
Introduction to

OpenMP exercises

1Introduction to OpenMP exercises

Getting setup on cca

2Introduction to OpenMP exercises

First start an “interactive batch job” i.e. get a single node for

your exclusive use

qsub –q np –I –l EC_nodes=1

the first –I is a uppercase I, the second one is a lowercase L

With this, once you have a session, you can work interactively:

edit, compiler, run aprun, etc ..

Each exercise is in its own subdirectory and has a Makefile

To get the OpenMP exercise files

scp -r cca:/home/ectrain/trx/sami/27jan2016.tgz $PERM

Class Exercise 1 Experiment with SCHEDULE clause
[directory: schedule/]

subroutine work(k,a,b,c)

real(8) a(k),b(k),c(k)

!$OMP PARALLEL DO SCHEDULE(RUNTIME) PRIVATE(I)

do i=1,k

c(i)=a(i)*exp(b(i))

enddo

!$OMP END PARALLEL DO

return

end

Try

export OMP_SCHEDULE=

STATIC

DYNAMIC

DYNAMIC,100

DYNAMIC,1000

GUIDED

GUIDED,1000

Which is the best for

this loop?

3Introduction to OpenMP exercises

Class Exercise 2 (Maximum distance between points)
[directory: maxdistance/]

This exercise involves parallelization of maximum

distance calculating between set of points in 3D. Use both

OMP DO and OMP TASK constructs. Which one gives

better performance ? Vary also the OMP_SCHEDULE.

On which core-id each thread runs ? Small C-code is used

as a helper routine here.

4Introduction to OpenMP exercises

Class Exercise 3 (Poisson2D)
[directory: p2d/]

This exercise involves parallelising 2D Poisson solver

using Jacobi iteration. Despite being very inefficient

algorithm, it shows some common parallel patterns found

when parallelizing stencil type of codes.

Make sure you get the same answers when you increase

the OMP_NUM_THREADS !

How does your Mlups/s (Millions of Lattice updates per

seconds) go up when you increase number of threads?

For visual version use code in directory p2dviz/

5Introduction to OpenMP exercises

Class Exercise 4 (“the bonus ball”)
[directory: md/]

The program md.F90 implements a simple molecular dynamics

simulation in continuous real space. The velocity Verlet algorithm

is used to implement the time stepping. The force and energy

computations can be performed in parallel, as can the time

integration. No knowledge of the application or science involved

are required – the above was just to scare you

4.1 Use OpenMP directives to parallelise the time integration loop

4.2 Use OpenMP directives to parallelise the computation of forces

and energies loop nest

6Introduction to OpenMP exercises

Class Exercise 4.1 (md.F90)

! The time integration is fully parallel

!!!

! SAFE TO ADD OPENMP DIRECTIVES FOR THIS LOOP !

!!!

do i = 1,np

do j = 1,nd

pos(j,i) = pos(j,i) + vel(j,i)*dt + 0.5*dt*dt*a(j,i)

vel(j,i) = vel(j,i) + 0.5*dt*(f(j,i)*rmass + a(j,i))

a(j,i) = f(j,i)*rmass

enddo

enddo

7Introduction to OpenMP exercises

Class Exercise 4.2 (md.F90)

! The computation of forces and energies is fully parallel.

!!!

! SAFE TO ADD OPENMP DIRECTIVES FOR THIS LOOP !

!!!

do i=1,np

! compute potential energy and forces

f(1:nd,i) = 0.0

do j=1,np

if (i .ne. j) then

call dist(nd,box,pos(1,i),pos(1,j),rij,d)

pot = pot + 0.5*v(d)

do k=1,nd

f(k,i) = f(k,i) - rij(k)*dv(d)/d

enddo

endif

enddo

! compute kinetic energy

kin = kin + dotr8(nd,vel(1,i),vel(1,i))

enddo

8Introduction to OpenMP exercises

4.1 solution

!$omp parallel do default(none) &

!$omp& private(i,j) firstprivate(np,nd,dt,rmass) &

!$omp& shared(pos,vel,a,f)

do i = 1,np

do j = 1,nd

pos(j,i) = pos(j,i) + vel(j,i)*dt + 0.5*dt*dt*a(j,i)

vel(j,i) = vel(j,i) + 0.5*dt*(f(j,i)*rmass + a(j,i))

a(j,i) = f(j,i)*rmass

enddo

enddo

9Introduction to OpenMP exercises

4.2 solution

!$omp parallel do default(none) &

!$omp& private(i,j,k,rij,d) firstprivate(np,nd) &

!$omp& shared(f,pos,rij,vel,box) &

!$omp& reduction(+ : pot, kin)

do i=1,np

! compute potential energy and forces

f(1:nd,i) = 0.0

do j=1,np

if (i .ne. j) then

call dist(nd,box,pos(1,i),pos(1,j),rij,d)

pot = pot + 0.5*v(d)

do k=1,nd

f(k,i) = f(k,i) - rij(k)*dv(d)/d

enddo

endif

enddo

! compute kinetic energy

kin = kin + dotr8(nd,vel(1,i),vel(1,i))

enddo

10Introduction to OpenMP exercises

