Parameterization of land-surface processes in NWP

WATER VAPOR

WATER STORAGE IN ICE AND SNOW Gianpaolo Balsamo

PRECIPITATION

EVAPOTRANSPIRATION

TRANSPORT

EVAPORATION

Introductory lecture

BOUNDARY LAYER (AND EXCHANGE WITH FREE ATMOSPHERE)

OCEAN

G. Balsamo Room: 001 Extension: 2246 Sjiten1paolo.balsamo@ecmwf.int

GROUND-WATER FLOW

PA Surface I of IV - traning course 2015

Few words about me...

RESEARCH INTERESTS

Land surface Modelling & Data Assimilation, Interaction of Water Energy Carbon cycles,

Land-Atmosphere predictability studies

UNIVERSITY PATHWAY	PROFESSIONAL PATHWAY
2012 HDR (Habilitation) in Meteorology from University UPS-	2009 Senior Scientist, ECMWF, U.K. : Responsible for the land
TOULOUSE III, France.	surface modelling in NWP
2003 PHD (Doctorate) in Meteorology from University UPS–	2006 Scientist, ECMWF, U.K. : Land Surface Modelling in NWP
TOULOUSE III, and University of Genoa, Italy (co-tutored).	2004 Visiting Scientist Canadian Meteorological Centre,
<u>1999</u> <u>« Laurea in Fisica » General Physics Degree (4-year,</u>	Montréal: Land Data Assimilation System in NWP
with Atmospheric Physics spec.) University of Turin, Italy.	2003 Post-doc CNRM/Météo-France, Toulouse: Assimilation of
<u>1997</u> , <u>Meteorology (BSc/MSc courses as ERASMUS student)</u>	land surface observations in a NWP model.
Department of Meteorology, University of Reading, UK.	<u>1999</u> Forecaster for the Piedmont Regional Meteorological
	Centre (ARPA-Piemonte), Turin, Italy.

Slide 2

CECMWF

Layout of these lectures

The challenges for Land Surface Modeling

 Capture natural diversity of land surfaces (<u>heterogeneity</u>) via a simple set of equations

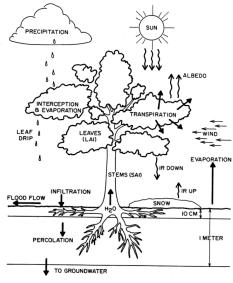


Figure 7 Water and energy processes at the Earth surface in the presence of vegetation.

ECMWF

Focus on elements which affects more directly weather and climate (i.e. soil moisture, snow cover).

Today's satellite images are very informative not only about natural land surface...

Methodology

- Plant and soil science (a bite)
- ECMWF model and its evolution
- Justification and examples

Further readings

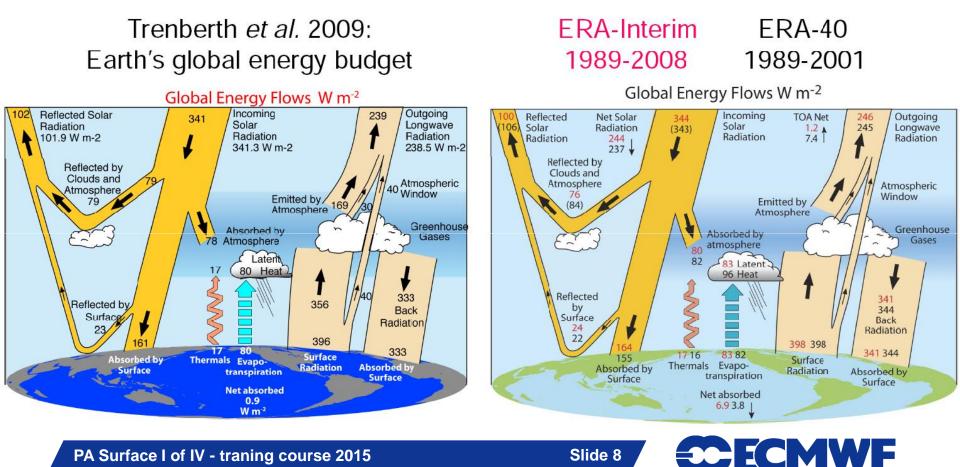
- Terrestrial Hydrometeorology, by W.J. Shuttleworth
- Environmental Soil Physics, by D. Hillel
- and few links to lecture notes by P. Viterbo

http://www.ecmwf.int/newsevents/training/lecture_notes/pdf_files/PARAM/Land_surf.pdf

http://www.ecmwf.int/newsevents/training/lecture_notes/pdf_files/PARAM/Rol_land.pdf

http://www.ecmwf.int/newsevents/training/lecture_notes/pdf_files/PARAM/Surf_ass.pdf

