Layout of these lectures

- Introduction
- General remarks
- Model development and validation
- The Earth energy budget
- Soil/Water contrasts
- Snow hydrology
- Snow atmosphere coupling
- Vegetation cycle
- Carbon dioxide

The IFS Earth orography and bathymetry

land orography and ocean&lakes bathymetry (meters above/below sea-level, cimate.v009, T1279)

Slide 2

Thermal budget of a ground layer at the surface

The surface radiation

Surface albedo

Surface emissivity

Skin temperature

 In some cases (snow, sea ice, dense canopies) the impinging solar radiations penetrates the "ground" layer and is absorbed at a variable depth. In those cases, an extinction coefficient is needed.

 Table 3.1

 Radiative Properties of Natural Surfaces^a

Surface type	Other specifications	Albedo (a)	Emissivity (ε) 0.92–0.97	
Water	Small zenith angle	0.03-0.10		
	Large zenith angle	0.10-0.50	0.92-0.97	
Snow	Old	0.40-0.70	0.82-0.89	
	Fresh	0.45-0.95	0.90-0.99	
Ice	Sea	0.30-0.40	0.92-0.97	
	Glacier	0.20-0.40		
Bare sand	Dry	0.35-0.45	0.84-0.90	
	Wet	0.20-0.30	0.91-0.95	
Bare soil	Dry clay	0.20-0.35	0.95	
	Moist clay	0.10-0.20	0.97	
	Wet fallow field	0.05-0.07		
Paved	Concrete	0.17-0.27	0.71-0.88	
	Black gravel road	0.05-0.10	0.88-0.95	
Grass	Long (1 m) Short (0.02 m)	0.16-0.26	0.90-0.95	
Agricultural	Wheat, rice, etc.	0.10-0.25	0.90-0.99	
	Orchards	0.15-0.20	0.90-0.95	
Forests	Deciduous	0.10-0.20	0.97-0.98	
	Coniferous	0.05-0.15	0.97-0.99	

^a Compiled from Sellers (1965), Kondratyev (1969), and Oke (1978).

Arya, 1988

ECMWF

The other terms

Sensible heat flux $H = \rho C_h u_L (C_p T_L + gz - C_p T_{sk})$ $C_h = f(Ri_B, z_{oh}, z_{om})$

 Z_{oh}, Z_{om} specify the surface

Evaporation

$$E = \rho C_h u_L [q_L - q_s] = \rho C_h u_L [a_L q_L - a_s q_{sat}(T_{sk}, p_s)]$$
$$a_{L,s} = f(q_L, T_s)$$

Ground heat flux

 $(\rho C)_g \frac{\partial T_s}{\partial t} = -\frac{\partial G}{\partial z} = \frac{\partial}{\partial z} \lambda_T \frac{\partial T}{\partial z}$ $(\rho C)_g, \lambda_T = f(\text{soil type, other soil characteristics})$

PA Surface II of IV - traning course 2015

HTESSEL

- Skin layer at the interface between soil (snow) and atmosphere; no thermal inertia, instantaneous energy balance
- At the interface soil/atmosphere, each grid-box is divided into fractions (tiles), each fraction with a different functional behaviour. The different tiles see the same atmospheric column above and the same soil column below.

$$G_i = \Lambda_{sk,i} \left(T_s - T_{sk,i} \right)$$

i index for tile

i = 1,..., *N*

- If there are N tiles, there will be N fluxes, N skin temperatures per grid-box
- There are currently up to 6 tiles over land (N=6)

Coupling and diurnal cycle: vegetation

Coupling and diurnal cycle: lakes

Slide 8

Coupling and diurnal cycle: snow and ice

HTESSEL skin temperature equation

$$(1 - \alpha_{i})R_{s}^{\downarrow} + \varepsilon_{g}R_{T}^{\downarrow} - \varepsilon_{g}\sigma T_{sk,i}^{4} + \rho C_{h,i}u_{L}(C_{p}T_{L} + gz - C_{p}T_{sk,i}) + \rho C_{h,i}u_{L}\left[a_{L,i}q_{L} - a_{s,i}q_{sat}(T_{sk,i}, p_{s})\right] + \Lambda_{sk,i}(T_{s} - T_{sk,i}) = 0$$

Grid-box quantities

$$H = \sum_{i} C_{i} H_{i}$$

$$E = \sum_{i} C_{i} E_{i}$$

$$T_{sk} = \sum_{i} C_{i} T_{sk,i}$$

$$C_{i}$$
Tile fraction

PA Surface II of IV - traning course 2015

Ground heat flux

For an homogeneous soil,

$$\frac{\partial T_s}{\partial t} = k \frac{\partial^2 T}{\partial z^2}$$

•Top •Bottom No heat flux

PA Surface II of IV - traning course 2015

Diurnal cycle of soil temperature

Fig. 2.2 Average hourly soil temperature under bare and sod-covered soil at St. Paul, Minnesota in January (top) and July (bottom). Soil depth is shown in m (after Baker, 1965).

