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Outline

๏ Direct and inverse models

๏ Retrieving SM from SMOS using  Neural Networks 

๏ A Near-Real-Time Soil Moisture

๏ Summary

๏ SMOS: more than five years of observations to test data-driven 

statistical inversion methods: Neural Networks



Direct models

Tb = F(SM, τ, T, …)

F is given by a physical 
model, for instance the 
tau-omega model



Solving the inverse problem (I)

Tb = F(SM, τ, T, …)

๏ Using the direct 
model “many times” 
for different input 
variables values and 
compare  with the 
observations

๏ Iteratively get the 
optimal estimation of 
the variables values

๏ Approach of the 
SMOS operational 
algorithm

• Kerr et al. 2012, 
TGRS

Local method



Solving the inverse problem with neural 

networks

๏The optimal weights WL1 and WL2

are obtained by minimizing the 
difference of the NN output and a 
reference SM dataset used for the 
training

• NNs are universal approximators, 
parsimonious, and fast to apply

• NNs use the synergy of multi-
sensor data : multivariate and non-
linear nature (Aires et al. 2012)Global method



Training the neural network

๏ Training data base containing typically 100 days of global data

๏ Avoiding over-learning : evaluating performances during training on 
a validation data subset and stopping training if needed

๏ Evaluate performances on test data subset not used for the 
training: different period, in situ measurements grid points removed 
from the training dataset

Inversion of the SMOS operational algorithm

New algorithm using SMOS-independent SM data as training dataset

NN algorithm is global and faster !  Near Real-Time SM product

NN SM can be the base of and efficient data assimilation strategy (Aires et al. 2005)



Local applications of NNs to retrieve SM in agricultural fields:

• SAR: used to invert backscatterring models (IEM, Oh,…): Notarnicola et al., Paloscia et 
al.  Radiometers: using an electromagnetic emission model and simple radiative
transfer: Liu et al. 2001 , Liou et al. 2002, Chai et al. 2010, Angiuli et al. 2008

Previous works

Global applications of NNs to retrieve SM

๏ Multisensor data (active and passive microwaves, visible, IR) and NNs trained with 
numerical weather prediction models: Aires et al. 2005, Kolassa et al 2013, Jimenez et al. 
2013

• Tested with monthly averages

• Input: SSM/I, ERS, AVHRR

๏ The NN can be used to check the consistency of the weather models and as the base 
for assimilation (Aires et al. 2005)

๏ The NN can correct the reference model data (Jimenez et al. 2013)



Also  supported by : 

The SMOS + Neural Network project

N. Rodriguez-Fernandez1, P. Richaume1, F. Aires2,
C. Prigent2, Y. Kerr1,  J. Kolassa2,

C. Jimenez2, F. Cabot1, A. Mahmoodi3
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Aqua/Terra

MODISASCAT

The synergy of SMOS with other sensors has also been studied



SMOS brightness temperatures
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๏ L1C

• No angle binning

• XY polarization reference frame

• ISEA grid

๏ L3TB

๏ angle bins of 5º

๏ HV polarization

๏ EASE grid
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Number of Tb’s per angle and 

distance to the satellite track

- Best option for just one NN covering as much of the swath as possible
and making use of as many Tb’s as possible?

- Angles from 25 to 60  (correlation NN SM wrt ECMWF SM R=0.8).
- Thus we have the angular signature, we can improve correlation with 

SM ...
... and we cover the central ~700 kms of the swath

10

Field of view

L3TB
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Daily NN retrievals

5 Mean July 2010

Ascending 22/8/2011

Descending 22/8/2011



12

-NDVI improve the results by 10%

- Models with active MW or I1 improve 

the temporal correlation of NN SM and 

ECMWF SM

July 2010: Period not seen during training

Rodriguez-Fernandez, Aires, Richaume et al.  2015 (TGRS, in press)
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Comparison to SCAN in situ 

measurements

Rodriguez-Fernandez, Aires, Richaume et al.  2015 (TGRS, in press)



Application to a Near-Real-Time product
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๏ Once trained, the NNs are very fast to apply