Earth energy cascade


- The sun emits 4 x 10²⁶ W
- the Earth intercepts 1.37 kW/m²
- This energy is distributed between
 - Direct reflection (~30%)
 - Conversion to heat, mostly by surface absorption (~43%), reradiated in the infrared
 - Evaporation, Precipitation, Runoff (~22%)
 - Rest of the processes (~5%, Winds, Waves, Convection, Currents, Photosynthesis, Organic decay, tides, ...)

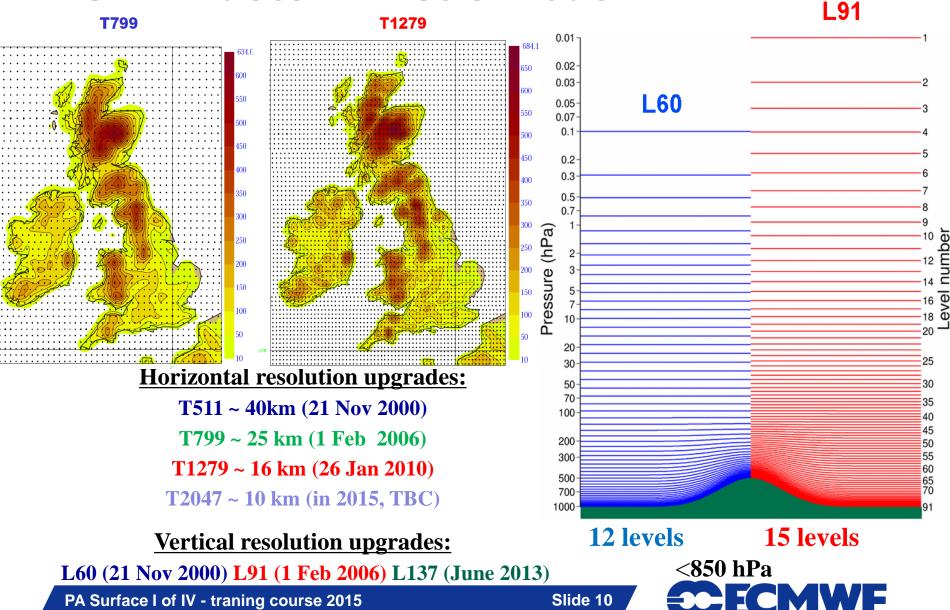
Robinson & Henderson-Sellers, 1999

Role of land surface (1)

Atmospheric general circulation models need boundary conditions for the enthalpy, moisture (and momentum) equations: Fluxes of energy, water at the surface.

Slide 8

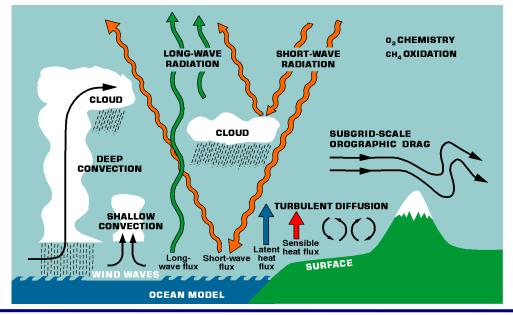
PA Surface I of IV - traning course 2015


Role of land surface at ECMWF

ECMWF model(s) and resolutions

		Length	Horizontal	Vertical	Remarks
-	Deterministic	10 d	T1279 (16 km)	L137 00+12	UTC
-	Monthly/VarEPS (N=51)	0-10d 11-32d	T639(30 km) T399(60 km)	L91 L91	(SST tendency) (Ocean coupled)
-	Seasonal forecast	6 m	T159 (125 km)	L62	(Ocean coupled)
-	Assimilation physics	12 h	T255(80 km)/ T159(125 km)	L137	T95(200 km) inner
-	ERA-40 Reanalysis 1958-2002	T159(125 k	xm)	L60	3D-Var+surface OI
-	ERA-Interim Reanalysis	1989-today	/ T255(80 km)	L91	4D-Var+surface OI

Land surface modelling (and data assimilation systems) need flexibility & upscalability (conservation) properties to be used by at a wide range of spatial resolutions in spite of natural heterogeneity of land surfaces. Errors in the treatment of land surface are likely to affect all forecasts products.


