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From scientific challenges to societal benefit 

data assimilation 

high quality analyses and improved initial conditions 

novel measurements new observation systems 

forecast 

increased predictive skill improved risk mitigation societal benefit 

The impact on weather is neutral 
to positive (blue) (ECMWF) 

The impact on stream flow is positive. 
(U. Gent) 

EXAMPLE 1: NWP - Assimilating SMOS TB 
 

EXAMPLE 2: PREDICTING STREAMFLOW 
 



EXAMPLE 1: ECMWF – Developments and Spin–offs  

Activities started in 2003:  
 
Pre-launch 
 Development of the simplified Extended Kalman Filter (sEKF). 
 Radiative transfer model (CMEM) implemented as Forward Operator. 
 Development of Bias Correction scheme based on CDF matching. 
Technical improvements 
 Implementation of operational data monitoring. 
 Quality control wrt RFI and data thinning.  
 More efficient task scheduling. 
Adjusting models  
 Improved model physics in the land surface scheme (H-TESSEL). 
Skill assessment 
 DA experiment tuning the sEKF. 
 Analysis of forecast impact (on-going). 



ECMWF – Data Assimilation Experiments  

Three experiments:   
  Screen Level Variable (SLV) : assimilation of  T2m, RH2m 
  SMOS:           assimilation of only SMOS TB  CDF corrected 
  SMOS+SLV:   assimilation of T2m, RH2m and SMOS TB  CDF 

 
Simplified Extended Kalman Filter: 
 
For each grid point,  analysed state vector xa: 
 xa= xb+ K (y-H [xb]) 
xb    : background state vector,  
y     : observation vector  
H     : non linear observation operator 
K     : Kalman gain matrix:  K = [B-1+HTR-1H] -1HTR-1 

LSM : HTESSEL 0-7cm, 7-28cm, 28-100cm (100-289cm)  



Summer validation (JJA) ; TOP LAYER (0-7 cm)  

Bias  RMSD  R 

-0.015 0.064 0.78 

0.005 0.095 0.76 

-0.082 0.135 0.57 

-0.074 0.115 0.69 

0.026 0.067 0.74 

-0.082 0.098 0.79 

-0.085 0.099 0.59 

-0.104 0.122 0.71 

-0.068 0.092 0.61 

-0.153 0.159 0.67 

-0.033 0.067 0.69 

Bias  RMSD  R 

-0.043 0.085 0.71 

-0.013 0.099 0.71 

-0.076 0.132 0.55 

-0.072 0.116 0.64 

0.064 0.089 0.79 

-0.126 0.138 0.74 

-0.072 0.079 0.53 

-0.098 0.118 0.72 

-0.058 0.080 0.73 

-0.207 0.210 0.47 

-0.031 0.066 0.57 

Network Bias  RMSD  R 
SMOSMAN

IA 
-0.017 0.067 0.77 

TWENTE 0.024 0.097 0.77 

SCAN -0.088 0.137 0.55 

USCRN -0.079 0.115 0.67 

MAQU 0.027 0.067 0.75 

SWATMEX -0.080 0.095 0.80 

VAS -0.082 0.105 0.48 

OZNET -0.104 0.122 0.69 

REMEDHU
S 

-0.065 0.093 0.57 

UMBRIA -0.153 0.159 0.65 

HOBE -0.052 0.076 0.70 

SLV SMOS 

Bias (m3m-3);  RMSD (m3m-3)  

SMOS + SLV 

N 
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61 

16 

8 

1 

30 
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 The worst among the 3 expt.  

  Neither the best nor the worse  

  The best among the 3 expt. 
 

SMOS+SLV: best analysis/representation 
of soil moisture when compared to in-situ 



Summer validation (JJA) ; ROOT ZONE (0-100 cm)  

  Validation undertaken over 77 (SCAN) and 50 (USCRN) stations (p-value<0.05) 
  Observations are averaged over 5, 10, 20, 50 cm (and 100 cm also for USCRN) 
  Model SM is averaged over the three layers (7, 28, 100 cm) 

 The worst among the 3 expt.  
 
  Neither the best nor the worse 
 
  The best among the 3 expt. 
 

Network Bias (m3m-

3) 
RMSD (m3m-

3) 
R N 

SCAN -0.041 0.113 0.72 77 

USCRN -0.072 0.111 0.66 50 

SLV 

Network Bias (m3m-

3) 
RMSD 

(m3m-3) 
R N 

SCAN -0.027 0.119 0.72 77 

USCRN -0.064 0.106 0.70 50 

 SMOS 

Network Bias (m3m-

3) 
RMSD 

(m3m-3) 
R N 

SCAN -0.040 0.115 0.73 77 

USCRN -0.066 0.109 0.69 50 

SMOS + SLV 

SMOS+SLV/SMOS: neutral to 
good analysis/representation 
of soil moisture  
 
Summary: integrating SMOS 
data improves soil moisture 
analysis  



Forecast Impact and Skill 
(What does SMOS add?) 

 LEFT: SMOS increments produce warmer and drier atmosphere in central US, Sahel, South of Africa 
and Australia ( hot-spots for NWP impact). 

 RIGHT: Neutral to slightly negative regional impact in the skill of the forecast by assimilating 
SLV+SMOS.  

 More experiments needed with the target for initial operational implementation:  
Maintain positive impact in the soil moisture analysis with a neutral impact in low level 
atmospheric parameters. 

(SLV+SMOS)-SLV     T2m 48hfc 

improves degrades 

FC impact / T2m error differences   

(SLV+SMOS)-SLV     T2m 48hfc 

cooling warming 
T2m differences 



Balancing Uncertainties ... 

