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Can SMOS improve the weather
forecast?
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» Background & context,
» ECMWF soil moisture analysis,

» New soil moisture product based on the assimilation of screen
level variables and SMOS Tz > SMOS-DA-v1.0,

» Validation, Impact on the forecast skill and diagnostics,

> Conclusions
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- Mission objective provide global measurements of two
key variables in the water cycle: soil moisture and ocean
salinity.

- L-band mission (2D interferometric radiometer); transparent to clouds, large
penetration depth, less sensitive to vegetation canopy and soil roughness,.

- Objectives at ECMWEF:
> Global monitoring of T at the satellite antenna reference frame, in NRT

> Assimilation of SMOS Ty over continental surfaces & investigate the
meteorological impact of SMOS data assimilation

Introducing new observations is an efficient way to improve the forecast/analysis
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»> How do we measure an improvement (or degradation) of the weather forecast?
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»> How do we measure an improvement (or degradation) of the weather forecast?

VS.

> Necessity of defining:

- “Target” variable
¢ atmospheric variables (pressure, temperature, wind speed, etc.)
¢ land-variables (soil moisture, soil temperature, snow, etc.)
¢ ocean variables (SST, ocean salinity, etc.)

= Validation metrics; R, RMSD, STD, persistence, etc.

= Independent data used as “true” or reference;

¢ in-situ observations, remote sensed data, climatology, reanalysis ECMWF—w



Simplified Extended Kalman Filter
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1. Initial state estimate at k=0:
Mean state x-,
Covariance P-,

2. Calculate Kalman gain:
Ky = P H'y [HPH'x + R,]

3. Update the state estimate:
X' =x7 + K [y, — Hx ]
P* =P — KH P~

4. Propagate state estimate in time:
Xsq = Fil(X%)
Pt = M(PYMT, * Q

ECMWF implementation (Drusch et al. 2009, de Rosnay et al. 2012):
P and R diagonal and static (o, = 0.01 m3m=; 0 =2 K ; 0,4 = 10%),
H = [H(x" + dx") — H(x")] / dx" with 8x" = 0.01 m3m= and n=3;

Introduction of SMOS data in the soil moisture analysis (Mufioz-Sabater et al., 2012)
SMOS Tj introduced in R (o1g; == rad_acc (TB ))
H calibrated for SMOS (dx" [0.005, 0.01] m3m3, H- ., = H max =250 K/m3m-3)
Point wise CDF matching as bias correction prior to assimilation.




CDF-matching - matches mean and variance of two distributions

T5(BC) = A* T;SMOS + B

A= Ocmem/Osmos
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CDF-matching - matches mean and variance of two distributions

T5(BC) = A* T;SMOS + B

A= Ocmem/Osmos

40YY - before BC 40YY - after BC
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Assimilation of SMOS Ty in the antenna reference frame at
global scale (SEKF)

> Period: 1 May 2010 O0OUTC — 31 October 2012 12UTC analysis
» Resolution: T511 (~40 km)

» Observations:
- NRT brightness temperatures (Reprocessed dataset 2010-2011),
- 30, 40, 50 degrees = ATg=0.5K
- XX & YY polarisations
- Only AF-FOV
- RFI flag used (BUFR info flag, bit-1)
- Bias corrected using a point-wise CDF matching

» CMEM configuration; best for R (Wang(DIEL), Wsimple(RGH),
Wigneron(VEG))

» Jacobians calibrated (A8j=0.01m3m-3, H- ., = H".x =250 K/m3m3)
» STD of observations error - radiometric accuracy

»Full observational system used for the atmosphere,

 CTRL: assimilation of T2m RH2m
» SMOS-DA-v1.0: assimilation of T>™, RH?>™ + SMOS T; CDF

Month 05 2011 - difference accumulated increments (0-7 cm) (mm)
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24h forecast T2™ bias , 0OUTC
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Robust, location and time dependent T2m
bias (verification against own analysis)
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Month 07 2011 - difference accumulated increments (0-7 cm) (mm)
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Winter 2010-11 (Dec, Jan, Feb)
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> “Truth”: 6h accumulated precipitation | [ I —

) Improvement -€- —i - > Degradation
from radar observations of the NEXRAD oS TS
network,

» Target variable: fg-departure fc error;
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largest improvements in forecasted L ;’*“‘iﬂgh_’ _
precipitation (for the period 00-06h), Rt

coincide with two isolated convective
cumulus of precipitation.

Impact of the fc precipitation
limited to the first 12h fc.