ECMWF deterministic model

Role of land surface (3)

• Feedback mechanisms for other physical processes, e.g.:

- Surface evaporative fraction¹ (*EF*), impacting on low level cloudiness, impacting on surface radiation, impacting on ...
- Bowen ratio² (Bo), impacting on cloud base, impacting on intensity of convection, impacting on soil water, impacting on ...

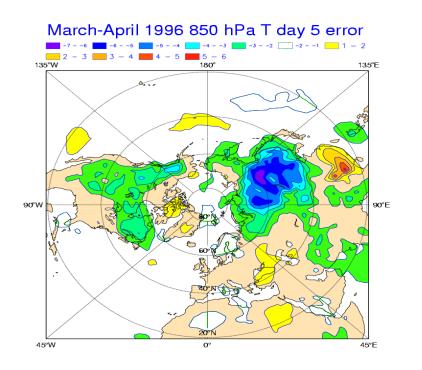


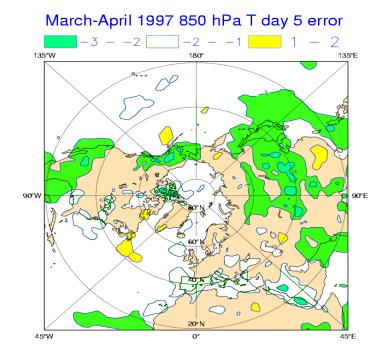
(1) *EF* = (Latent heat)/(Net radiation)

(2) *Bo* = (Sensible heat)/(Latent heat)

Role of land surface (4)

- Partitioning between sensible heat and latent heat determines soil wetness, acting as one of the forcings of low frequency variability (e.g. extended drought periods).
- At higher latitudes, soil water only becomes available for evaporation after the ground melts. The soil thermal balance and the timing of snow melt (snow insulates the ground) also controls the seasonal cycle of evaporation.
- The outgoing surface fluxes depend on the albedo, which in turn depends on snow cover, vegetation type and season.
- Surface (skin) temperatures of sufficient accuracy to be used in the assimilation of TOVS satellite radiances (over land there is no measured input field analogous to the sea surface temperature)

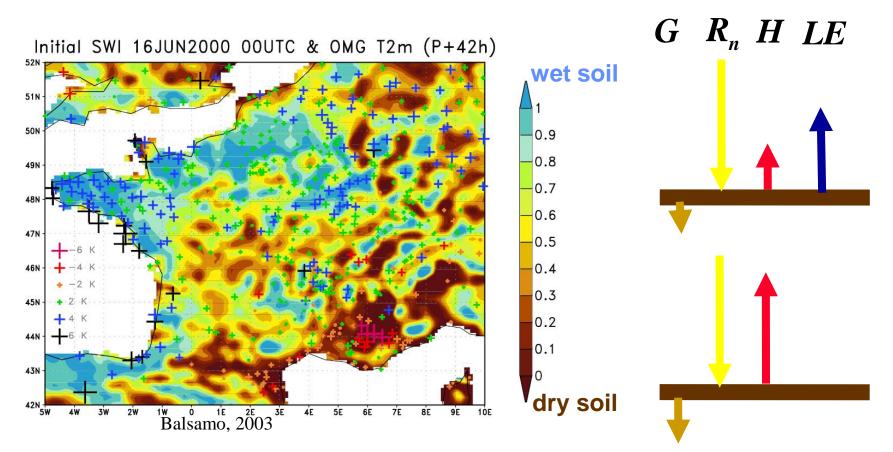



ECMWE

Systematic errors 850 hPa T

1996 operational bias

1997 operational bias



Viterbo and Betts, 1999

 A smaller albedo of snow in the boreal forests (1997) reduces dramatically the spring (March-April) error in day 5 temperature at 850 hPa

Near surface atmospheric errors

 In the French forecast model (~10km) local soil moisture patterns anomalies at time t₀ are shown to correlate well with large 2m temperature forecast errors (2-days later)