Operational set-up (CTRL): 

Obs Err: σ(T2M)= 1 K;     σ(RH2M)= 4%;        σ(SMASCAT)= 0.05 m3m-3  

Config.1  Config.2  Config.3  

σ(TB)= 6 + rad_acc  
       ~ [8.5-10] K 

σ(TB)= 6 + 
3xrad_acc  
        ~ [13.5-18] K 

SMOS Obs Err 

σ(TB)= 6 + rad_acc  
       ~ [8.5-10] K 

σ = 20% WHC  [0.03-
0.08] m3m-3 

σ = 10% WHC [0.015-
0.04] m3m-3  

σ = 5% WHC [0.008-
0.02] m3m-3 

 

layer-1: 7 cm 

layer-2: 21 cm 

layer-3: 72 cm 

σ = 10% WHC  [0.015-
0.04] m3m-3 

σ = 5 % WHC [0.008-
0.02] m3m-3  

σ = 5% WHC [0.008-
0.02] m3m-3 

 

σ = 10% WHC  [0.015-
0.04] m3m-3 

σ = 5 % WHC [0.008-
0.02] m3m-3  

σ = 5% WHC [0.008-
0.02] m3m-3 

 

Model Err 

* WHC = Water Holding Capacity of the soil 



Atmospheric Impact(1) 

For air temperature: Neutral to positive impact for Config.3. depending on region.  

For air humidity: some significant improvement, around 1% for Config.3.  

Config.3 

Config.2 

Config.1 

DRMSE: Normalized difference in rmse of the 
forecast  

drmse > 0: expt worse than ctrl 

drmse < 0: expt better than ctrl 

SH- extratropics  Tropics  NH- extratropics  

dr
m

se
 

reduced skill 

increased skill 



Summary I (ECMWF: NWP)  

 SMOS data successfully integrated into the ECMWF coupled land-
atmospheric forecasting system and land data assimilation scheme, 
 

 Seasonal summer experiments (with baseline observation and background 
error) show that, compared to the op. system, the SMOS signal tends to 
dry out the soil (in average), 
 
 positive results in terms of shallow, root-zone soil moisture analysis  (and 

forecast), 
 limited atmospheric impact (with some degradations) 

 
 Several diagnostics and sensitivity experiments (see configuration 1-3) 

show that components of the assimilation system can and should be 
adjusted in order to optimize the use of SMOS information in the coupled 
land-atmospheric forecasting system, 
 
 The integration of SMOS TB in the ECMWF operational LDAS is feasible and 

planned. 
 



EXAMPLE 2: Predicting Streamflow 
The Catchment 

Murray-Darling catchment/ SE 
Australia: 
• Variety of land cover 
• Well equipped with SM and stream flow 

stations 
• Validation data (2010-2011): 

• 169 stream gauge stations 
• 49 OzNet soil moisture stations 

 

Assimilate SMOS soil moisture into a the variable 
infiltration capacity (VIC) model to predict streamflow 



Data Assimilation Experiments  

 Observations 
• CATDS Level 3 SMOS SM 
• 2010-2011 
• 25 km grid 
• Extracted for MDB 

 Ensemble Kalman Filter  
(with gain nudging) 

 Bias correction 

1. mean: correction of mean 
2. var: correction of mean and variance  
3. cdf: CDF-matching (correction of mean, variance, and skewness)  

• Rescaling of the SMOS observations 
to the model climatology 

• 3 methods are tested: 

 Data assimilation experiments: 
• Open Loop (OL) – no observations assimilated 
• DAmean – SMOS with bias correction of the mean (1) 
• DAvar – SMOS with bias correction of the mean and variance (2) 

• DAcdf – SMOS with cdf-matching bias correction (3) 



Soil Moisture Analyses 

SM record RMSE cdf 
(m³/m³) 

R cdf (-) 

VIC OL 0.058 0.549 

VIC DA mean 0.045 0.713 

VIC DA var 0.048 0.677 

VIC DA cdf 0.048 0.686 

All stations: 

Example: Yanco 3 with DA cdf         

SMOS adds skill to the soil 
moisture analysis. Best 
results are obtained when 
only adjusting for the mean 
keeping the variability in the 
observation data set.  
 



Streamflow Predicition  

nRMSE = 0.784 nRMSE = 0.799 nRMSE = 0.801 

OL: R = 0.608 / nRMSE = 0.812 
DA mean DA var DA cdf 

R = 0.653 R = 0.627 R = 0.625 

OL 

DA 

Assimilating SMOS improves 
streamflow prediction. 
 



Summary II (Hydrology)  
 
• Assimilation of coarse scale SMOS SM improves soil 

moisture simulations 
 

• Improved antecedent soil moisture conditions 
increase performance of stream flow simulations 

 
• Most improvements are in peak runoff simulations 

 
• Bias correction largely impacts the magnitude of 

improvements: 
• CDF matching loses info on observational variability 
• Best results with mean bias correction 



Summary (3)  

 Constraining a well-calibrated model – data assimilation system with a new 
observation type is a significant task.    
 

 The assimilation of SMOS brightness temperatures improves the soil moisture  
analyses in the ECMWF forecasting system and the VIC model. 
 

 The impact on the subsequent forecasts for atmospheric parameters and  
streamflow are neutral and slightly positive, respectively. 
 

 Future work must focus on model physics and parameterizations to make  
optimal use of the new observation type. 
 

 Additional applications that could benefit from L-band observations are related 
to sea ice thickness, hurricane wind speeds, and the global carbon cycle.  
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