# **Initial ensemble perturbations**

basic concepts

Linus Magnusson

Acknowledgements: Erland Källén, Martin Leutbecher, ..., ...



# Introduction



Perturbations added to a subset or all model variables

"How to construct the initial perturbations?"

"Why does not pure random numbers work?"



# Introduction



Slide 3

# **Desirable properties of initial perturbations**

- Sampling analysis uncertainty
  - Mean amplitude
  - Geographical distribution
  - Spatial scale
  - "Error of the day"
- Sustainable growth
- High quality of probabilistic forecast





# **Ensemble mean RMSE and ensemble spread**

#### **Ensemble Mean RMSE and Ensemble Spread**

500hPa geopotential NHem Extratropics (lat 20.0 to 90.0, lon -180.0 to 180.0) JanFebMar



### **Optimally: Ensemble mean RMSE = ensemble spread**



# **Random Perturbations (why does it not work?)**

© ECMWF

#### Random grid-point number (-1 to 1) x

#### Analysis error estimate



u-wind



#### x global tuning factor





# Random Field (RF) perturbation (for benchmarking)

Analysis Random date 1



Slide 7

#### **Analysis Random date 2**



**Random Field Perturbation** 



#### Not flow-dependent, but linear balances maintained

cf. Magnusson, Nycander and Källén, Tellus A (2009)





# **Geostrophic balance and perturbations**





## **Singular vectors**



 $\alpha = \frac{\left\langle \Delta \vec{x}(t), \Delta \vec{x}(t) \right\rangle}{\left\langle \Delta \vec{x}(0), \Delta \vec{x}(0) \right\rangle} \quad \begin{array}{l} \text{Optimize perturbation growth for a} \\ \text{time interval} \end{array}$ 

Norm dependent!

**M** tangent linear operator.  $\Delta x(t) = M(t,x_0) \Delta x(0)$ 

(Will be further explained by Simon Lang)



#### **Atmospheric state**



#### Singular vector perturbation





# **Breeding perturbations**

#### **Perturbed Forecast +06h**



#### **Unperturbed Forecast +06h**







#### x normalizing factor =





## Ensemble transform perturbations (further development of BV) (Wei et al., Tellus A, 2008)



Simplex transformation
Regional re-scaling
ETKF perturbations similar idea (Wang and Bishop, JAS, 2003)



**Error norm** 

# **Perturbation methods Lorenz-63**



# **Exponential perturbation growth**

$$\lambda = \frac{1}{\Delta t} \ln \left( \frac{||\Delta x(t + \Delta t)||}{||\Delta x(t)||} \right)$$



SV – red, BV – blue, Random Field Pert. – Green, Random Pert. - black



# **Evolution of ensemble spread** (one case, total pert. energy 700 hPa)

Initially

Random perturbations





Breeding perturbations



Singular Vector perturbations



Maximum - red



Slide 14

70 °N

50.°N

40 °N

30°N

20 %

# **Evolution of ensemble spread** (one case, total pert. energy 700 hPa)

+48h

Random perturbations Random Field perturbations 70°N 70 °N 70.9 60°N 60 °N 60 °N 60°N 50°N 50 °N 50 °h 50 °N 40"N 40 °N 40 °N 40°N 30°N 30 °N 30°N 30°N 20°N 20°N 20\* 20°N

Breeding perturbations



Singular Vector perturbations



Maximum - red, Scale 48: twice the scale for +00h



Slide 15

# **Connections between perturbations and baroclinic zones**

 $E = 0.3125 \frac{f}{N} \frac{dV}{dz}$  Fastest growth rate of normal modes



(d) Singular Vector perturbations





### **Correlation Eady index – Ens. Stdev z500**



SV - Red ET - Blue RF - Green RP - Black



# **Mean initial perturbation distribution**



Figure 2. Magnusson, Leutbecher and Källén. 2008 (MWR)



## **Mean perturbation distribution after 48 hours**



#### Figure 3. Magnusson, Leutbecher and Källén. 2008 (MWR)

Slide 19



### **Ranked Probability skill score - t850**



**Different Centres** (from Park et al.(2008), Courtesy R. Buizza)



**Other things to consider - Perturbation symmetry** 

+/- symmetry -> rank N/2
Simplex transformation -> rank N-1

No clear advantage for simplex transformation in our metrics



# **Other things to consider - Importance of initial amplitude scaling**



#### Two models with different tuning of the initial amplitude

#### Perturbation growth is highly model dependent!



# **Desirable properties for initial perturbations**

|                               | SV            | BV and<br>ET | RF | Random |
|-------------------------------|---------------|--------------|----|--------|
| Sampling analysis uncertainty |               |              |    |        |
| Mean amplitude                |               | V            | V  |        |
| Geographical                  |               |              | V  | V      |
| Spatial scale                 | V             | V            | V  |        |
| Growth                        | v (too fast?) | V            | V  |        |
| An Error of the day           | V             | V            |    |        |
| Fc Error of the day           | V             | V            | V  | V      |
| Fc Quality                    | V             | V            | V  |        |





# **Ensemble assimilation and prediction**





