
C O M P U T E | S T O R E | A N A L Y Z E

More on Application profiling
and optimization

18-Jan-16
1

C O M P U T E | S T O R E | A N A L Y Z E

Agenda

18-Jan-16
2

● Optimizing source code and controlling the compiler

● A Tour of the Apprentice2 GUI

● Optimizations for MPI – Rank Reordering

C O M P U T E | S T O R E | A N A L Y Z E

Doesn't the compiler do everything?

3

● Not yet...

● Standard answer, unchanged for last 50 or so years

● What does it do

● It tries to compile the loops in your application to be as fast as possible

● Performance depends on reducing memory use and using the best
machine instructions (vectorization)

● This means your code may be significantly transformed

● What can you do

● Work out what you care about (profile)

● Experiment with alternative source implementations but a lot of
expertise is needed here

● Give the compiler additional information

● Use compiler output to determine what it is doing and influence it via
directives

C O M P U T E | S T O R E | A N A L Y Z E

Loop optimisation techniques

18-Jan-16
4

● Most HPC codes are loop-based
● Repeatedly process all the elements of an array

● There are various optimization techniques for loops
● unrolling/unwinding

● stripmining

● blocking/tiling

● We are not going to explain HOW to do this manually but it
is useful to be aware of these even if you are not going to
optimise source

● In many cases, the compiler does these automatically
● the material here will help you understand what the compiler did

● if necessary, you can then step in to assist the compiler

C O M P U T E | S T O R E | A N A L Y Z E

EXAMPLE 1: Loop unrolling/unwinding

18-Jan-16
5

● Unrolling and unwinding are equivalent terms

● Replaces a loop by an equivalent set of statements
● Removes the overhead of loop control logic

● incrementing the loop index counter

● checking if the counter has exceeded the loop bounds

● Most important for small tripcount/low work loops
● Especially when nested inside other loops

● Full unwinding requires tripcount to be known at compile time

Original code After unwinding

do i=1,N
 a(i)=a(i) + b(i)
enddo

a(i) =a(i) + b(i)
a(i+1)=a(i+1) + b(i+1)
a(i+2)=a(i+2) + b(i+2)
:
a(N) =a(N) + b(N)

C O M P U T E | S T O R E | A N A L Y Z E

Example 2: Loop blocking/tiling

18-Jan-16
6

● Applied to multi-dimensional loopnests
● Two or more loops are stripmined

● Loop interchange moves the strip loops innermost

● Most often used to preserve memory locality

● (strictly, upper strip loop limits should be MIN(Nj,jb+16-1) and similar)

Original loopnest Equivalent explicit code

do j = 1,Nj
 do i = 1,Ni
 !stencil
 enddo
enddo

do jb = 1,Nj,16
 do ib = 1,Ni,16
 do j = jb,jb+16-1
 do i = ib,ib+16-1
 !stencil
 enddo
 enddo
 enddo
enddo

C O M P U T E | S T O R E | A N A L Y Z E

Control: Example blocking with Cray Directives

7

● CCE blocks well, but it sometimes blocks better with help

● (again, upper limits should be MIN(Nk,kb+16-1) and similar)

● Get the loopmark listing

● Identifies which loops were blocked
● Gives the block size the compiler chose

Original loopnest Loopnest with help Equivalent explicit code

do k = 1,Nk

 do j = 1,Nj
 do i = 1,Ni
 ! stencil
 enddo
 enddo
enddo

!DIR$ BLOCKABLE(j,k)
!dir$ BLOCKINGSIZE(16)
do k = 1,Nk
!dir$ BLOCKINGSIZE(20)
 do j = 1,Nj
 do i = 1,Ni
 ! stencil
 enddo
 enddo
enddo

do kb = 1,Nk,16
 do jb = 1,Nj,20
 do k = kb,kb+16-1
 do j = jb,jb+20-1
 do i = 6, nx-5
 ! stencil
 enddo
 enddo
 enddo
 enddo
enddo

C O M P U T E | S T O R E | A N A L Y Z E

Example 3: Loop interchange

● One of the simplest cache optimisations
● aim to access consecutive elements of arrays in order

● If multi-dimensional arrays addressed in wrong order
● causes a lot of cache misses = bad performance

● Order loops in loopnest with fastest innermost
● Fortran is column-major (LH array index moves fastest)

● C/C++ is row-major (RH array index moves fastest)

● Compiler may re-order loops automatically (see loopmark)