Fig. 2.6 Daily course of temperature (a) at the surface and (b) at a depth of 50 mm on clear summer days at Sapporo, Japan (after Yakuwa, 1946).

HTESSEL heat transfer

- Solution of heat transfer equation with the soil discretized in 4 layers, depths 7, 21, 72, and 189 cm.
- No-flux bottom boundary condition
- Heat conductivity dependent on soil water
- Thermal effects of soil water phase change

wet dry

CMWF

Land surface tiles in ERA40 surface scheme

Case study: winter (1)

Model vs observations, Cabauw, The Netherlands, 2nd half of November 1994

Case study: winter (2)

Soil Temperature, North Germany, Feb 1996: Model (28-100 cm) vs OBS 50 cm

Case study: winter (3)

PA Surface II of IV - traning course 2015

-

Winter: Soil water freezing

Case study: winter (4)

Germany soil temperature: Observations vs Long model relaxation integrations

Recap: The surface energy equation

$$(1-\alpha)R_{s}^{\downarrow} + \varepsilon_{g}R_{T}^{\downarrow} - \varepsilon_{g}\sigma T_{sk}^{4} + \rho C_{h}u_{L}(C_{p}T_{L} + gz - C_{p}T_{sk}) + \rho C_{h}u_{L}[a_{L}q_{L} - a_{s}q_{sat}(T_{sk}, p_{s})] + G(T_{s}, T_{sk}) = (\rho C)_{g}D\frac{\partial T_{s}}{\partial t}$$

- Equation for T_s, T_{sk}
- For:
 - a thin soil layer at the top $(\rho C)_g D \frac{\partial T_s}{\partial t} \approx 0$
 - G (T_s , T_{sk}) is known, or parameterized or G << R_n

we have a non-linear equation defining the skin temperature

Bare ground fraction

Calculated from GLCC 1km and assigned vegetation covers

PA Surface II of IV - traning course 2015

Bare ground evaporation

Soil (bare ground) evaporation is due to:

- Molecular diffusion from the water in the pores of the soil matrix up to the interface soil atmosphere (z_{0a})
- Laminar and turbulent diffusion in the air between z_{0q} and screen level height
- All methods are sensitive to the water in the first few cm of the soil (where the water vapour gradient is large). In very dry conditions, water vapour inside the soil becomes dominant

 α method

$$E = \rho \frac{q_L - \alpha q_{sat}(T_{sk})}{r_a}$$

$$\alpha = f(\theta_1) \text{ "Relative humidity of the soil"}$$

$$\theta_1 \text{ Top soil layer (a few cm) water}$$

HTESSEL bare soil evaporation

(Balsamo et al. 2011, Albergel et al. 2012)

SOIL Evaporation

alsamo et al. (2011)

based on

Mahfouf and Noilhan (1991)

The introduction of bare ground evaporation revision (green-line) is quite effective in reducing the soil moisture below the wilting point in non-vegetated area (upper panel of figure above, at 79% bare ground, SCAN site in Utah).

PA Surface II of IV - traning course 2015

 $R_c = R_{soil} f_2(w_1)$

HTESSEL Transpiration

• Sensible heat (H), the resistance formulation

$$H = \rho C_p C_h u_L (T_L - T_{sk}) = \rho C_p \frac{T_L - T_{sk}}{r_a}$$

r = aerodynamic resistance $[r] = sm^{-1}$

- r_a aerodynamic resistance, $[r_a] = sm$ $r_a = \frac{1}{C_a u_a}$
- Evaporation (*E*), the resistance formulation (the big leaf approximation, Deardorff 1978, Monteith 1965)

High and Low vegetation fractions

Aggregated from GLCC 1km

Slide 24

High and Low vegetation types

Aggregated from GLCC 1km

Interception: Canopy water budget

$$\frac{\partial \boldsymbol{w}_l}{\partial t} = \boldsymbol{e}_i \boldsymbol{P}^* + \boldsymbol{c}_l \boldsymbol{E}_l + \boldsymbol{D} = \boldsymbol{I} + \boldsymbol{c}_l \boldsymbol{E}_l$$

- w_l Intercepted water
- e_i efficiency of interception
- \boldsymbol{P}^* modified precipitation
- $c_l E_l$ evaporation of intercepted water

Slide 26

D rate of drainage at the bottom of the canopy

HTESSEL: interception

Interception layer for rainfall and dew deposition

Soil science miscellany

• The soil is a 3-phase system, consisting of

- minerals and organic matter soil matrix
- water condensate (liquid/solid) phase
- moist air trapped gaseous phase
- Texture the size distribution of soil particles

Fig. 3.5. Textural triangle, showing the percentages of clay (below 0.002 mm), silt (0.002–0.05 mm), and sand (0.05–2.0 mm) in the basic soil textural classes.