• One year of SMOS observations can be inverted in a few minutes

๏Specifications and operational constrains for a NRT 
SM product

• Available in less than 3 hours after sensing

• Swath as large as possible

• Better to use as little auxiliary data as possible

• It should be as similar as possible to the current operational L2 SM

๏ It is possible to do a Near-Real-Time (NRT) SM 
product

• Applications go from meteorology to operational hydrology (floods 
prediction…)



Choice of Neural Network 

configuration

NN 40º-45º

1160 km

R (NN-L3) = 0.87

R (NN-SCAN) = 0.50

NN 25º-60º

Swath : 660 km

R (NN-L3) = 0.95

R (NN-SCAN) = 0.55

SMOS L3

R (NN-SCAN) = 0.53

BEST CHOICE

NN 30-45º

920 km

R (NN-L3) = 0.92

R (NN-SCAN) = 0.55

๏ Using I2 as input to maximize correlation with 
the operational SM

• Adding the soil temperature as input improve 
results by 4 %

๏ Number of angles:

• Quality decreases significantly with less than 3 
angle

๏ NDVI not needed when using 30º-45º range 
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An official ESA Near-Real-Time 

product based on Neural Networks

SMOS NRT SM vs SMOS L3 SM:
Global correlation R = 0.92
Average temporal correlation Rtemp= 0.8
- Main differences: high latitudes & desert

Input STD R Bias

NN 0.049 0.55 -0.024

ECMWF 0.049 0.59 0.056

SMOS L3 0.064 0.50 -0.026

Average  stats wrt USDA SCAN sites
better than SMOS L3

A SM product very similar to the current operational one but in 
near-real-time



Evaluation with respect to in situ measurements 

MOL-RAO 8cm

SASMAS 5cm
, 5cm

AMMA 5cm

Evaluation  from June 2010 to June 2013
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SMOS NRT SM product

Designed by  :

Implemented by :

A new product

Distributed by GTS and EUMETCAST (second half of 2015)



• NN are an efficient tool to merge multi-sensor data
• Using global models as reference is a promising method to 
retrieve SM from remote sensing observations  interesting 
dataset for data assimilation

• A new Near-Real-Time SM based on NNs is under 

development
• Similar to current L2 SM but on near-real-time
• Soon available for your near-real-time applications
• Good statistics against in situ measurements
• Will be distributed via GTS and EUMETcast

Summary

• These techniques can be applied to link SMOS Tbs to you own 
surface model
• NN datasets can be distributed on demand



Thank you for your attention !

๏ Funding

Acknowledgements More information

@SMOS_satellite

Nemesio.rodriguez@cesbio.cnes.fr

๏ Data
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Input data sets

σ 40 deg: 2010 01 08

๏ SMOS L3TB (angle bins of 5º, HV 

polarization, EASE grid)

๏NDVI MODIS (1 every 16 days)

๏ Soil texture Ecoclimap FAO, Masson et 

al. 2003

๏ Wetlands, 1993-2007 monthly 

averages,  Prigent et al. (2012)

๏ ECMWF IFS models  Soil 

temperature (0-7 cm), snow depth

๏ ASCAT L1B backscattering 
coefficients. Estimation of a daily σ(40º): 

linear regression using a 7 days window
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Reference SM data sets

๏ECMWF IFS models     (36r1-

37r3)

• Soil Moisture first layer (0-7 cm)

•Spatial and temporal interpolation to 

the SMOS CATDS grid

SM_L1       21/06/2011

๏SMOS L3 CATDS daily 
SM product



25

Tb's sensitivity to SM



Locally normalized

brightness Temp
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Maps of temporal correlation

NNSM 3NNSM 4

Without active MWs With active MWs

Active Microwaves

Monthly retrievals

Kolassa et al. 2013  

R = 0.54-0.67

SMOS only



Maps of temporal correlation

NNSM 4

Without active MWs With SMOS I1
NNSM 2

Locally normalized

brightness Temp
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Active Microwaves

Monthly retrievals

Kolassa et al. 2013  

R = 0.54-0.67

SMOS only
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Choice of the best NN configuration ?