Original loopnest interchanged code

do i = 1,N
 do j = 1,N
 tot = tot + a(i,j)
 enddo
enddo

do j = 1,N
 do i = 1,N
 tot = tot + a(i,j)
 enddo
enddo

8

C O M P U T E | S T O R E | A N A L Y Z E

Optimization for memory access, huge pages

18-Jan-16
9

● Various loop transformations we have seen
● Help with memory access order

● This makes more efficient use of cache
● Use as much cache as possible

● Reuse data when it is in cache

● There is a level beyond cache size to consider

● We have virtual memory pages which map to physical
pages

● The OS keeps track of this in hardware (TLB) and software

● As a result we should try to reuse memory within a page

C O M P U T E | S T O R E | A N A L Y Z E

Using hugepages

● Load chosen craype-hugepages* module
● See module avail craype-hugepages for list of available options

● Compile as before
● Execute as before, but

● Make sure this module is also loaded in PBS jobscript
● It sets various environment variables

● Which pagesize is best?

● You should try different settings
● 2M or 8M are usually most successful on Cray XC systems

● Quick cheat:
● no need to rebuild to try a different pagesize
● can load different hugepages module at runtime

● compared to that used at compile-time

● compile-time module enables hugepages in the application
● runtime module determines the actual size that is used

● See man intro_hugepages for more details

C O M P U T E | S T O R E | A N A L Y Z E

Vectorisation

18-Jan-16
11

● The most important optimization is for memory access

● Then we can think of optimising computation

● This will be in loops

● Usually only one loop is vectorisable in loopnest

● And most compilers (not CCE) only consider inner loop

● Optimising compilers will use vector instructions

● Relies on code being vectorisable

● Or in a form that the compiler can convert to be vectorisable

● Some compilers are better at this than others

● Check the compiler output listing and/or assembler listing

● Look for packed SSE/AVX instructions

C O M P U T E | S T O R E | A N A L Y Z E

Helping vectorisation

12

● Is there a good reason for this?
● There is an overhead in setting up vectorisation; maybe it's not worth it

● Could you unroll inner (or outer) loop to provide more work?

● Does the loop have dependencies?
● information carried between iterations

● e.g. counter: total = total + a(i)

● If there are no loop dependencies:
● Tell the compiler that it is safe to vectorise

● IVDEP directive above loop (CCE, but works with most compilers)

● C99: restrict keyword (or compile with -hrestrict=a with CCE)

● Perhaps the dependencies are between iterations i and i+8
● Then it is safe to vectorise with vectors of length 8 or less

● Use directive: IVDEP SAFEVL=8

● see man ivdep for more details

C O M P U T E | S T O R E | A N A L Y Z E

Inhibitors to vectorisation

18-Jan-16
13

● Ioop dependencies:
● The loop cannot be executed in any order

● Might be hard to rewrite code to fix this

● Code is not a loop (do while)

● Indirect addressing

● Non-vectorisable functions

● Unknown loop trip count

● Function calls in loop need to be inlined

● Check the compiler output to see what it did
● CCE: -hlist=a

● Intel: -vec-report[0..5]
● GNU: -ftree-vectorizer-verbose=5

C O M P U T E | S T O R E | A N A L Y Z E

CCE directives

18-Jan-16
15

C O M P U T E | S T O R E | A N A L Y Z E

Some useful CCE directives

18-Jan-16
16

● Compiler directives avoid the need for explicit coding
● They are compiler-specific but should be ignored as comments by:

● other compilers

● the same compiler, if overridden by compiler options

● CCE has a large set of optimisation directives
● Fortran: !DIR$ <directive>
● C/C++: #pragma _CRI <directive>

● _CRI optional; include it so compiler warns about unrecognised directives

● Some useful ones are listed on the next few slides

● For more information:
● man directives

● man <directive name>
● Fortran, C/C++ Reference Manuals on docs.cray.com

http://docs.cray.com/books/S-3901-83/S-3901-83.pdf
http://docs.cray.com/books/S-3901-83/S-3901-83.pdf
http://docs.cray.com/books/S-2179-83/S-2179-83.pdf
http://docs.cray.com/

C O M P U T E | S T O R E | A N A L Y Z E

Selected CCE scalar optimisation directives

18-Jan-16
17

● INTERCHANGE (i,j...), NOINTERCHANGE
● Specified loops should be interchanged, e.g. (i,j,k) -> (k,j,i)

