

ERA-5 driven land surface reanalysis: LDAS-Monde applied to the continental US

Clement Albergel ¹, Simon Munier ¹, Emanuel Dutra ², Jean-Christophe Calvet ¹, Joaquin Munoz-Sabater ³, Patricia de Rosnay ³, Gianpaolo Balsamo ³

European Geosciences Union - General Assembly 2018 Vienna, Austria, 8-13 April 2018

HS6.2 EGU2018-10867

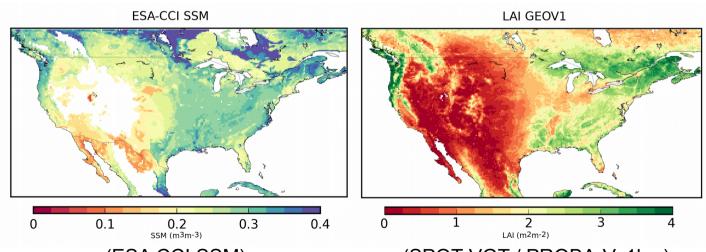
¹ CNRM UMR 3589, Météo-France/CNRS, Toulouse, France

² Insituto Dom Luiz, IDL, Faculty of Sciences, University of Lisbon, Portugal

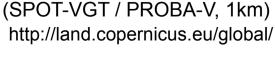
³ ECMWF, Reading, UK

Study the vegetation and terrestrial water cycles

- Current fleet of Earth Satellite missions holds an unprecedent potential to quantify land surface variables [Lettenmaier et al., 2015]
- Spatial and temporal gaps
- Cannot observe all key Land Surface Variables (LSVs)
- Land Surface Models (LSMs) provide LSVs estimates at all time/location based on physical laws
- Both observations and LSMs suffer from uncertainties
- Through a weighted combination of both, LSVs can be better estimated than by either source of information alone [Reichle et al., 2007]
- → **Data assimilation**: spatially and temporally integrates the observed information into LSMs in a consistent way to unobserved locations, time steps and variables



Study the vegetation and terrestrial water cycles


LDAS-Monde (Albergel et al., 2017, GMD)

- Global capacity integration of satellite derived observations into SURFEX
- Fully coupled to hydrology
- Offline reanalysis of the LSVs

Model	Domaine	Atm. Forcing	DA Method	Assimilated Obs.	Observation Operator	Control Variables	Additional Option
ISBA Multi-layer soil model CO ₂ -responsive version (Interactive veg.)	CONUS (2010-2016, 0.25°x0.25°)	ERA-5 (HersBach, 2016)	SEKF	SSM (ESA CCI) LAI (GEOV1)	Second layer of soil (1-4cm) LAI	Layers of soil 2 to 8 (1-100cm) LAI	Coupling with CTRIP (0.5°)

(ESA CCI SSM)
(seasonal bias correction)
http://www.esa-soilmoisture-cci.org

Study the vegetation and terrestrial water cycles

LDAS-Monde (Albergel et al., 2017, GMD)

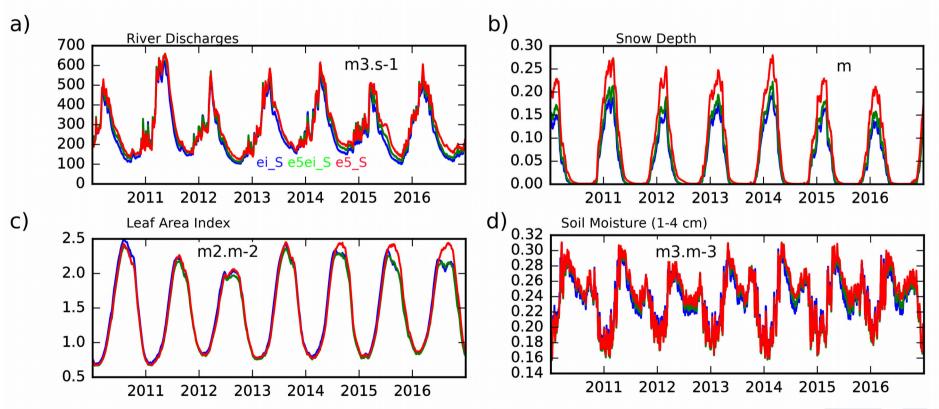
- Global capacity integration of satellite derived observations into SURFEX
- Fully coupled to hydrology
- Offline reanalysis of the LSVs