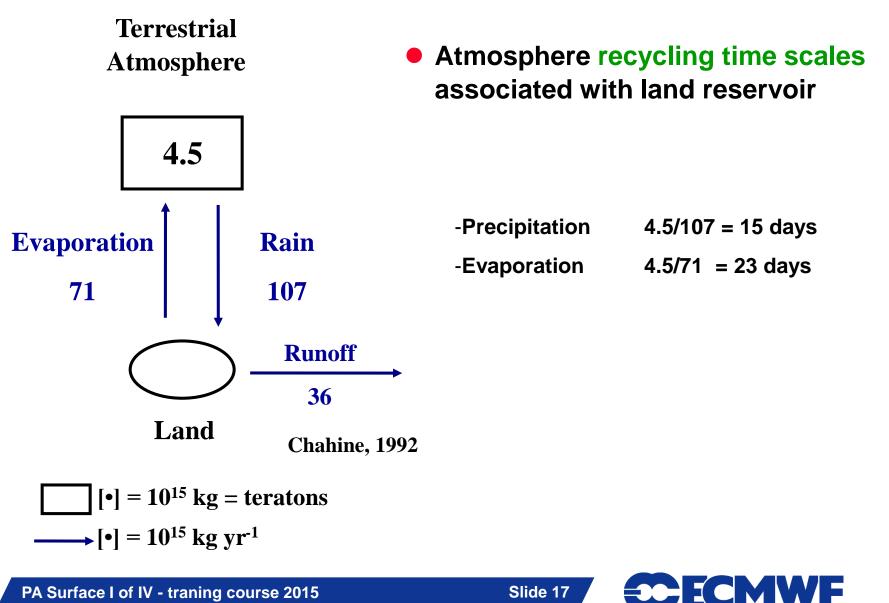
Global budgets (1)

 Mean surface energy fluxes (Wm⁻²) in the ERA40 atmospheric reanalysis (1958-2001); positive fluxes downward

	R _s	R _T	Н	LE	G	Bo=H/LE
Land	134	-65	-27	-40	2	0.7
Sea	166	-50	-12	-102	3	0.1

Land surface

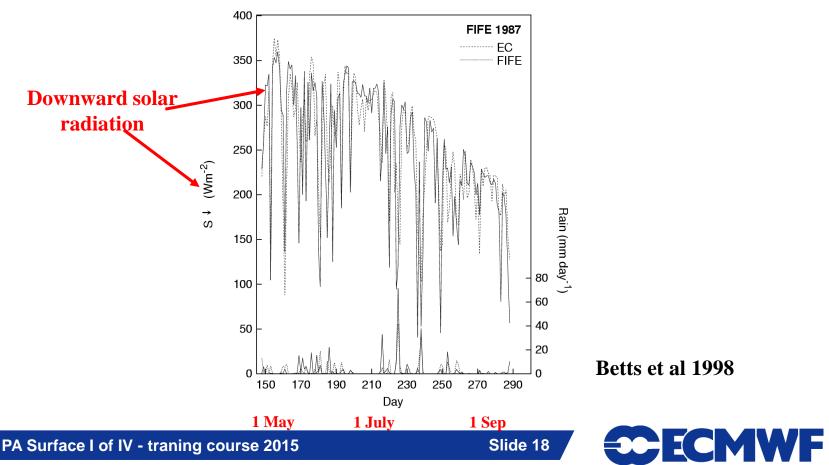
- The net radiative flux at the surface (R_S+R_T) is downward. Small storage at the surface (*G*) implies upward sensible and latent heat fluxes.
- Bowen ratio: Land vs Sea
 - Different physical mechanisms controlling the exchanges at the surface
 - Continents: Fast responsive surface; Surface temperature adjusts quickly to maintain zero ground heat flux
 - Oceans: Large thermal inertia; Small variations of surface temperature allowing imbalances on a much longer time scale


PA Surface I of IV - traning course 2015

Global budgets (2)