● NOINTERCHANGE directive suppresses loop interchange

● UNROLL [n], NOUNROLL
● Specify unrolling of next loop, with optional unroll factor

● BLOCKABLE (i,j...)
● Specified loops can be blocked

● NOBLOCKING directive prevents blocking

● BLOCKINGSIZE (n)
● Apply blocking factor n to next loop

● Use separate BLOCKINGSIZE directives for each loop to be blocked

● FUSION, NOFUSION, NOFISSION
● Control loop fusion and fission of specified loop

C O M P U T E | S T O R E | A N A L Y Z E

Selected CCE vectorisation directives (1)

18-Jan-16
18

● IVDEP
● Ignore dependencies in the next loop that might inhibit vectorisation

● NEXTSCALAR
● Do not vectorise the next loop

● PREFERVECTOR
● If more than one loop in nest can be vectorised, indicates preference

● Has the same effect as VECTOR ALWAYS directive

● NOVECTOR
● Disable vectorisation for rest of program unit;

● reset behaviour with VECTOR directive

C O M P U T E | S T O R E | A N A L Y Z E

Selected CCE vectorisation directives (2)

18-Jan-16
19

● LOOP_INFO [min_trips(c)] [est_trips(c)] [max_trips(c)]
● Provide information on min/mean/max tripcounts for loop

● PROBABILITY
● Indicate probability of a conditional being true

● May suggest compiler uses gather/scatter methods to vectorise loop

● PERMUTATION
● The specified integer array does not have repeated values

● Useful for index array used in indirect addressing

● CONCURRENT
● Stronger than IVDEP

● IVDEP says loop iterations independent in current order

● CONCURRENT says independent in any order

● Both CONCURRENT and IVDEP should allow (possible) vectorisation

C O M P U T E | S T O R E | A N A L Y Z E

Concluding remarks

20

● Compilers are good at optimising code, but not perfect

● If you do nothing else with your code
● Make sure you address arrays in the "right" order

● Check the compiler feedback to see its not doing anything foolish

● To go further:
● Understand what the compiler does

● Look at the compiler feedback in more detail

● Use profiling and hardware counters to see if these optimisations work

● Help the compiler to understand your code

● Simpler code is usually a good place to start

● Use directives to give the compiler more information about your code

● Only start hand-coding optimisations as a last resort

● And remember to keep profiling your code
● optimise the things that take most time

C O M P U T E | S T O R E | A N A L Y Z E

A tour of the Apprentice2 GUI

18-Jan-16
21

C O M P U T E | S T O R E | A N A L Y Z E

The Three Stages of Profiling with perftools
and CrayPat

22

1. Instrumentation

● Build executable of an instrumented version of your application

2. Running your application and Data Collection

● Run the instrumented version of your application

● Transparent collection via CrayPat’s run-time library

3. Analysis: Sampling / Tracing

● Interpret and visualize data using post-mortem tools:

1. pat_report: a command line tool for generating text reports

2. Cray Apprentice2: a graphical performance analysis tool

3. Reveal: graphical performance analysis and code restructuring tool

C O M P U T E | S T O R E | A N A L Y Z E

Profile Visualization with
Cray Apprentice2

C O M P U T E | S T O R E | A N A L Y Z E

Cray Apprentice2

● Features:
● Call graph profile

● Communication statistics

● Time-line view
● Communication

● I/O

● Activity view

● Pair-wise communication
statistics

● Text reports

● Source code mapping

● Helps identify:
● Load imbalance

● Excessive communication

● Network contention

● Excessive serialization

● I/O Problems

24

C O M P U T E | S T O R E | A N A L Y Z E

To use Cray Apprentice2

25

● You can run app2 on the login nodes:
● You need an X session

● ssh -X <system name>

● and software to catch X windows on your local machine

● You need app2 in your path
● module load perftools-base

● The *.ap2 file contains the information (produced by pat_report)
● app2 data_file_name.ap2
● or you can load the ap2 file from the GUI

● There is also a client version of app2
● You can run this on your local machine

● Contact your site administrator for details on how to install this

● Then just need to copy the *.ap2 file to this machine

C O M P U T E | S T O R E | A N A L Y Z E

Cray Apprentice2

.
27

C O M P U T E | S T O R E | A N A L Y Z E

Statistics Overview: Pie Chart

28

2
1

5

6

1. Data tab: shows the name
of the data file currently
displayed

2. Report toolbar: show the
reports that can be
displayed for the data
currently selected

3. Report tabs: show the
reports

4. On many reports, the total
duration of the experiment
is shown as a graduated
bar at the bottom of the
window

5. Change view from pie
chart to bar graph

6. Help menu

Note that report toolbar ONLY

what you have decide to collected

with pat_build

C O M P U T E | S T O R E | A N A L Y Z E

Statistics Overview: Bar Graph

29

C O M P U T E | S T O R E | A N A L Y Z E

Function Profile View

30

C O M P U T E | S T O R E | A N A L Y Z E

Load Balance View (Aggregated from Overview)

