
An Introduction to Parallel Programming

Paul Burton

January 2016

An Introduction to Parallel Programming

 Syntax is easy

- And can always be found in books/web pages if you can’t
remember!

 How to think about parallel programming is more difficult

- But it’s essential!

- A good mental model enables you to use the OpenMP and MPI we
will teach you

- It can be a struggle to start with

- Persevere!

 What this module will cover

- Revision : What does a parallel computer look like

- Different programming models and how to think about them

- What is needed for best performance

An Introduction to Parallel Programming

Introduction

What do we see? - How do we see!?

An Introduction to Parallel Programming

What does a computer do?

An Introduction to Parallel Programming

Memory Memory

Processor

Program

 Make the processor go faster

- Give it a faster clock (more operations per second)

 Give the processor more ability

- For example – allow it to calculate a square root

 But…

- It gets very expensive to keep doing this

- Need to keep packing more onto a single silicon chip

 Need to make everything smaller

- Chips get increasingly complex

 Take longer to design and debug

- Difficult and very expensive for memory speed to keep up

- Produce more and more heat

An Introduction to Parallel Programming

How do we make it go faster? [1]

 Introduce multiple processors

 Advantages:

- “Many hands make light work”

- Each individual processor can be less powerful

 Which means it’s cheaper to buy and run (less power)

 Disadvantages

- “Too many cooks spoil the broth”

- One task – many processors

 We need to think about how to share the task amongst them

 We need to co-ordinate carefully

- We need a new way of writing our programs

An Introduction to Parallel Programming

How do we make it go faster? [2]

 Parallelisation is not a limitless way to infinite
performance!

 Algorithms and computer hardware give limits on
performance

 Amdahl’s Law

- Consider an algorithm (program!)

- Some parts of it (fraction “p”) can be run in parallel

- Some parts of it (fraction “s”) cannot be run in parallel

 Nature of the algorithm

 Hardware constraints (writing to a disk for example)

- Takes time “t” to run on a single processor

- On “n” processors it takes : T = s x t + (p x t)/n

An Introduction to Parallel Programming

Limits to parallel performance?

 T = s x t + (p x t)/n

- Looks simple, but “s” has devastating consquences!

 Consider the case as the number of processors “n”
grows large, then we get:

- T = s x t + [something small]

 So our performance is limited by the non-parallel part of
our algorithm

An Introduction to Parallel Programming

Consequences of Amdahl’s Law [1]

 For example, assume we can parallelise 99% of our
algorithm, which takes 100 seconds on 1 processor.

 On 10 processors we get : T[10]= 0.01*100 + (0.99*100)/10

- T[10]=1 + 9.9 = 10.9 seconds

- 9.2 times speedup : not too bad - we’re “wasting” 8%

 But on 100 processors we get :

- T[100] = 1 + 0.99 = 1.99 seconds

- 50 times speedup : not so good – we’re “wasting” 50%

 And on 1000 processors we get :

- T[1000] = 1 + 0.099 = 1.099 seconds = 90 times speedup : terrible!

 We’re “wasting” 91%!

An Introduction to Parallel Programming

Consequences of Amdahl’s Law [2]

 Decompose (split) into parts

- Algorithm (the program) [eg. Car production line]

or

- Data [eg. Telephone call centre]

 Distribute the parts

- Multiple processors work simultaneously

 Algorithmic Considerations (algorithm/ data
dependencies)

- Need to ensure the work is properly synchronised

- Possibly need to communicate between processors

 Hardware Considerations

- What parallel architecture (hardware) are we using?

An Introduction to Parallel Programming

How do we program a parallel computer?

 Parallel programming technique will reflect the
architecture

An Introduction to Parallel Programming

Parallel architectures (revision)

M

P

M

P

M

P

M

P

Network

Distributed Memory

M

P P P P

Shared Memory

Shared memory programming

An Introduction to Parallel Programming

 Split (decompose) the computation

- “Functional parallelism”

 Each thread works on a subset of
the computation

 No communication

- Implicit through common memory

 Advantages

- Easier to program

 no communications

 no need to decompose data

 Disadvantages

- Memory contention?

- How do we split an algorithm?

