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Outline

• Standard Kalman Filter theory

• Kalman Filters for large dimensional systems

• Approximate Kalman Filters: The Ensemble Kalman Filter and 
4D-Var

• Hybrid Variational–EnKF algorithms
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• In a previous lecture it was shown that the linear, unbiased analysis  
equation had the form:

xa = xb + K (y - H(xb)) 

xa = analysis state;  xb = background state;

y = observations;  H(xb) = model equivalents of the observations

• It was also shown that the best linear unbiased analysis (BLUE; best here 
means the analysis that has the minimum error variance) is achieved when 
the matrix K (Kalman Gain Matrix) has the form:

K = Pb HT(H Pb HT + R)-1 = ((Pb)-1 +  HT R-1 H )-1 HT R-1

Pb = covariance matrix of the background error
R = covariance matrix of the observation error

• An expression for the covariance matrix of the analysis error was also found:

Standard Kalman Filter
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• An expression for the covariance matrix of the analysis error was also found:

Pa = (I – KH)Pb (I – KH)T + KRKT

• In NWP applications of data assimilation we want to update our estimate of 
the state and its uncertainty at later times, as new observations come in: we 
want to cycle the analysis

• For each analysis in this cycle we require a background xb
t (i.e. a prior 

estimate of the state valid at time t)

• Usually, our best prior estimate of the state at time t is given by a forecast 
from the preceding analysis at t-1 (the “background”):

xb
t = M(xa

t-1)

• What is the error covariance matrix (=> the uncertainty) associated with this 
background?

Standard Kalman Filter
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• What is the error covariance matrix associated with this background?

xb = M(xa
t-1)

• Subtract the true state x* from both sides of the equation: 

xb - x*
t = εb

t = M(xa
t-1) - x*

t

• Since xa
t-1 = x*

t-1 + εa
t-1  we have:

εb
t = M(x*

t-1 + εa
t-1) - x*

t  ≈ 

M(x*
t-1) + Mεa

t-1 - x*
t  =

Mεa
k-1 + ηk

• Here we have defined the model error ηk = M(x*
t-1) - x*

t

• We will also assume that no systematic errors are present in our system (!):  
< εa > = < η> = 0  =>  < εb > = 0

• The background error covariance matrix will then be given by: 

Standard Kalman Filter
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<εb
t (εb

t)
T> = Pb

t = <(Mεa
t-1 + ηk) (Mεa

t-1 + ηk)
T> =

M<εa
t-1 (εa

t-1)T> MT + <ηk (ηk)
T> =

M Pa
t-1 MT + Qt

• Here we have assumed < εa
t-1 (ηt )T> = 0  and defined the model error 

covariance matrix Qt = <ηt (ηt)
T>

• We now have all the equations necessary to propagate and update both the 
state and its error estimates:

xb
t = M(xa

t-1)

Pb
t = M Pa

t-1 MT + Qt

K = Pb HT(H Pb HT + R)-1

xa
t = xb

t + K (y - H(xb
t))

Pa
t = (I – KH)Pb

t (I – KH)T + KRKT

Standard Kalman Filter
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Standard Kalman Filter
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Propagation

Update

t-1 t t+1xa
t-1

Pa
t-1

1. Predict the state ahead           

xb
t = M(xa

t-1)

2. Predict the state error cov.

Pb
t = M Pa

t-1 MT + Qt

New Observations

3. Compute the Kalman Gain   

K = Pb HT(H Pb HT + R)-1

4. Update state estimate       

xa
t = xb

t + K (y - H(xb
t))

5. Update state error estimate 

Pa
t = (I – KH)Pb

t (I – KH)T + KRKT

1. Predict the state ahead           

xb
t+1 = M(xa

t)

2. Predict the state error cov.

Pb
t+1 = M Pa

t MT + Qt+1

Propagation
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• Under the assumption that the model M and the observation operator H are 

linear operators (i.e., they do not depend on xb), the Kalman Filter produces 

an optimal sequence of analysis  

• The KF analysis xa
t is the best (minimum variance) estimate of the state at 

time t, given xb
0 and all observations up to time t (y0,y1,…,yt).