31

Min Max Avg

±1 𝑠𝑡𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛

By clicking on a give function, we can show the breakdown per each PE

Function

C O M P U T E | S T O R E | A N A L Y Z E

Call Tree View

.
32

Function

List

Load balance overview:

Height Max time

Middle bar Average

time

Lower bar Min time

Yellow represents

imbalance time

Zoom

Height exclusive time

Width inclusive time

DUH Button:

Provides hints

for performance

tuning

Filtered

nodes or

sub tree

C O M P U T E | S T O R E | A N A L Y Z E

Call Tree View – Function List

33

Function

List off

Right mouse click:

Node menu

e.g., hide/unhide

children

Sort options

% Time,

Time,

Imbalance %

Imbalance time

Right mouse click:

View menu:

e.g., Filter

C O M P U T E | S T O R E | A N A L Y Z E

Call Tree Visualization

34

C O M P U T E | S T O R E | A N A L Y Z E

Discrete Unit of Help (DUH Button)

35

C O M P U T E | S T O R E | A N A L Y Z E

Source Mapping from Call Graph view

36

C O M P U T E | S T O R E | A N A L Y Z E

pat_report Tables in Cray Apprentice2

37

● Complementary performance data available in one place

● Most reports easily accessible

● using drop-down menu for easy navigation

● Can easily generate new views of performance data

● Provides mechanism for more in depth explanation of data

presented

C O M P U T E | S T O R E | A N A L Y Z E

Example of pat_report Tables in Cray
Apprentice2

38

New text

table icon

Right click

for table

generation

options

C O M P U T E | S T O R E | A N A L Y Z E

Generating New pat_report Tables

39

C O M P U T E | S T O R E | A N A L Y Z E

Reduce ap2 file information

40

● Sometimes the amount of data in ap2 file can be large
● Very long-running applications

● Applications running on a large number of PEs

● The app2 command supports two options to help
● --limit and --limit_per_pe
● Restrict the amount of data being read in from the ap2 file

● use K, M, and G abbreviations for kilo, mega, and giga

● --limit sets a global limit on data size.

● --limit_per_pe sets limit per PE
● --limit_per_pe generally preferable (not always, but generally)

● preserves full parallism in analysis

● Example: first 3M data items
● app2 --limit 3M data_file_name.ap2 &

C O M P U T E | S T O R E | A N A L Y Z E

Timeline views with Cray Apprentice2

C O M P U T E | S T O R E | A N A L Y Z E

Tracing

42

● Show tracing results (Time Live View)
● Information broken out by communication type (read, write, barrier,

and so on)

● Only true function calls can be traced
● Functions that are inlined by the compiler or that have local scope in a

compilation unit cannot be traced

● Enabled with pat_build –g, -u, -T or –w options

● Full trace (sequence of events) enabled by setting
Pat_RT_SUMMARY=0

C O M P U T E | S T O R E | A N A L Y Z E

Time Line View (Sweep3D)

43

C O M P U T E | S T O R E | A N A L Y Z E

Time Line View (Zoom)

44

User Functions, MPI

& SHMEM Line

I/O Line

C O M P U T E | S T O R E | A N A L Y Z E

Time Line View (Fine Grain Zoom)

45

C O M P U T E | S T O R E | A N A L Y Z E

Other Cray Apprentice2 Reports

46

● Environment reports
● Provide general information about the conditions under which

the data file currently being examined was created

● Traffic Report
● shows internal PE-to-PE traffic over time. T

● information is broken down by comm. type (read, write, barrier etc.)

● I/O Rates Report
● table listing quantitative information about program's I/O usage.

● look for I/O activities that have low average rates and high data volumes;
● this may indicate that the file should be moved to a different file system.