Soil properties

 Table 4.1

 Molecular Thermal Properties of Natural Materials^a

Material	Condition	Mass density $ ho$ (kg m ⁻³ $ imes$ 10 ³)	Specific heat c (J kg ⁻¹ K ⁻¹ × 10 ³)	Heat capacity C (J m ⁻³ K ⁻¹ × 10 ⁶)	Thermal conductivity k (W m ⁻¹ K ⁻¹)	Thermal diffusivity α_h (m ² sec ⁻¹ × 10 ⁻⁶)
Air	20°C, Still	0.0012	1.00	0.0012	0.026	21.5
Water	20°C, Still	1.00	4.19	4.19	0.58	0.14
Ice	0°C, Pure	0.92	2.10	1.93	2.24	1.16
Snow	Fresh	0.10	2.09	0.21	0.08	0.38
Sandy soil	Dry	1.60	0.80	1.28	0.30	0.24
(40% pore space)	Saturated	2.00	1.48	2.98	2.20	0.74
Clay soil	Dry	1.60	0.89	1.42	0.25	0.18
(40% pore space)	Saturated	2.00	1.55	3.10	1.58	0.51
Peat soil	Dry	0.30	1.92	0.58	0.06	0.10
(80% pore space)	Saturated	1.10	3.65	4.02	0.50	0.12

^a After Oke (1987).

More soil science miscellany

Fig. 7.1. Water in an unsaturated coarse-textured soil.

TABLE I

Critical water contents of soils derived from the classification of Clapp and Hornberger (1978): saturated moisture w_{sat} , field capacity w_{fl} , wilting point w_{wilt} . The field capacity is associated with a hydric conductivity of 0.1 mm/day. The wilting point corresponds to a moisture potential of -15 bar

Soil type	$w_{\rm sat} \ ({\rm m}^3/{\rm m}^3)$	$w_{\rm fc} \ ({\rm m}^{3}/{\rm m}^{3})$	$w_{\rm wilt} \ ({\rm m}^3/{\rm m}^3)$		
Sand	0.395	0.135	0.068		
Loamy sand	0.410	0.150	0.075		
Sandy loam	0.435	0.195	0.114		
Silt loam	0.485	0.255	0.179		
Loam	0.451	0.240	0.155		
Sandy clay loam	0.420	0.255	0.175		
Silty clay loam	0.477	0.322	0.218		
Clay loam	0.476	0.325	0.250		
Sandy clay	0.426	0.310	0.219		
Silty clay	0.482	0.370	0.283		
Clay	0.482	0.367	0.286		

In a numbers defining soil water properties

- Saturation (soil porosity) Maximum amount of water that the soil can hold when all pores are filled
 0.472 m³m⁻³
- Field capacity "Maximum amount of water an entire column of soil can hold against gravity" 0.323 m³m⁻³
- Permanent wilting point Limiting value below which the plant system cannot extract any water
 0.171 m³m⁻³

PA Surface II of IV - traning course 2015

Schematics

Fig. 17.1. The water balance of a root zone (schematic).

 $\rho_{w} \frac{\partial \theta}{\partial t} = -\frac{\partial F}{\partial z} + \rho_{w} S_{\theta}$ $\theta \text{ soil water} \left[\right] = m^{3} m^{-3}$ $F \text{ Soil water flux } \left[\right] = kgm^{-2}s^{-1}$ $S_{\theta} \text{ Soil water source/sink, ie root extraction}$

Top Bottom

Root extraction

Soil water flux

$$\boldsymbol{F} = -\boldsymbol{\rho}_{w}(\boldsymbol{\lambda}\frac{\partial\boldsymbol{\theta}}{\partial\boldsymbol{z}} - \boldsymbol{\gamma})$$

- λ hydraulic diffusivity
- γ hydraulic conductivity $[\gamma] = ms^{-1}$

 $[\boldsymbol{\lambda}] = \boldsymbol{m}^2 \boldsymbol{s}^{-1}$

Fig. 2. Examples of the dependence of soil hydraulic diffusivity on volumetric soil water content for loam (HB_L, Hanks and Bowers, 1962); (J, Jackson, 1973); (GHB, Gardner *et al.*, 1970); silt loam (HB_s, Hanks and Bowers, 1962); clay (P, Passioura and Cowan, 1968); results approximated from Gardner (1960) for sand (B_s), loam (B_L), and clay (B_c); relationship from Clapp and Hornberger (1978) for sand (CH_s), loam (CH_L), and clay (CH_c).