Model	Domaine	Atm. Forcing	DA Method	Assimilated Obs.	Observation Operator	Control Variables	Additional Option
ISBA Multi-layer soil model CO ₂ -responsive version (Interactive veg.)	CONUS (2010-2016, 0.25°x0.25°)	ERA-5 (HersBach, 2016)	SEKF	SSM (ESA CCI) LAI (GEOV1)	Second layer of soil (1-4cm) LAI	Layers of soil 2 to 8 (1-100cm) LAI	Coupling with CTRIP (0.5°)

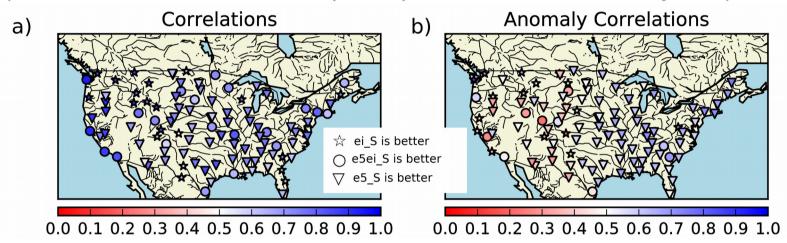
ERA-5: ECMWF latest atmospheric reanalysis, recent 7-yr release (2010-2016)

Higher spatial and temporal resolution than ERA-Interim

Objectives:


- Assess ERA-5 ability to force the ISBA LSM with respect to ERA-Interim
- Assess ERA-5 driven LDAS-Monde reanalysis

3 experiments

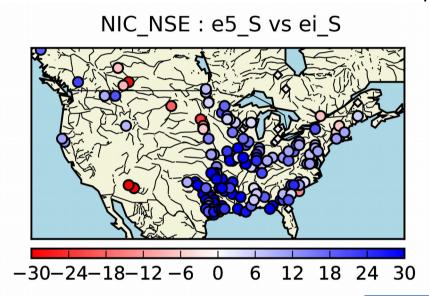

- ERA-Interim (all variables interpolated at <u>0.5x0.5 spatial resolution</u>) [ei_S]
- ERA-5 (all variables at <u>0.5x0.5</u>) [e5_S]
- ERA-5 forcing except Rain/Snow from ERA-Interim (all variables at <u>0.5x0.5</u>) [e5ei_S]

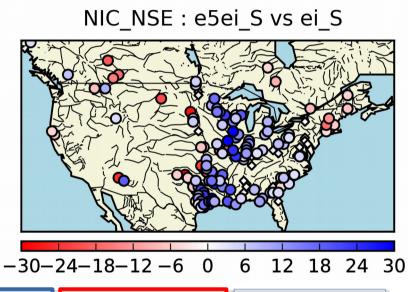
Soil moisture from USCRN network

(in situ 5cm vs ISBA 4-10cm, April-September 2010-2016, daily data)

	Median R* on volumetric time series (% of stations for which this configuration is the	Median R** on anomalies time series (% of stations for which this configuration is the	Median ubRMSD* (m³m⁻³) (% of stations for which this configuration is the
	best)	best)	best)
ei_S	0.66 (20 %)	0.53 (15 %)	0.052 (19 %)
e5ei_S	0.69 (20 %)	0.54 (11 %)	0.052 (24 %)
e5_S	0.71 (60 %)	0.58 (75 %)	0.050 (57 %)