• Note that Gaussianity of errors is not required. If errors are Gaussian the 

Kalman Filter provides  the exact conditional probability estimate,                 

i.e. p(xa
t| xb

0; y0,y1,…,yt). This also implies that if errors are Gaussian then the 

state estimated with the KF is also the most likely state (the mode of the 

pdf).

Standard Kalman Filter
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• The Kalman Filter is unfeasible for large dimensional systems

• The size N of the analysis/background state in the ECMWF 4DVar is O(108): 
the KF requires us to store and evolve in time state covariance matrices (Pa/b) 
of O(NxN)

 The World’s fastest computers can sustain ~ 1015 operations per second

 An efficient implementation of matrix multiplication of two 108x108

matrices requires ~1022 operations (O(N2.8)): about 4 months on the 
fastest computer!

 Evaluating Pb
t = M Pa

t-1 MT + Qk requires 2*N≈2*108 model integrations!

• A range of approximate Kalman Filters has been developed for use with 
large-dimensional systems.

• All of these methods rely on a low-rank approximation of the covariance 
matrices of background and analysis error.

Kalman Filters for Large Dimensional Systems
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• Main assumption:  Pb
k has rank M<<N (e.g. M~100).

• Then we can write Pb= Xb(Xb)T, where Xb
k is N x M.

• The Kalman Gain then becomes: 

K = Pb HT(H Pb HT + R)-1 = 

Xb(Xb)THT(H Xb(Xb)T HT + R)-1 =

Xb (HXb)T(H Xb(HXb)T + R)-1

• Note that, to evaluate K, we apply H to the M columns of Xb rather than to 
the N columns of Pb. 

• The N x N matrices Pa/b have been eliminated from the computation! In their 

place we have N x M (Xb) and L x M (HXb) matrices (L = number of 
observations)

Kalman Filters for Large Dimensional Systems
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• Similar derivation can be done for Pa :

Pa = (I – KH)Pb (I – KH)T + KRKT = 

= (I - KH)Pb = (I - KH) Xb(Xb)T =

Xb(Xb)T - KH Xb(Xb)T 

• Both terms in this expression for Pa contain an initial Xb and a final 
(Xb)T so that Pa = XbW(Xb)T for some MxM matrix W

• Finally the background covariance matrix:

Pb = M PaMT + Q = M XbW(Xb)TMT + Q =

M XbW (MXb)T + Q

• This requires only(!) M (O(100)) integrations of the linearized model 
M

Kalman Filters for Large Dimensional Systems
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• The algorithm described above is called Reduced-rank Kalman Filter

• These huge gains in computational cost come at a price!

• The analysis increment is a linear combination of the columns of Xb
k:

xa - xb = K (y – H(xb)) = Xb (HXb)T ((HXb)(HXb)T + R)-1 (y – H(xb))

• The analysis increments are formed as a linear combination of the 
columns of Xb: they are confined to the subspace spanned by Xb, 

which has at most rank M << N.

• This severe reduction in rank has two main effects:

1. There are too few degrees of freedom available to fit the ≈106

observations: the analysis is too “smooth”;

2. The low-rank approximations of the covariance matrices suffer
from spurious long-distance correlations.   

Kalman Filters for Large Dimensional Systems
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Random estimates 
of temperature 
background error 
correlation matrix 
for different 
ensemble sizes
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• There are two ways around the rank deficiency problem: 

1. Domain localization (e.g. Houtekamer and Mitchell, 1998; Ott et al.
2004);

• Domain localization solves the analysis equations independently for each 
grid point, or for each of a set of regions covering the domain. 

• Each analysis uses only observations that are local to the grid point (or 
region) and the observations are usually weighted according to their distance 
from the analysed grid point (e.g., Hunt et al., 2007)

• This guarantees that the analysis at each grid point (or region) is not 
influenced by distant observations.

• The method acts to vastly increase the dimension of the sub-space in which 
the analysis increment is constructed because each grid point is updated by a 
different linear combination of ensemble perturbations

• However, performing independent analyses for each region can lead to 
difficulties in the analysis of the large scales and in producing balanced 
analyses.