M

P P P P

Each processor runs a

single “thread”

A simple program

An Introduction to Parallel Programming

INTEGER, PARAMETER :: SIZE=100

REAL, DIMENSION (SIZE) :: A,B,C,D,E,F

INTEGER :: i

! Read arrays A,B,C,D from a disk

CALL READ_DATA (A , B , C , D , 100)

! Calculate E=A+B

DO i = 1 , SIZE

E(i) = A(i) + B(i)

ENDDO

! Calculate F=C*D

DO i = 1 , SIZE

F(i) = C(i) * D(i)

ENDDO

! Write results

CALL WRITE_DATA(E , F , 100)

We’ll ignore this for

now…

 Split the function across the threads

- In the example we have two functions:
E=A+B and F=C*D

- But we have 4 processors (threads) – two would be idle

 So what we do is split the computation of each loop
between the threads

 We need some new syntax to tell the compiler/computer
what we want it to do

- OpenMP – compiler directive

- For now we’ll just use some descriptive text

 We don’t really care which processor/thread does which
computations

- The shared memory means that each processor/thread can read/write to
any array element

An Introduction to Parallel Programming

A shared memory approach

Shared memory program

An Introduction to Parallel Programming

INTEGER, PARAMETER :: SIZE=100

REAL, DIMENSION (SIZE) :: A,B,C,D,E,F

INTEGER :: i

! Read arrays A,B,C,D from a disk

CALL READ_DATA (A , B , C , D , 100)

! Calculate E=A+B and F=C*D

! (Merged loops to fit onto slide!)

! OpenMP : Distribute loop over NPROC threads

! OpenMP : Private variables : i

DO i = 1 , SIZE

E(i) = A(i) + B(i)

F(i) = C(i) * D(i)

ENDDO

! Write results

CALL WRITE_DATA(E , F , 100)

This is easy on a

shared memory

machine as all

threads can

read/write to the

whole of each

array

 Usually before a loop

 Tells the computer

- How many threads to split the iterations of the loop between

- Any variables which are “private” (default is that variables are

“shared”)

 “private” – each thread has an independent version of the

variable

 “shared” – all threads can read/write the same variable

 The loop index must be private - each thread must have its

own independent loop index so that it can keep track of what

it’s doing

- Optionally some tips on how to split the iterations of the loop

between threads

An Introduction to Parallel Programming

Directives

 The program runs on a single processor P1 – as a single
thread.

 Until…

- It meets an OpenMP directive (typically before a loop)

- This starts up the other processors (P2,P3,P4) – each running a

single “thread”

 Each thread takes a “chunk” of computations

 This is repeated until all the computations are done

- When the loop is finished (ENDDO) all the other processors

(P2,P3,P4) go back to sleep, and execution continues on a single

thread running on processor P1

An Introduction to Parallel Programming

How to think about it

 Identify parts of the algorithm (typically loops) which can
be split (parallelised) between processors

 Possibly rewrite algorithm to allow it to be (more
efficiently) parallelised

- In our example we merged two loops – this can be more efficient

than starting up all the parallel threads multiple times

 For a given loop, identify any “private” variables

- eg. Loop index, partial sum etc.

 Insert a directive telling the computer how to split the
loop between processors

An Introduction to Parallel Programming

How to do it

 Split (decompose) the data

- “Data Parallelism”

 Each processor/task works on
a subset of the data

 Processors communicate over
the network

 Advantages

- Easily scalable (assuming a good

network)

 Disadvantages

- Need to think about how to split our

data

- Need to think about dependencies and

communications

An Introduction to Parallel Programming

Distributed memory programming

M

P

M

P

M

P

M

P

Network

Each processor runs a

single “task”

 Split (decompose) the data between the tasks

 We’ll need to do something clever for input/output of the
data

- We’ll ignore this for now

 Each task will compute its share of the full data set

- Shouldn’t be any problem with load balance (if we decompose the

data well)

 Computation is easy in this example

- No dependencies between different elements of the arrays

- If we had expressions like
A(i)=B(i-1)+B(i+1)

we would need to be a bit more clever…

An Introduction to Parallel Programming

A distributed memory approach [1]

 Split the data between processors

- Each processor will now have 25 (100 / 4) elements per array

- REAL, DIMENSION (SIZE/4) :: A,B,C,D,E,F

 Processor 1

- A(1) .. A(25) corresponds to
A(1) .. A(25) in the original (single processor code)

 Processor 2

- A(1) .. A(25) corresponds to
A(26) .. A(50) in the original (single processor code)

 Processor 3

- A(1) .. A(25) corresponds to
A(51) .. A(75) in the original (single processor code)