^{*} only for stations presenting significant R values on volumetric time series (p-value<0.05): 110 stations

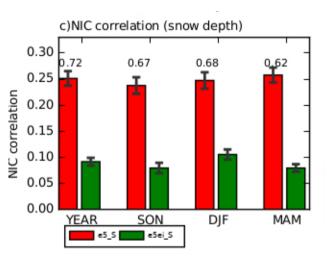


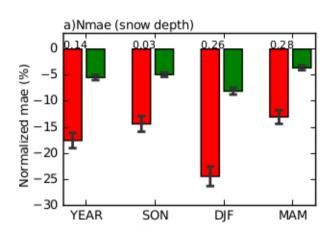


^{**} only for stations presenting significant R values on anomaly time series (p-value<0.05): 107 stations

River discharge

- NSE values are computed for each Exp. / stations (daily values scaled to the drainage area)
- Normalised Information Contribution used to quantify improvment/degradation (only for NSE > -1)

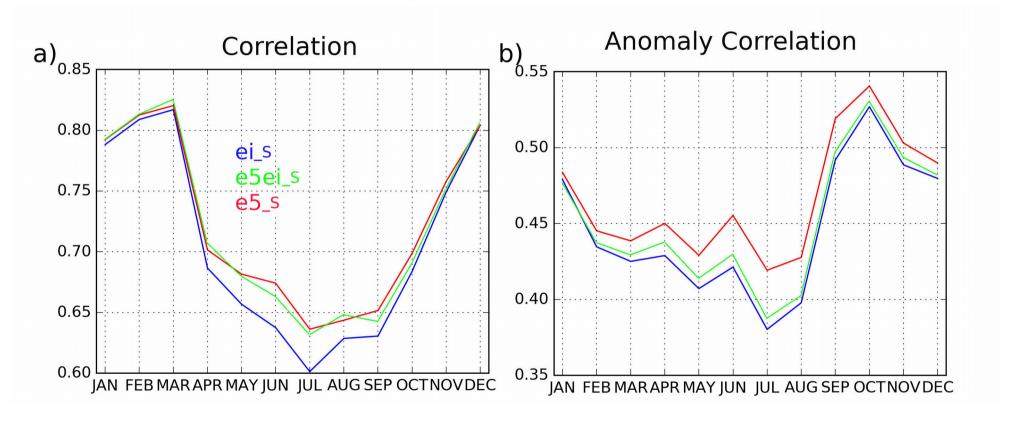

vs. ei_S	N stations NSE_ei_S >-1	NIC_NSE > +3 % Blue circles	NIC_NSE < -3 % Red circles	NIC_NSE [-3,+3] Diamonds
e5_S	234	185	26	23
e5ei_S	234	133	55	53
		Positive impact	Negative impact	Neutral impact





Snow depth, ~2000 stations from GHCN

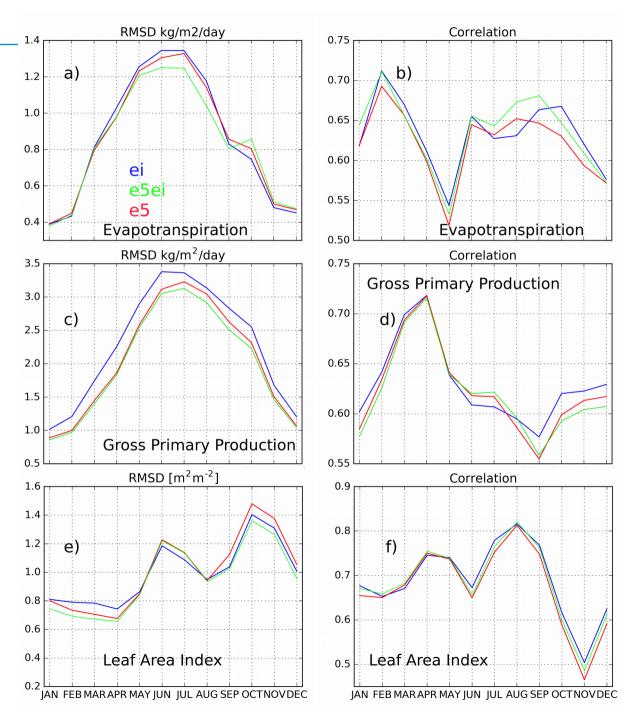
- MAE, ubRMSD and Correlations are computed for each stations
- NIC, Normalized MAE and ubRMSD are used to quantify improvment/degradation