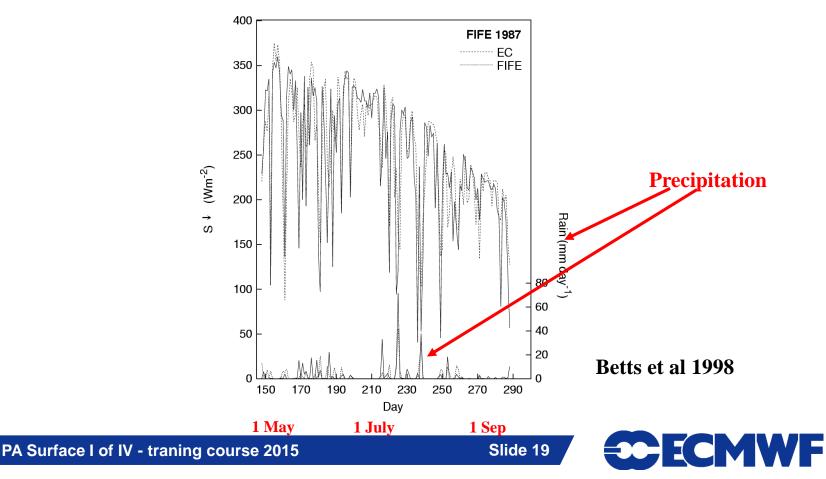
Surface fluxes and the atmosphere

- Sensible heat (*H*) at the bottom means energy immediately available close to the surface
- Latent heat (*LE*) means delayed availability through condensation processes, for the whole tropospheric column
- The net radiative cooling of the whole atmosphere is balanced by condensation and the sensible heat flux at the surface. Land surface processes affect directly (*H*) or indirectly (condensation, radiative cooling, ...) this balance.


Terrestrial atmosphere time scales

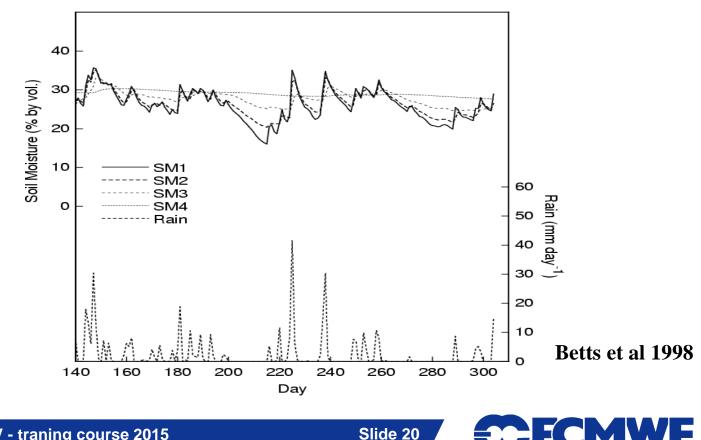
Surface time scales (memory) (1)

Diurnal time scale


- Forcing time scale determined by the quasi-sinusoidal radiation modulated by clouds

Surface time scales (memory) (2)

Diurnal/weekly time scale


 Forcing time scale determined by the "quasi-random" precipitation (synoptic/mesoscale)

Surface time scales (memory) (3)

Weekly/monthly time scale

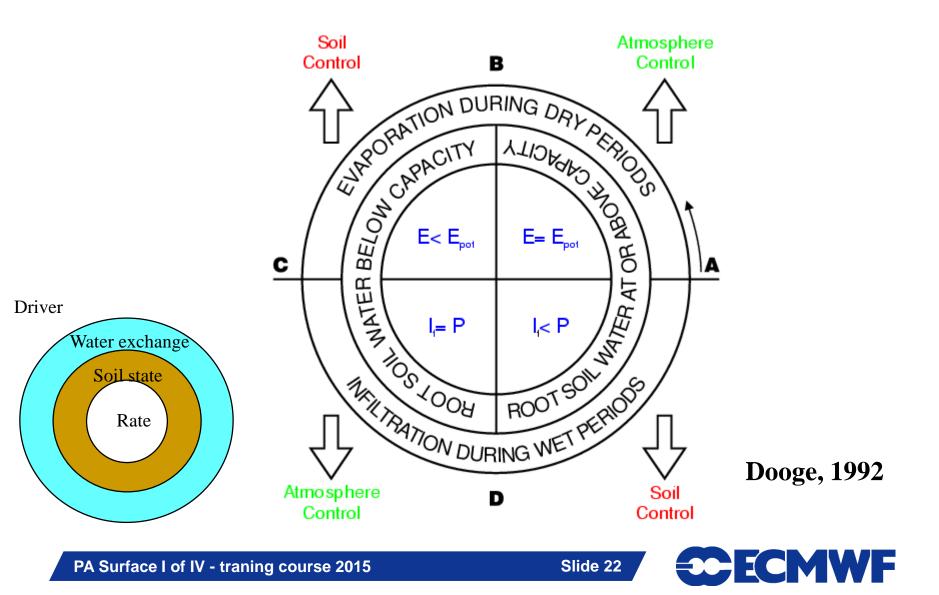
- Internal time scale determined by the physics of soil water exchanges/transfer

Surface time scales (memory) (4)

Weekly/monthly time scale

- Evaporation time scale determined by the ratio (net radiative forcing)/(available soil water)