Kalman Filters for Large Dimensional Systems
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1. Domain localization

Kalman Filters for Large Dimensional Systems
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Analysed grid point

Local observations
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• The other way around the rank deficiency problem: 

2. Covariance localization  (e.g. Houtekamer and Mitchell, 2001). 

• Covariance localization is performed by element wise (Schur) multiplication 
of the error covariance matrices with a predefined correlation matrix 
representing a decaying function of distance (vertical and horizontal).

Pb -->  ρL    P
b

• In this way spurious long range correlations in Pb are suppressed.

• As for domain localization, the method acts to vastly increase the dimension 
of the sub-space in which the analysis increment is constructed.

• Choosing the product function is non-trivial. It is easy to modify Pb in 
undesirable ways. In particular, balance relationships may be adversely 
affected.

Kalman Filters for Large Dimensional Systems
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=

• Standard Error of sample correlation ≈ (1-ρ2)/√(Nens-1) 

• for small ρ, Nens it becomes >= ρ; 

• since ρ -> 0 for large horiz./vert. distances apply distance based 

covariance localization on the sample Pf
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• Domain/Covariance localization  is a practical necessity for using the KF in 

large dimensional systems

• Finding the right amount of localization is an (expensive) tuning exercise: a 
good trade-off needs to be found between computational effort, sampling 
error and imbalance error

• Finding the “optimal” localization scales as functions of the system 

characteristics is an area of current active research (e.g., Flowerdew, 2015; 
Periáñez et al., 2014; Menetrier et al., 2014) 

Kalman Filters for Large Dimensional Systems
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• Ensemble Kalman Filters (EnKF, Evensen, 1994; Burgers et al., 1998) are 
Monte Carlo implementations of the reduced rank KF

• In EnKF error covariances are constructed as sample covariances from an 

ensemble of background/analysis fields, i.e.:

Pa/b = 
1

𝑀−1
Σm(xb

m- <xb
m>) (xb

m- <xb
m>)T =

= Xb(Xb)T

• Xb is the N x M matrix of background perturbations, i.e.:

Xb = 
1

𝑀−1
((xb

1- <xb>), (xb
2- <xb>), .., (xb

M- <xb>))

• Note that the full covariance matrix is never formed explicitly: The error 

covariances are usually computed locally for each grid point in the M x M
ensemble space 

Ensemble Kalman Filters
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• In the standard KF the error covariances are explicitly propagated using the 
tangent linear and adjoint of the model and observation operators, i.e.: 

K = Pb HT(H PbHT + R)-1 

Pb = MPaMT + Q

• In the EnKF the error covariances are sampled from the ensemble forecasts 
and the huge matrix Pb is never explicitly formed:

PbHT = Xb(Xb)THT= Xb(HXb)T = 

1

𝑀−1
Σm(xb

m- <xb
m>) (xb

m- <H(xb
m)>)T

HPbHT= HXb(HXb)T = 
1

𝑀−1
Σm(xb

m- <H(xb
m)>) (xb

m- <H(xb
m)>)T

• Not having to code TL and ADJ operators is a distinct advantage!

Ensemble Kalman Filters
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• In the EnKF the error covariances are sampled from the ensemble 
forecasts. They reflect the current state of the atmospheric flow

Ensemble Kalman Filters
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Spread of surface pressure background t+6h fcst (shaded, Pa)

Z1000 background  t+6h fcst (black isolines)
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• In the EnKF the error covariances are sampled from the ensemble 
forecasts. They reflect the current state of the atmospheric flow

Ensemble Kalman Filters
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• The Ensemble Kalman Filter requires us to generate a sample {xb
k,m; 

m=1,..,M} drawn from the pdf of background error: how to do this?

• We can generate this from a sample {xa
k-1,m; m=1,..,M} from the pdf 

of analysis error for the previous cycle: 

xb
m = M(xa

t-1,m) + ηm

where ηm is a sample drawn from the pdf of model error.

• The question is then: How do we generate a sample from the analysis 
pdf? Let us look at the analysis update again:

xa = xb + K (y – H(xb)) = (I-KH) xb + Ky

• If we subtract the true state x* from both sides (and assume y*=Hx*)

ea = (I-KH) eb + Keo

• i.e., the errors have the same update equation as the state 

Ensemble Kalman Filters
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• Consider now an ensemble of analysis where all the inputs to the analysis 

(i.e., the background forecast and the observations) have been perturbed 
according to their errors:

xa’ = (I-KH) xb’ + Ky’

• If we subtract the unperturbed analysis xa = (I-KH) xb + Ky

εa = (I-KH) εb + Kεo

• Note that the observations (during the update step) and the model (during 
the forecast step) are perturbed explicitly.