- e5ei_S: Some benefits when compared with ei_S in terms of MAE (N MAE ~5%), ubRMSD (N ubRMSD ~4%) and correlation (NIC R of 0.1)
- e5_S: Clear improvement in MAE (N MAE ~16%), ubRMSD (N ubRMSD ~14%) and correlation (NIC R of 0.25)

ESA-CCI satellite derived Surface Soil Moisture estimates

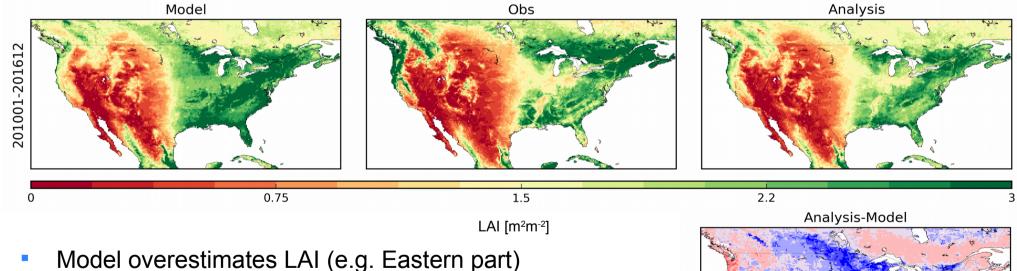
Correlations on volumetric and anomaly time-series, seasonal scores over 2010-2016

Mean correlation on volumetric (anomaly) time-series: 0.668 (0.464), 0.682 (0.468), 0.689 (0.490)

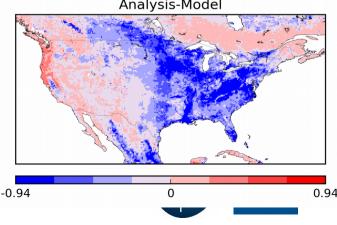


 Evapotranspiration estimates (GLEAM, Martens et al., 2017)

 Gross Primary Production estimates (FLUXCOM, Jung et al., 2017)


Leaf Area Index (GEOV1, CGLS)

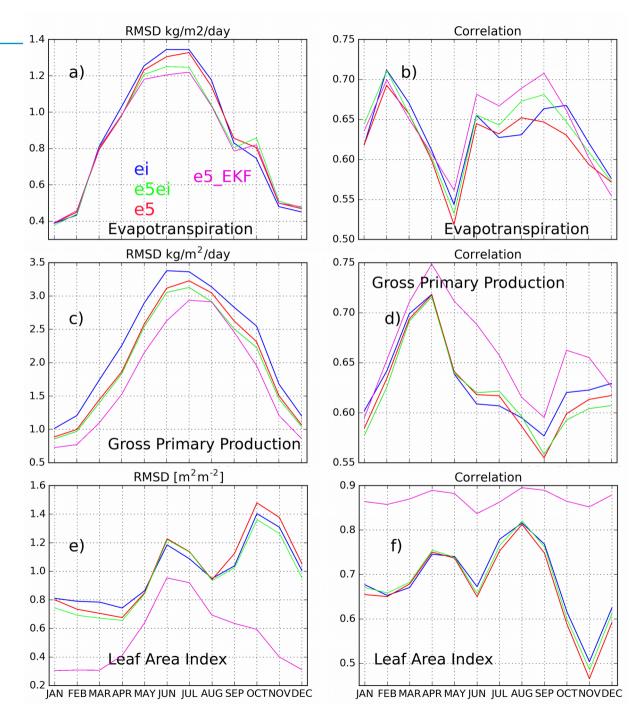
ERA-5 driven simulations has a rather neutral impact