WEWN BOSW REWW DO 11EW M0 DEWW DOMAN BERW N B B TEAN T B R BN



- New CTESSEL provides a vegetation-interactive formulation - coupling water-carbon cycles

.<0;CO,uptake 1| | Climate forcings:
NEE = R,_, — GPP — - Ruwo > f(SM,T)
- >0 ; CO, emission . GPP > f(SM, T, Rad)

-100 -50 -40 -30 -20 -10 -1 1 10 20 30 40 50 100

| a(sm) > smos - cTRL | NEE > sMOs - cTRL

> High sensitivity to SMOS data assimilation in:

+ Summer of NH - increase of GPP at higher ratio than R.., (NEE becoming more negative) - Positive impact
because CTESSEL underestimates CO, sink in summer of NH,

» Sahel = Increase of soil moisture leads to increase in GPP during West African Monsoon,
* Rio de La Plata, Horn of Africa

» Other complex feedback, via Temperature and cloud/radiation, can interfere with soil moisture impact,

» Further evaluation with CO, observations required to confirm the positive impact in the carbon fluxes
estimation
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SMOS has shown very good sensitivity to sm variations - clear potential for NWP,

ECMWF has successfully incorporated SMOS data in the IFS (monitoring & assimilation),
ECMWEF soil moisture analysis based on an EKF; ready to assimilate SMOS data,

Production of a new SM product based on the assimilation of T?™, RH?™ and SMOS T,

l 2
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SMOS has shown very good sensitivity to sm variations - clear potential for NWP,

ECMWF has successfully incorporated SMOS data in the IFS (monitoring & assimilation),
ECMWEF soil moisture analysis based on an EKF; ready to assimilate SMOS data,

Production of a new SM product based on the assimilation of T?™, RH?™ and SMOS T,

o O 0O 0O O

Evidence of positive impact of SMOS in:
- Air temperature and humidity at 1000 and 850 hPa,
- Up to 7-8 days,
- In Europe, North America and NH, in summer of NH (J,J,A),
- In South Hemisphere in summer of SH (D,J,F),
- Low impact was found in spring and autumn - lower increments
0 The data assimilation system needs to be tuned:
- Over East of Asia (RFI quality control),
- South Hemisphere (lower impact compared to NH),
- Australia (less amount of data and lower soil moisture levels in general),

- Tropics (special regions and still high bias remaining)

0 Impact on the precipitation forecast at short term and in the carbon cycle.ECMWF_A
\ 4



0 Can SMOS improve the weather forecast?
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0 Can SMOS improve the weather forecast?

- There are clear signs of the potential of SMOS to improve the weather forecast, but...
- Only observations of best quality should be used,

- Greater chances of success will depend on the good use/tune of the assimilation system

0 Further work with the data assimilation system is needed,;
- Quality control of the observations (RFI screening in DA),
- Jacobians,

- Model errors treatment

0 Improved accuracy of L-band simulations through;
- Improved model physics,
- Improved climatic fields,

- Improved radiative transfer model
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Thanks for your attention !

contact: joaquin.munoz@ecmwf.int

Further information:

SMOS online monitoring in NRT:

ECMWF SMOS website:

ECMWF CMEM website:

l aa
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http://www.ecmwf.int/products/forecasts/d/charts/monitoring/satellite/smos/
http://www.ecmwf.int/products/forecasts/d/charts/monitoring/satellite/smos/
http://www.ecmwf.int/products/forecasts/d/charts/monitoring/satellite/smos/
http://www.ecmwf.int/research/ESA_projects/SMOS/index.html
http://www.ecmwf.int/research/ESA_projects/SMOS/index.html
http://www.ecmwf.int/research/ESA_projects/SMOS/index.html
http://www.ecmwf.int/research/data_assimilation/land_surface/cmem/cmem_index.html
http://www.ecmwf.int/research/data_assimilation/land_surface/cmem/cmem_index.html
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BUFR & ODB spaces: quality checks,
thinning, setup of SMOS monitoring and

CMEM configuration, creation of
internal database for SMOS, distribution
of observations per processor and time
slots, merging of remote sensing data in a
single database for surface analysis, etc.

4DVAR space: collocation of
observations with model grid, screening
and flagging of each observation,
forward model computation, feedback to
ODB database, first-guess departures,
monitoring statistics ,etc.

SEKF space: retrieval of observations to
assimilate and matching with modelled
equivalents for same model time step and
location, perturbed runs and storing of
perturbed T, innovation vector and soil
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Layer-1: 0-7 cm Layer-2: 7-28 cm Layer-3: 28-100 cm
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Sensitivity of T to soil moisture is negative,

Larger sensitivity for first soil layer - It is expected larger correction of first layer of SM to
correct towards SMOS observations.

The optimal perturbation value is between 0.005 m3m-= and 0.01 m3m-3. For consistency with T2m
and RH2™, 0.01 m3m-2 will be used.