• The background is implicitly perturbed , i.e.:

xb = M(xa
t-1,m) + ηm

• Hence, one way to generate a sample drawn from the pdf of analysis error is 
to perturb the observations with perturbations characteristic of observation 
error.

• The EnKF based on this idea is called Perturbed Observations (Stochastic) 
EnKF (Houtekamer and Mitchell, 1998). It is also the basis of ECMWF EDA

Ensemble Kalman Filters
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• Another way to construct the analysis sample without perturbing the 
observations is to make a linear combination of the background sample:

Xa=XbT

where T is a M x M matrix chosen such that: 

Xa(Xa)T = (XbT) (XbT)T = Pa = (I-KH)Pb

• Note that the choice of T is not unique: Any orthonormal transformation Q
(QQT=QTQ=I) can be applied to T and give a valid analysis sample!

• Implementations also differ on the treatment of observations (i.e., local 
patches, one at a time)

• Consequently there are a number of different, functionally equivalent, 
implementations of the Deterministic EnKF (ETKF, Bishop et al., 2001; LETKF, 
Ott et al., 2004, Hunt et al., 2007; EnSRF, Whitaker and Hamill, 2002; EnAF, 
Anderson, 2001;…)

Ensemble Kalman Filters
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• The real question then is: 

How does the EnKF compare with standard 4DVar?

Ensemble Kalman Filters
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ECMWF EnKF vs 4DVar deterministic forecast skill  

TL399 100 member EnKF

TL399 (95/159) 4DVar with 

static B 

Verification against ECMWF

Operations (T1279 4DVar 

analysis)
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• Pros:

1. Background error estimates reflect state of the flow

2. Provides an ensemble of analyses: can use for Ensemble prediction

3. EnKF competitive with standard 4DVar at intermediate resolutions 

4. Very good scalability properties

Ensemble Kalman Filters
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• Cons:

1. The basic approximation of the EnKF is to replace the mean and 
covariances of the KF with sample mean and covariances

2. As the affordable ensembles are relatively small sampling noise and 
rank deficiency of the sampled error covariances become performance 
limiting factor for the EnKF 

3. Careful localization of sampled covariances becomes crucial: This is an 
on-going research topic for both EnKF and Ensemble Variational hybrid 
systems

4. Note how covariance localization becomes conceptually and practically 

more difficult for observations (satellite radiances) which are non-
local, i.e. they sample a layer of the atmosphere (Campbell et al., 
2010)  

Ensemble Kalman Filters
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The best of both worlds?

Hybrid Variational–EnKF algorithms
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4D-Var

If we neglect model error (perfect model assumption) the problem of finding the 

model trajectory that best fits the observations over an assimilation interval 

t=0,1,…,T) given a background state xb and its error covariance Pb can be solved

By finding the minimum of the cost function: 

This is equivalent, for the same xb, Pb , to the Kalman filter solution at the end of

the assimilation window (t=T) (Fisher et al.,2005).

Hybrid Variational–EnKF algorithms
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4D Variational methods

The 4D-Var solution implicitly evolves background error covariances over the 

length of the assimilation window (Thepaut et al.,1996) with the tangent linear 

dynamics:

Pb(t) ≈ MPbMT

Slide 32
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Variational vs Ensemble

Slide 33

t=+0h t=+3h t=+9h

MSLP and 500 hPa Z 

(shaded) background 
fcst

Temperature analysis increments for a single temperature observation at the 

start of the assimilation window:  xa(t)-xb(t) ≈ MPbMTHT(y-Hx)/(σb
2 + σo

2)
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4D Variational methods

• The 4D-Var solution implicitly evolves background error covariances over the 
length of the assimilation window with the tangent linear dynamics:

Pb(t) ≈ MPbMT

• But it does not propagate error information from one assimilation cycle to 
the next:  Pb is not evolved according to KF equations ( i.e., Pb = MPaMT + Q) 
but is reset to a climatological, stationary estimate at the beginning of each 
assimilation window. 