Assess ERA-5 driven LDAS-Monde reanalysis

Model	Domaine	Atm. Forcing	DA Method	Assimilated Obs.	Observation Operator	Control Variables	Additional Option
ISBA Multi-layer soil model CO ₂ -responsive version (Interactive veg.)	CONUS (2010-2016, 0.25°x0.25°)	ERA-5 (HersBach, 2016)	SEKF	SSM (ESA CCI) LAI (GEOV1)	Second layer of soil (1-4cm) LAI	Layers of soil 2 to 8 (1-100cm) LAI	Coupling with CTRIP (0.5°)

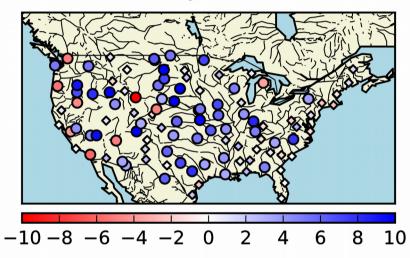
- Model overestimates LAI (e.g. Eastern part) with respect to the observations
- Analysis 'removes' LAI in those areas

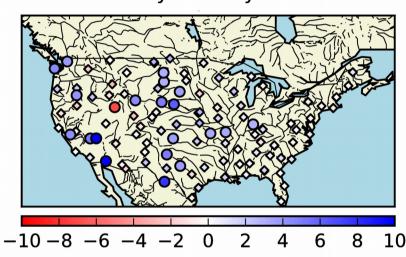


 Evapotranspiration estimates (GLEAM, Martens et al., 2017)

 Gross Primary Production estimates (FLUXCOM, Jung et al., 2017)

Leaf Area Index (GEOV1, CGLS)


Clear improvements from ERA-5 driven reanalyses!

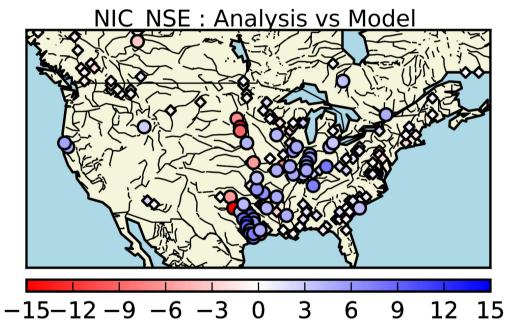

Soil moisture from USCRN network

(in situ 5cm vs ISBA 4-10cm, April-September 2010-2016, daily data)