● Hardware reports
● Available only if hardware counter information was captured

● Full description at: http://docs.cray.com/books/S-2376-
63/S-2376-63.pdf

http://docs.cray.com/books/S-2376-63/S-2376-63.pdf
http://docs.cray.com/books/S-2376-63/S-2376-63.pdf
http://docs.cray.com/books/S-2376-63/S-2376-63.pdf
http://docs.cray.com/books/S-2376-63/S-2376-63.pdf
http://docs.cray.com/books/S-2376-63/S-2376-63.pdf
http://docs.cray.com/books/S-2376-63/S-2376-63.pdf
http://docs.cray.com/books/S-2376-63/S-2376-63.pdf
http://docs.cray.com/books/S-2376-63/S-2376-63.pdf
http://docs.cray.com/books/S-2376-63/S-2376-63.pdf
http://docs.cray.com/books/S-2376-63/S-2376-63.pdf

C O M P U T E | S T O R E | A N A L Y Z E

Compiler feedback and variable
scoping with

Reveal

C O M P U T E | S T O R E | A N A L Y Z E

● For an OpenMP port a developer has to understand the

scoping of the variables, i.e. whether variables are shared

or private.

● Reveal is Cray’s next-generation integrated performance

analysis and code optimization tool.

● Source code navigation using whole program analysis (data provided

by the Cray compilation environment.)

● Coupling with performance data collected during execution by

CrayPAT. Understand which high level serial loops could benefit from

parallelism.

● Enhanced loop mark listing functionality.

● Dependency information for targeted loops

● Assist users optimize code by providing

 variable scoping feedback and suggested

 compile directives.

49

Reveal

C O M P U T E | S T O R E | A N A L Y Z E

Input to Reveal

50

● You can omit the *.ap2 and inspect only compiler feedback.

● Note that the profile_generate option disables most automatic
compiler optimizations, which is why Cray recommends generating this
data separately from generating the program_library file.

$> module load perftools
$> ftn -O3 -hpl=my_program.pl -c my_program_file1.f90
$> ftn -O3 -hpl=my_program.pl -c my_program_file1.f90
$> reveal my_program.pl my_program.ap2 &

● Recompile to generate program library

● Performance data from a separate loop timing trace experiment

● Launch Reveal

C O M P U T E | S T O R E | A N A L Y Z E

Visualize CCE’s Loopmark with Performance Profile

Performance

feedback

Loopmark and optimization

annotations

Compiler feedback

51

C O M P U T E | S T O R E | A N A L Y Z E
52

Visualize CCE’s Loopmark with Performance
Profile (2)

Integrated

message

‘explain support’

Integrated

message

‘explain support’

C O M P U T E | S T O R E | A N A L Y Z E

View Pseudo Code for Inlined Functions

53

Inlined call

sites marked

Expand to

see pseudo

code

C O M P U T E | S T O R E | A N A L Y Z E

Scoping Assistance – Review Scoping Results

User addresses

parallelization

issues for

unresolved

variables

Loops with

scoping

information are

highlighted – red

needs user

assistance

Parallelization inhibitor

messages are provided to

assist user with analysis

54

C O M P U T E | S T O R E | A N A L Y Z E

Scoping Assistance – User Resolves Issues

Click on variable to

view all

occurrences in loop Use Reveal’s

OpenMP

parallelization tips

55

C O M P U T E | S T O R E | A N A L Y Z E

Scoping Assistance – Generate Directive

Automatically

generate

OpenMP

directive

Reveal generates

example OpenMP

directive

56

C O M P U T E | S T O R E | A N A L Y Z E

Optimisations for MPI

65

C O M P U T E | S T O R E | A N A L Y Z E

Rank Reordering

18-Jan-16
66

● Sometimes an MPI application is not well balanced

● The MPI library can reorder the ranks at runtime based on
the setting of MPICH_RANK_REORDER_METHOD

C O M P U T E | S T O R E | A N A L Y Z E

Rank Placement

● Start with a list of nodes to run on

● 0: Round-robin placement
● Sequential ranks are allocated one per node in sequence
● Placement starts again on first node if we reach the last node

● 1: SMP-style placement (default)
● Sequential ranks fill up each node in turn
● Only then move on to the next node

● 2: Folded rank placement
● Similar to round-robin placement
● except each pass over node list is in the opposite direction

● 3: Custom ordering
● The location of each rank in turn is specified in a list

● Examples of these are shown on the next slide
● For a simplified example of four cores per node