• Only information about the state (xb) is propagated from one cycle to the 
next.

Slide 34
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a) Kalman Filter is computationally unfeasible for large dimensional systems (e.g., 
operational NWP);

b) Variational (4D-Var) do not cycle state error estimates: works well for short 
assimilation windows (6-12h). Longer windows, where Q is required, have 
proved more difficult;

c) EnKF cycle reduced-rank estimates of state error covariances: need for spatial 

localization to combat rank deficiency, with possibly negative impact on 

dynamical balance and use non-local observations (radiances);

….

Hybrid approach: Use cycled, flow-dependent state error estimates (from an 

EnKF/Ensemble DA system) in a 3/4D-Var analysis algorithm   

Slide 35

Hybrid Variational–EnKF algorithms
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Hybrid approach: Use cycled, flow-dependent state error estimates

(from an EnKF/EDA system) in a 3/4D-Var analysis algorithm

This solution would:

1) Integrate flow-dependent state error covariance information into a variational 
analysis

2) Keep the full rank representation of Pb and its implicit evolution inside the 
assimilation window

3) More robust than pure EnKF for limited ensemble sizes and large model errors

4) Allow for flow-dependent quality control of observations

Slide 36
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In operational use (or under test), there are various approaches to

doing hybrid DA in a VAR context:

1. Extended control variable  method (Met Office, NCEP/GMAO, CMC)

2. 4D-Ensemble-Var (under active development in all of the above)

3. Ensemble of Data Assimilations method (ECMWF, Meteo France)

4. Hybrid Gain Ensemble Data Assimilation (ECMWF)

Slide 37

Hybrid Variational–EnKF algorithms
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1. Extended control variable  (Barker, 1999; Lorenc, 2003)

Conceptually add a flow-dependent term to the model of Pb (B):

Bc is the static, climatological covariance
Pe○ Cloc is the localised ensemble sample covariance

In practice this is done through augmentation of the control variable:

and introducing an additional term in the cost function:

Hybrids: extended control variable
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1. Extended control variable  method 

• The increment is now a weighted sum of the static B component and the 
flow-dependent, ensemble based B

• The flow-dependent increment is a linear combination of ensemble 
perturbations X’, modulated  by the α fields

• If the α fields were homogeneous  δxens could only span Nens-1 degrees of 
freedom; instead α fields are smoothly varying, which effectively 
increases the degrees of freedom

• Cloc is a covariance (localization) model for the flow-dependent
increments: it controls the spatial variation of α

Hybrids: extended control variable
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Hybrids: extended control variable
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Pure ensemble 3D-Var  

u response to a single u observation at centre of window

from A.Clayton
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2. 4D-Ensemble-Var  method (Liu et al., 2008) 

• In the extended control variable method one uses the ensemble 
perturbations to estimate Pb only at the start of the 4DVar assimilation 
window: the evolution of Pb inside the window is done by the tangent 
linear dynamics (Pb(t) ≈ MPbMT)

• In 4D-En-Var Pb is sampled from ensemble trajectories throughout the 
assimilation window:   

Hybrids: 4D-En-Var
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• The 4D-Ens-Var analysis increment is thus a localised linear combination 
of ensemble trajectories perturbations: 

• This is fundamentally the same state update procedure of the LETKF 
version of EnKF (Hunt et al., 2007): It is difficult to imagine that 4D-En-Var 
should work better than an EnKF.

• While traditional 4DVar requires repeated, sequential runs of M, MT, 
ensemble trajectories from the previous assimilation time can be pre-
computed in parallel

• As in the EnKF, 4D-Ens-Var does not require developing and maintaining 
the TL and Adjoint models 

Hybrids: 4D-En-Var

Slide 42

 

     ttt

t

k

k

Nk

k

kk

'

'

xxx

xαx



 



,1





Slide 43

Massimo Bonavita – DA Training Course 2016 - EnKF 

3. Ensemble of Data Assimilations 

4. Hybrid Gain Ensemble Data Assimilation

• To be continued…

Hybrids
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