NIC R Analysis vs Model

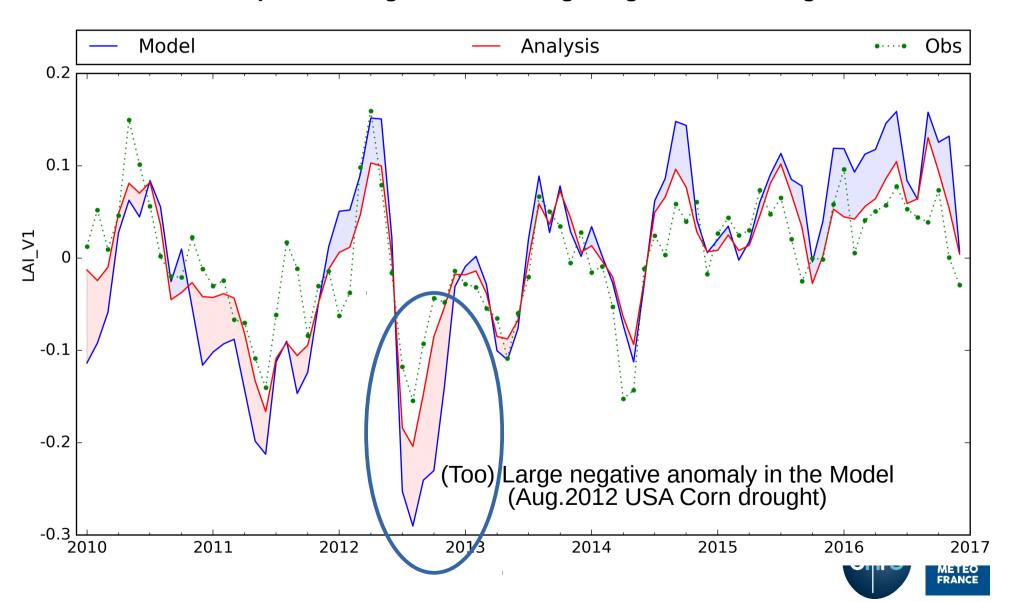
NIC Anomaly R Analysis vs Model

110 stations with significant R (Anomaly R)	Median R (Anomaly R)	Median ubRMSD	NIC_R (NIC_ANO_R) >+3 % Red circles	NIC_R (NIC_ANO_R) < -3 % Red circles	NIC_NSE [-3,+3] Diamonds
Model	0.72 (0.60)	0.049	50	9	51
Analysis	0.74 (0.60)	0.048	20	1	89

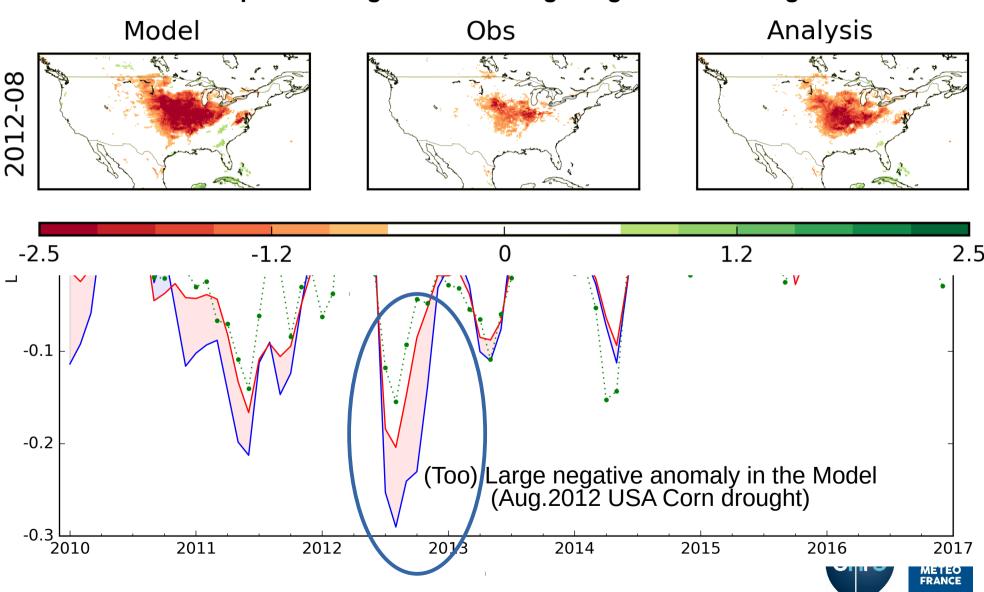

ERA-5 driven reanalyses bring further improvements!