Slide 21

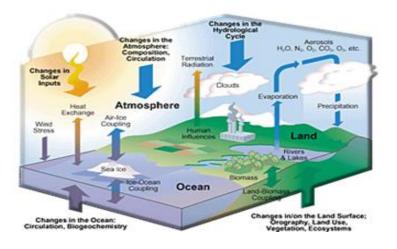

 $R_n = 150 \text{ Wm}^{-2} \sim (5 \text{ mmd}^{-1})$

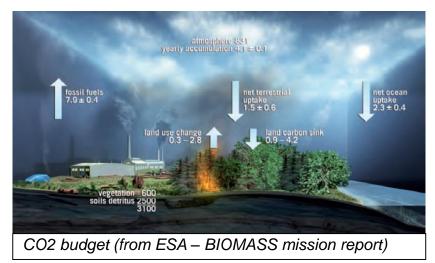
Soil water=150 mm

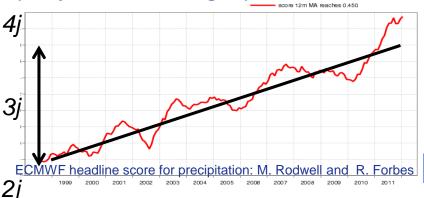
 $(5 \text{ mmd}^{-1})/(150 \text{ mm}) = 30 \text{ days}$

The hydrological rosette

A diversity of land models !!!