 Processor 4

- A(1) .. A(25) corresponds to
A(76) .. A(100) in the original (single processor code)

An Introduction to Parallel Programming

A distributed memory approach [2]

Distributed memory data mapping (array “A”)

An Introduction to Parallel Programming

A(1:100)

A(1:25)

A(1:25)

A(1:25)

A(1:25)

P1

P2

P3

P4

1

1

1

1

1

25

25

25

25

25

26 50 51 75 76 100

Distributed memory program

An Introduction to Parallel Programming

INTEGER, PARAMETER :: NPROC=4

INTEGER, PARAMETER :: SIZE=100/NPROC

REAL, DIMENSION (SIZE) :: A,B,C,D,E,F

INTEGER :: i

! Read arrays A,B,C,D from a disk

CALL READ_DATA (A , B , C , D , 100)

! Calculate E=A+B

DO i = 1 , SIZE

E(i) = A(i) + B(i)

ENDDO

! Calculate F=C*D

DO i = 1 , SIZE

F(i) = C(i) * D(i)

ENDDO

! Write results

CALL WRITE_DATA(E , F , 100)

We’ll ignore this for now

…

But it is very important

and will need attention!

 Each task runs its own copy of the program

 Each task’s data is private to it

 Each task operates on a subset of the data

 Sometimes there are dependencies between data on
different tasks

- Tasks must explicitly communicate with one another

- Message Passing key concepts

 One task sends a message to one or more other tasks

 These tasks receive the message

 Synchronisation : All (or subset of) tasks wait until they have

all reached a certain point

An Introduction to Parallel Programming

How to think about it

 Think about how to split (decompose) the data

- Minimize dependencies (which array dimension should we decompose?)

- Equal load balance (size of data and/or computation required)

- May need different decompositions in different parts of the code

 Add code to distribute input data across tasks

- And to collect when writing out

 Watch out for end cases / edge conditions

- For example code which implements a wrap-around at the boundaries

- First/Last item in a loop isn’t necessarily the real “edge” of the data on
every task

- Maybe some extra logic required to check

 Identify data dependencies

- Communicate data accordingly

- Add code to transpose data if changing decomposition

An Introduction to Parallel Programming

How to do it

Decomposing Data [1]

An Introduction to Parallel Programming

i

j

1 2 3 4 5 6 7 8 9 10 11 12

1

2

3

4

REAL, DIMENSION (12,4) :: OLD,NEW

DO j=1,4

DO i=2,11

NEW(i,j)=0.5*(OLD(i-1,j)+OLD(i+1,j))

ENDDO

ENDDO

 Let’s think about decomposing the “i” dimension

 How do we calculate element (3,1) – on P1?

- We need element (2,1) which is on P1 – OK

- And element (4,1) which is on P2 – Oh!

 So we need to do some message passing

An Introduction to Parallel Programming

Decomposing Data [2]

i

j

1 2 3 4 5 6 7 8 9 10 11 12

1

2

3

4

P1 P2 P3 P4

NEW(i,j)=0.5*(OLD(i-1,j)+OLD(i+1,j))

Decomposing Data [3]

An Introduction to Parallel Programming

 Let’s think about decomposing the “j” dimension

 Now no communication is needed

- This is a much better decomposition for this problem

 Not so easy in real life!

- Real codes often have dependencies in all dimensions

- Minimize communication or transpose

i

j

1 2 3 4 5 6 7 8 9 10 11 12

1

2

3

4

P1

NEW(i,j)=0.5*(OLD(i-1,j)+OLD(i+1,j))

P2

P3

P4

 Many (most!) HPC systems combine architectures

- A node is often a shared memory computer with a number of

processors and a single shared memory

- Memory is distributed between nodes

 Shared memory programming on a node

 Distributed memory programming between nodes

An Introduction to Parallel Programming

Shared & Distributed Memory programs

M

P P P P

M

P P P P

M

P P P P

M

P P P P

Network

 Aim to have an equal computational load on each
processor

- Some processors sit idle waiting for others to complete some

work

- Maximum efficiency is gained when all processors are working

An Introduction to Parallel Programming

Load Balancing

P1

P2

P3

P4

Work

Work

Work

Work

time

s
y
n
c
h
r
o
n
i
s
a
t
i
o
n

Idle/Waste

Idle/Waste

Idle

 Different sized data on different processors

- Array dimensions and NPROC mean it’s impossible to

decompose data equally between processors

 Change dimensions, or collapse loop:

A(13,7) -> A(13*7)

- Regular geographical decomposition may not have equal work

points (eg. land/sea not uniformly distributed around globe)

 Different decompositions required

 Different load for different data points

- Physical parameterisations such as convection, short wave

radiation

An Introduction to Parallel Programming

Causes of Load Imbalance

 Transpose data

- Change decomposition so as to minimize load imbalance

- Good solution if we can predict load per point (eg. land/sea)

 Implement a master/slave solution

- If we don’t know the load per point

An Introduction to Parallel Programming

Improving Load Balance : Distributed Memory

IF (L_MASTER) THEN

DO chunk=1,nchunks

Wait for message from a slave

Send DATA(offset(chunk)) to that slave

ENDDO

Send “Finished” message to all slaves

ELSEIF (L_SLAVE) THEN

Send message to MASTER to say I’m ready to start

WHILE (“Finished” message not received) DO

Receive DATA(chunk_size) from MASTER processor

Compute DATA

Send DATA back to MASTER

ENDWHILE

ENDIF

 Generally much easier

 In IFS we add an extra “artificial” dimension to arrays

- Allows arrays to be easily handled using OpenMP

 So we write loops like this:

 Make NCHUNKS >> NPROC

- Load balancing will happen automatically

 Other performance benefits by tuning inner loop size

An Introduction to Parallel Programming

Improving Load Balance : Shared memory

REAL, DIMENSION (SIZE/NCHUNKS,NCHUNKS) :: A,B

! OpenMP : Distribute loop over NPROC (NPROC<=NCHUNKS) processors

! OpenMP : Private variables : chunk,i

DO chunk=1,NCHUNKS

DO i=1,SIZE/NCHUNKS

B(i,chunk)=Some_Complicated_Function(A(I,chunk))

ENDDO

ENDDO

 The ratio between computation and communication

 “Fine-grain” parallelism

- Small number of compute instructions between synchronisations

- Reduces the changes needed to your algorithm

- Can amplify load balance problems

- Gives a high communications overhead

- Eventually the communications time will swamp the computation time

- Gets worse as you increase NPROC or decrease problem size

 “Coarse-grain” parallelism

- Long computations between communications

- Probably requires changes to your algorithm

- May get “natural” load balancing with more work with different inherent
load balance

 Best granularity is a dependent on your algorithm and
hardware

 Generally “coarse-grain” improves scalability
An Introduction to Parallel Programming

Granularity

 Identify parts of the program that can be executed in parallel

 Requires a thorough understanding of the algorithm

 Exploit any inherent parallelism which may exist

 Expose parallelism by

- Re-ordering the algorithm

- Tweaking to remove dependencies

- Complete reformulation to a new more parallel algorithm

- Google is your friend!

 You’re unlikely to be the first person to try and parallelise a

given algorithm!

An Introduction to Parallel Programming

Steps to parallelisation (1)

 Decompose the program

- Probably a combination of

 Data parallelism (hard!) for distributed memory

 Functional parallelism (easier, hopefully!) for shared

memory

- If you’re likely to need more than a few 10’s of processors to run

your problem then a distributed memory solution will be required

 Shared memory parallelism can be added as a second step,

and can be added to individual parts of the algorithm in

stages

- Identify the key data structures and data dependencies and how

best to decompose them

An Introduction to Parallel Programming

Steps to parallelisation (2)

 Code development

- Parallelisation may be influenced by your machine’s architecture

 But try to have a flexible design – you won’t use this

machine for ever!

- Decompose key data structures

- Add new data structures to describe and control the

decomposition (eg. offsets, mapping to/from global data,

neighbour identification)

- Identify data dependencies and add the necessary

communications

 And finally, the fun bit : CAT & DOG

- Compile And Test

- Debug, Optimise and Google!

An Introduction to Parallel Programming

Steps to parallelisation (3)

 Which do you think is easier to understand?

- Distributed memory parallelism (message passing) or shared

memory parallelism

 Which do you think is easier is implement?

 Which do you think might be easier to debug?

- Can you imagine the kind of errors that you might make and how

you might be able to find them?

 Do you think one may be more scalable than the other?
Why?

 Why should we have to do all this work anyway. Why
can’t the compiler do it all for us?

COM INTRO: Interpolation © ECMWF 2015 38

Some questions to think about…