67

C O M P U T E | S T O R E | A N A L Y Z E

0: Round Robin Placement

Node 0

0 12

24 36

Node 1

1 13

25 37

Node 2

2 14

26 38

Node 3

3 15

27 39

Node 4

4 16

28 40

Node 5

5 17

29 41

Node 6

6 18

30 42

Node 7

7 19

31 43

Node 8

8 20

32 44

Node 9

9 21

33 45

Node 10

10 22

34 46

Node 11

11 23

35 47

68

C O M P U T E | S T O R E | A N A L Y Z E

Node 7

Node 8 Node 9 Node 10 Node 11

Node 6

Node 3

1: SMP Placement (default)

Node 0

0 12

24

36

Node 1

1

13

25

37

Node 2

2

14

26

38

3 15

27

39

Node 4

4

16 28

40

Node 5

5

17 29

41

6

18 30

42

7

19 31

43

8

20

32 44

9

21

33 45

10

22

34 46

11

23

35 47

69

C O M P U T E | S T O R E | A N A L Y Z E

Node 10 Node 11

2: Folded Placement

Node 0

0

12

24

Node 1

1

13

25

Node 2

2

26

Node 3

3

27

Node 4

4

28

Node 5

5

29

Node 6

6

30

Node 7

7

31

Node 8

8

32

Node 9

9

33

10

34

11

35

14 15

36

16

40

17 18

42

20 21 22

41

44 45 46

23

47

37 38 39

19

43

70

C O M P U T E | S T O R E | A N A L Y Z E

3: Custom Example

● MPICH_RANK_REORDER=3 enables this

● Ordering comes from file MPICH_RANK_ORDER
● comma separated ordered list

● can optionally be condensed into hyphenated ranges

● all ranks should be included in the list once and only once

● Nodes are filled up SMP-style
● but not with sequential rank numbers

● instead, take ranks sequentially from the MPICH_RANK_ORDER list

Node 3 Node 0

0 10

Node 1

1

14

Node 2

4

11

5 15

2 3

6 7

8 9

12 13

MPICH_RANK_ORDER: 0,1,4,5,2,3,6,7,8,9,12,13,10,11,14,15

MPICH_RANK_ORDER: 0,1,4,5,2,3,6-9,12,13,10,11,14,15

71

C O M P U T E | S T O R E | A N A L Y Z E

Rank placement with CrayPat

72

MPI grid detection:

 There appears to be point-to-point MPI communication in a 20 X 16

 grid pattern. The 27.5% of the total execution time spent in MPI

 functions might be reduced with a rank order that maximizes

 communication between ranks on the same node. The effect of several

 rank orders is estimated below.

 A file named MPICH_RANK_ORDER.Grid was generated along with this

 report and contains usage instructions and the Custom rank order

 from the following table.

 Rank On-Node On-Node MPICH_RANK_REORDER_METHOD

 Order Bytes/PE Bytes/PE%

 of Total

 Bytes/PE

 Custom 8.092e+09 75.00% 3

 SMP 4.580e+09 42.45% 1

 Fold 2.290e+08 2.12% 2

 RoundRobin 0.000e+00 0.00% 0

When testing this the time went only

down to 348 from 360 seconds, but

approach might become important

when scaling higher

C O M P U T E | S T O R E | A N A L Y Z E

Further information from CrayPat

Metric-Based Rank Order:

 When the use of a shared resource like memory bandwidth is

 unbalanced across nodes, total execution time may be reduced

 with a rank order that improves the balance. The metric used

 here for resource usage is: USER Time

 For each node, the metric values for the ranks on that node

 are summed. The maximum and average value of those sums are

 shown below for both the current rank order and a Custom rank

 order that seeks to reduce the maximum value.

 A file named MPICH_RANK_ORDER.USER_Time was generated

 along with this report and contains usage instructions and the

 Custom rank order from the following table.

 Rank Maximum Average Max:Ave Reduction in Max

 Order Value Value Ratio

 Custom 3.491e+03 3.393e+03 1.03 8.77%

 Current 3.827e+03 3.393e+03 1.13

73

C O M P U T E | S T O R E | A N A L Y Z E

Rank reordering

● Easy to experiment with
● defaults at least should be tested with every application…

● CrayPat can help generate the reorder file

● When might rank reordering be useful?
● If point-to-point communication consumes a significant fraction of

program time and a load imbalance detected
● e.g. for nearest-neighbour exchanges (see next slide)

● Also shown to help for collectives (alltoall) on subcommunicators

● Spread out I/O servers across nodes

● If there is a good use case for exploiting the Intel hyperthreads

● Have used this for I/O servers (NEMO) and
radiation colocation (IFS)

74