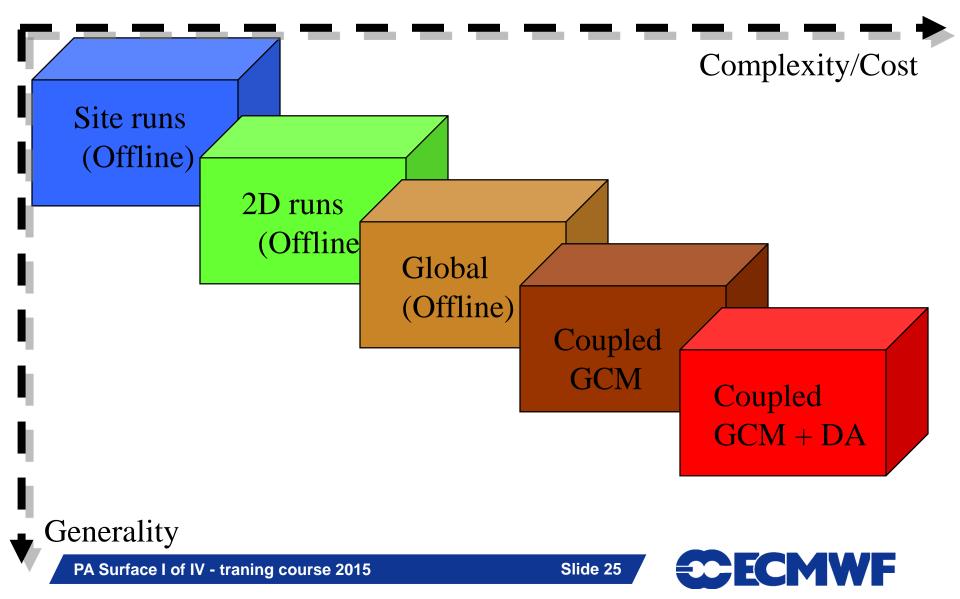

Key Model	Number Canopy Layers	Inter- ception Treated	Numb Includ T	er of Lay led for ⊖	ers Roots	Canopy	Rationale for Temperature	Rationale for Soil moisture	Reference
	1		2	2	2				Dillin (1006-1002)
A BATS1E	1	yes	2	3	2	Penman/Monteith	force-restore	Darcy's Law	Dickinson <i>et al</i> (1986, 1993)
B BEST	1	yes	3	2	2	Penman/Monteith	force-restore	Philip-de Vries	Pitman et al (1991) Cogley et al (1990)
C BUCKET	0	no	0	1	1	-	instantaneous surface	bucket + variation	Robock <i>et al</i> (1995)
						_	heat balance		
D CLASS	1	yes	3	3	3	Penman/Monteith	heat diffusion	Darcy's Law	Verseghy (1991)
									Verseghy et al (1993)
E CSIRO	1	yes	3	2	1	aerodynamic	heat diffusion	force-restore	Kowalczyk et al (1991)
F GISS	1	yes	6	6	6	aerodynamic	aerodynamic	Darcy's Law	Abramopoulos et al (1988)
G ISBA	1	yes	2-3	2	1	aerodynamic	force-restore	force-restore	Noilhan and Planton (1989)
H TOPLATS	1	yes	1	2	1	Penman/Monteith	heat diffusion	Philip-de Vries	Famiglietti and Wood (1995)
I LEAF	1	yes	7	7	3	Penman/Monteith	heat diffusion	Darcy's Law	Avissar and Pielke (1989)
J LSX	2	yes	6	6	6	Penman/Monteith	heat diffusion	Philip-de Vries	-
K MAN69	0	no	1	1	1	-	-	bucket	Manabe (1969)
L MILLY	0	no	1	1	1	-	-	bucket	Manabe (1969)
M MIT	0	no	3	3	3	-	heat diffusion	Darcy's Law	Abramopoulos et al (1988)
									Entekhabi and Eagleson (1989)
N MOSAIC	1	yes	2	3	2	Penman/Monteith	-	Darcy's Law	Koster and Suarez (1992a)
O NMC-MRF	1	yes	1	1	1	lumped with soil	-	-	Pan (1990)
P CAPS	1	yes	2	2	1	Penman/Monteith	heat diffusion	diffusion	Mahrt and Pan (1984)
Q PLACE	1	yes	30	30	2	Ohm's law analogy	force-restore	force-restore	Wetzel and Chang (1988)
R RSTOM	-	no	0	1	1	-		bucket + variation	Milly (1992)
S SECHIBA	1	yes	2	2	1	Penman/Monteith	force-restore	Choisnel	Ducoudré et al (1993)
T SSIB	1	yes	2	3	1	Penman/Monteith	force-restore	diffusion	Xue et al (1991)
U UKMO	1	yes	4	1	1	Penman/Monteith	heat diffusion	diffusion	Warrilow et al (1986)
V VIC	1	yes	1	2	1	Penman/Monteith or	heat diffusion	Philip-de Vries	Liang et al (1994)
						full energy balance			
W BIOME	1	yes	1	1	1	Penman/Monteith	force-restore	-	


Table 3.1 Characteristics of several land surface parametrization schemes

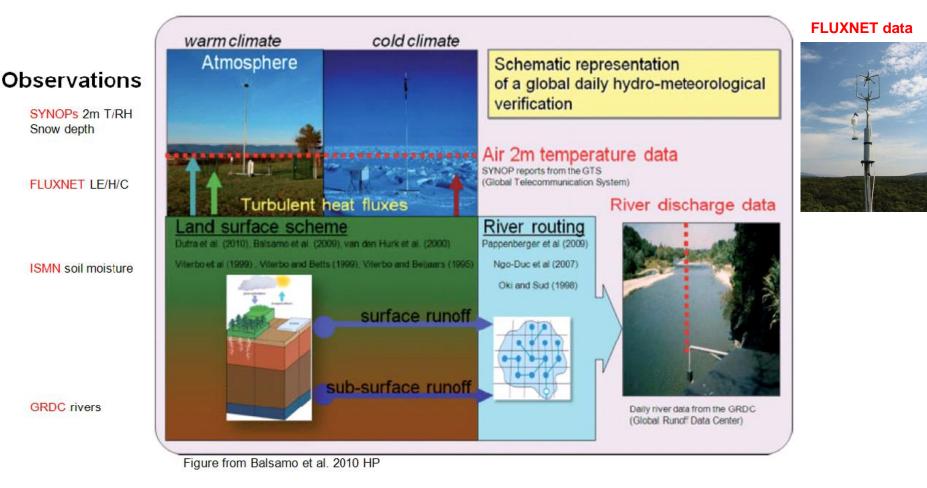

The Water, Energy and Carbon cycle

 Numerical Weather Prediction models have considerably evolved over time with respect to how the represent the land surface and its interaction with the atmosphere

Precipitation forecasts improvements support (1 day/decade in skill gain) refined LSMs

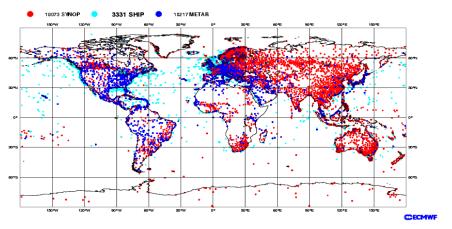

The needs of unification of NWP and Climated model are a driver to develope land surface schemes with increased realism

Evolving towards Earth System Models



Strategy for land surface model development at ECMWF

An Integrated & Process-oriented verification to support development



The combined verification of multiple processes permit to avoid tuning in favor of a more physically-based development