River discharge

- NSE values are computed for each Exp. / stations (daily values scaled to the drainage area)
- Normalised Information Contribution used to quantify improvment/degradation (only for NSE > -1)

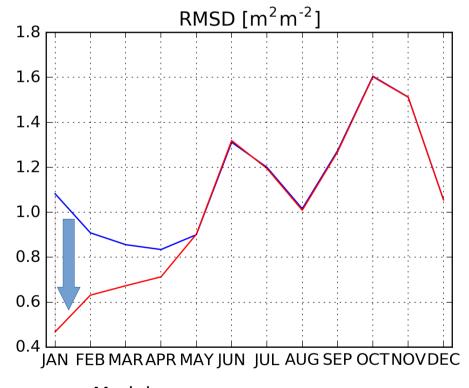

N stations NSE_Model >-1	NIC_NSE > +3 % Blue circles	NIC_NSE <-3 % Red circles	NIC_NSE [-3,+3] Diamonds
266	59	12	95

ERA-5 driven reanalysis bring further improvements!

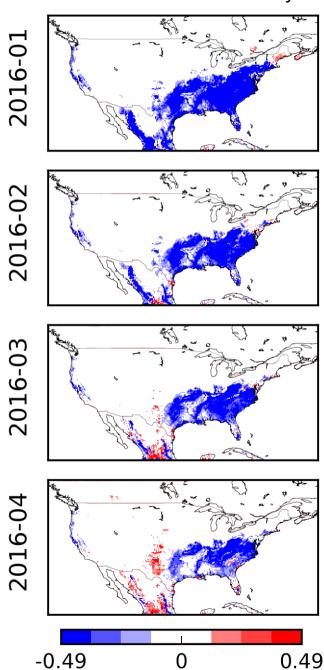

Monitoring agricultural drought

Can LDAS-Monde provides a good monitoring of agricultural drougth?

Monitoring agricultural drought


Can LDAS-Monde provides a good monitoring of agricultural drougth?

From monitoring to forecasting


Does analysis provide better initial conditions that last in time ?

- Use analysis initial conditions at 01/01/2016 to start a 12-month Model run
- Evaluation against LAI observations over CONUS (2016)
- > Persistence for several weeks / months on LAI

- Model
- Model initialised by Analysis

RMSD differences : Model - Model initialised with Analysis

ERA-5 driven land surface reanalysis: LDAS-Monde

ERA-5 driven simulations

- Significant improvements in the representation of LSVs linked to the terrestrial water cycle
- Smaller impact on LSVs linked to the vegetation cycle
- Better representation of the precipitation in ERA-5, other meteorological forcing also

LDAS-Monde driven by ERA-5

Integration of satellite observations into SURFEX, fully coupled to hydrology
Now the only system able to sequentially assimilate vegetation products together with SSM

- Significant improvements in the representation of LSVs linked to the vegetation cycle!
- Further improvements in the representation of LSVs linked to the terrestrial water cycle!

- Powerful tool to monitor land surface variables, droughts
- → High potential of the analysis for initialising forecasts

(Analysis provides better initial conditions than a model run)

Contact : clement.albergel@meteo.fr

LDAS-Monde recent publications:

Albergel, C., S. Munier, D. J. Leroux, H. Dewaele, D. Fairbairn, A. L. Barbu, E. Gelati, W. Dorigo, S. Faroux, C. Meurey, P. Le Moigne, B. Decharme, J.-F. Mahfouf, J.-C. Calvet: Sequential assimilation of satellite-derived vegetation and soil moisture products using SURFEX_v8.0: LDAS-Monde assessment over the Euro-Mediterranean area, Geosci. Model Dev., Geosci. Model Dev., 10, 3889–3912, 2017.

Fairbairn, D., Barbu, A. L., Napoly, A., *Albergel C.*, Mahfouf, J.-F., and Calvet, J.-C.: The effect of satellite-derived surface soil moisture and leaf area index land data assimilation on stramflow simulations over France, Hydrol. Earth Syst. Sci., 21, 2015–2033, 2017.

Results where Generated using Copernicus Climate Change Service Information 2017

European Geosciences Union - General Assembly 2018 Vienna, Austria, 8-13 April 2018

HS6.2 EGU2018-10867