K

T

This expression is the equivalent of the expression we obtained for the
error of the scalar analysis:

ε2a = (1− α)2ε2b + α2ε2o

Again, we see that K plays essentially the same role in the
multi-dimensional analysis as α plays in the scalar case.

In the scalar case, we chose α to minimize the variance of the analysis
error.

What do we mean by the minimum-variance analysis in the
multi-dimensional case?
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Extension to Multiple Dimensions

Note that the diagonal elements of a covariance matrix are variances
Cii = cov(xi , xi ) = (xi − xi )2.

Hence, we can define the minimum-variance analysis as the analysis
that minimizes the sum of the diagonal elements of the analysis error
covariance matrix.

The sum of the diagonal elements of a matrix is called the trace.

In the scalar case, we found the minimum-variance analysis by setting
dε2a
dα to zero.

In the multidimensional case, we are going to set

∂trace(εaεTa )

∂K
= 0

(Note: ∂trace(εaεTa )
∂K is the matrix whose ij th element is ∂trace(εaεTa )

∂Kij
.)

Mike Fisher (ECMWF) Assimilation Algorithms Lecture 1 March 4, 2016 23 / 31



Extension to Multiple Dimensions

We have: εaεTa = (I−KH)εbε
T
b (I−KH)T + KεoεTo K

T.

The following matrix identities come to our rescue:

∂trace(KAKT)

∂K
= K(A + AT)

∂trace(KA)

∂K
= AT ∂trace(AKT)

∂K
= A

Applying these to ∂trace(εaεTa )/∂K gives:

∂trace(εaεTa )

∂K
= 2K

[
HεbεTbH

T + εoεTo

]
− 2εbε

T
bH

T = 0

Hence: K = εbε
T
bH

T
[
HεbεTbH

T + εoεTo

]−1
.
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Extension to Multiple Dimensions

K = εbε
T
bH

T
[
HεbεTbH

T + εoεTo

]−1

This optimal gain matrix is called the Kalman Gain Matrix.

Note the similarity with the optimal gain we derived for the scalar
analysis: α = ε2b/(ε2b + ε2o).

The variance of analysis error for the optimal scalar problem was:

ε2a =

(
1

ε2b
+

1

ε2o

)−1

The equivalent expression for the multi-dimensional case is:

εaεTa =

[(
εbε

T
b

)−1
+ HT

(
εoεTo

)−1
H

]−1
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Notation

The notation we have used for covariance matrices can get a bit
cumbersome.

The standard notation is:

Pa ≡ εaεTa

Pb ≡ εbε
T
b

R ≡ εoεTo

In many analysis schemes, the true covariance matrix of background
error, Pb, is not known, or is too large to be used.

In this case, we use an approximate background error covariance
matrix. This approximate matrix is denoted by B.
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Alternative Expression for the Kalman Gain

Finally, we derive an alternative expression for the Kalman gain:

K = PbHT
[
HPbHT + R

]−1

Multiplying both sides by
[
(Pb)−1 + HTR−1H

]
gives:[

(Pb)−1 + HTR−1H
]
K =

[
HT + HTR−1HPbHT

] [
HPbHT + R

]−1

= HTR−1
[
R + HPbHT

] [
HPbHT + R

]−1

= HTR−1

Hence:

K =
[
(Pb)−1 + HTR−1H

]−1
HTR−1
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Optimal Interpolation

Optimal Interpolation is a statistical data assimilation method based
on the multi-dimensional analysis equations we have just derived.

The method was used operationally at ECMWF from 1979 until 1996,
when it was replaced by 3D-Var.

The basic idea is to split the global analysis into a number of boxes
which can be analysed independently:

x
(i)
a = x

(i)
b + K(i)

(
y(i) −H(i)(xb)

)
where

xa =


x
(1)
a

x
(2)
a
...

x
(M)
a

 xb =


x
(1)
b

x
(2)
b
...

x
(M)
b

 K =


K(1)

K(2)

...

K(M)
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Optimal Interpolation

x
(i)
a = x

(i)
b + K(i)

(
y(i) −H(i)(xb)

)
In principle, we should use all available observations to calculate the
anaysis for each box. However, this is too expensive.

To produce a computationally-feasible algorithm, Optimal
Interpolation (OI) restricts the observations used for each box to
those observations which lie in a surrounding selection area:

analysis box

u
u

u
u u

u
u uu
u

u
Mike Fisher (ECMWF) Assimilation Algorithms Lecture 1 March 4, 2016 29 / 31



Optimal Interpolation

The gain matrix used for each box is:

K(i) =
(
PbHT

)(i) [(
HPbHT

)(i)
+ R(i)

]−1

Now, the dimension of the matrix
[(
HPbHT

)(i)
+ R(i)

]
is equal to

the number of observtions in the selection box.

Selecting observations reduces the size of this matrix, making it
feasible to use direct solution methods to invert it.

Note that to implement Optimal Interpolation, we have to specify(
PbHT

)(i)
and

(
HPbHT

)(i)
. This effectively limits us to very simple

observation operators, corresponding to simple interpolations.

This, together with the artifacts introduced by observation selection,
was one of the main reasons for abandoning Optimal Interpolation in
favour of 3D-Var.
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Summary

We derived the linear analysis equation for a simple scalar example.

We showed that a particular choice of the weight α given to the
observation resulted in an optimal minimum-variance analysis.

We repeated the derivation for the multi-dimensional case. This
required the introduction of the observation operator.

The derivation for the multi-dimensional case closely parallelled the
scalar derivation.

The expressions for the gain matrix and analysis error covariance
matrix were recognisably similar to the corresponding scalar
expressions.

Finally, we considered the practical implementation of the analysis
equation, in an Optimal Interpolation data assimilation scheme.
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