ECMWF

HTESSEL hydrology scheme

- A spatially variable hydrology scheme is being tested following Van den Hurk and Viterbo 2003
- Use of a the Digital Soil Map of World (DSMW) 2003
- Infiltration based on Van Genuchten 1980 and Surface runoff generation based on Dümenil and Todini 1992

$$w(h) = w_r + \frac{w_{sat} - w_r}{(1 + \alpha h)^{1 - 1/n}} \quad K(h) = K_{sat} \frac{\left[(1 + \alpha h^n)^{1 - 1/n} - \alpha h^{n - 1} \right]^2}{(1 + \alpha h^n)^{(1 - 1/n)(\lambda + 2)}} \qquad S$$

Table 1: Soil type specific Van Genuchten coefficients

			Texture class				
Parameter	Symbol	units	Coarse	Medium	Medium -fine	Fine	Very fine
Saturation soil moisture content	\mathbf{W}_{sat}	m^3/m^3	0.403	0.439	0.430	0.520	0.614
Residual soil moisture content	$\mathbf{W}_{\mathbf{r}}$	m^3/m^3	0.025	0.010	0.010	0.010	0.010
Fit parameter	α	\mathbf{m}^{-1}	3.83	3.14	0.83	3.67	2.65
Fit parameter	λ	-	1.250	-2.342	-0.588	-1.977	2.500
Fit parameter	n	-	1.38	1.18	1.25	1.10	1.10
Saturated hydraulic conductivity	$\mathrm{K}_{\mathrm{sat}}$	10 ⁻⁶ m/s	6.94	1.16	0.26	2.87	1.74

$$S = 1 - \left(1 - \frac{W}{W_{sat}}\right)^b$$

$$b = 0.01 \le \frac{\sigma_{o} - \sigma_{\min}}{\sigma_{o} + \sigma_{\max}} \le 0.5$$

$$\begin{aligned} R_s &= T - \left(W_{sat} - W\right) + \\ &+ W_{sat} \left[\left(1 - \frac{W}{W_{sat}}\right)^{1/(b+1)} - \left(\frac{T}{(b+1)W_{sat}}\right) \right]^{b+1} \end{aligned}$$

ECMWF

PA Surface II of IV - traning course 2015

HTESSEL hydrology scheme(2)

PA Surface II of IV - traning course 2015

HTESSEL soil water equations

Land surface tiles in ERA40 surface scheme

Modelling inland water bodies

A representation of **inland water bodies and coastal areas** in NWP models is essential to simulate large contrasts of albedo, roughness and heat storage

A lake and shallow coastal waters parametrization scheme has been introduced in the ECMWF Integrated Forecasting System combining

Inland water bodies fraction

Aggregated from GLOBCOVER 300m

Water bodies heat storage

- All inland water bodies are important energy storage drastically changing sensible heat flux
- FLake (Mironov et al. 2010, BER) <u>http://lakemodel.net</u> a two-layer bulk model based on a selfsimilar parametric representation of the evolving temperature profile within lake water and ice
- Introduced in the IFS by Dutra et al. (2010, BER), Balsamo et al. (2010, BER; 2012, TELLUS)

cycle

Lake depth is a scalar for lake temperature annual

The relationship between the lake temperature (as observed by MODIS) and the lake depth can be used to infer the lake depth in an inversion procedure (Balsamo et al. 2010 BER)

Introduction of Lakes in HTESSEL

Dutra, 2010 (BER), Balsamo et al. 2010 (BER)

A sizeable fraction of land surface has sub-grid lakes: different radiative, thermal roughness characteristics compare to land \rightarrow affect surface fluxes to the atmosphere LAKE COVER FRACTION

Slide 39

ECMWF

Energy fluxes: Diurnal cycles

Manrique-Suñén et al. (2013, JHM)

Main difference between both sites is found in the energy partitioning into SH and G

PA Surface II of IV - traning course 2015

Impact of lakes in NWP forecasts

Balsamo et al. (2012, TELLUS-A) and ECMWF TM 648

Forecast sensitivity

Cooling 2m temperature Warming 2m temperature

Degrades 2m temperature

Slide 41

Forecasts sensitivity and impact of lakes is shown to produce

a spring-cooling on lake areas with benefit on the

temperatures orecasts (day-2 (48-hour forecast) at 2m.

Lakes are the new added tile to ECMWF land surface scheme that went in operational use on the 12th of May 2015. The importance of lakes and their temperature and ice conditions in generating clouds and storms can be appreciated here:

http://time.com/9480/great-lakes-frozen-time-lapse-video/