Ground-based conventional observations

SYNOP/METAR/SHIP stations

Proximity map for 50000 inhabitants settlement. Source: JRC, World-Bank)

0 1 2 3 4 6 8 12 18 24 36 2d 3d 4d 5d 10d

ECMWF

Satellite Remote Sensing

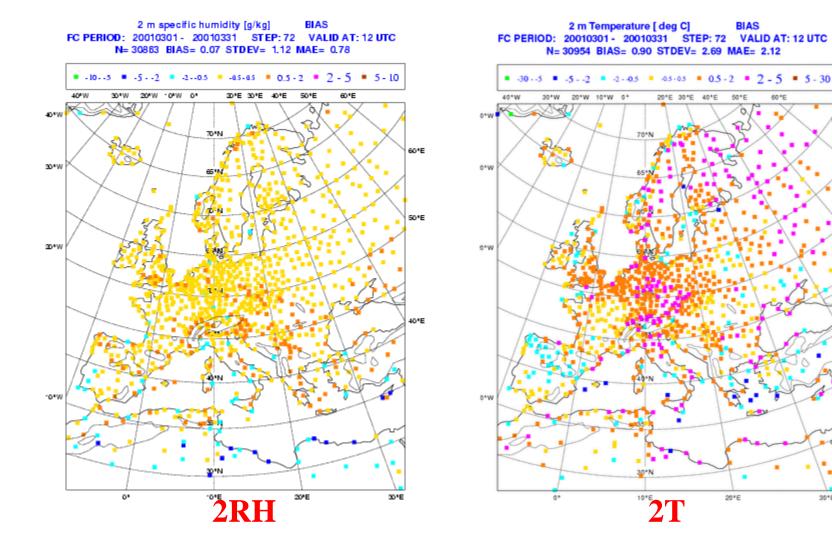
METOP ESA

METEOSAT (MSG) EUMETSAT

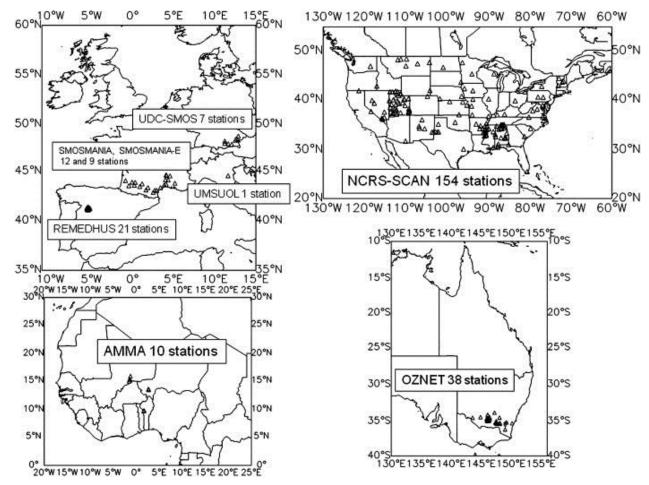
PA Surface I of IV - traning course 2015

SMOS FSA

Europe 2m forecast errors for March 2001


72 H FC verifying at 12 UTC

60*E

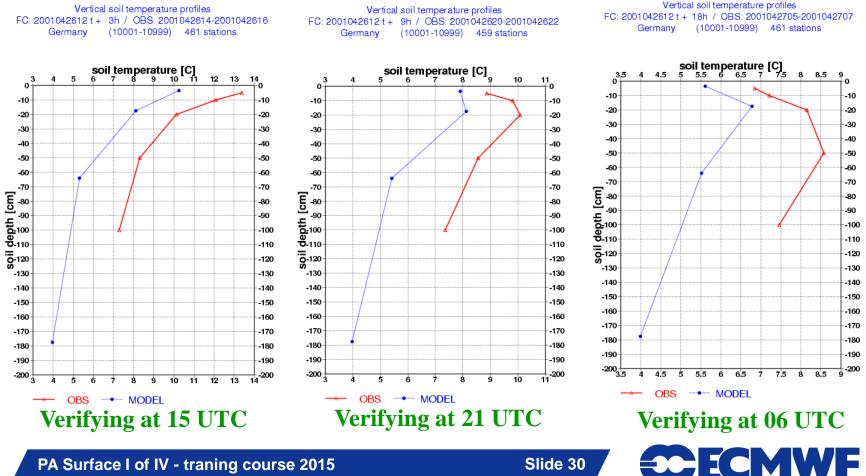

50*E

40°E

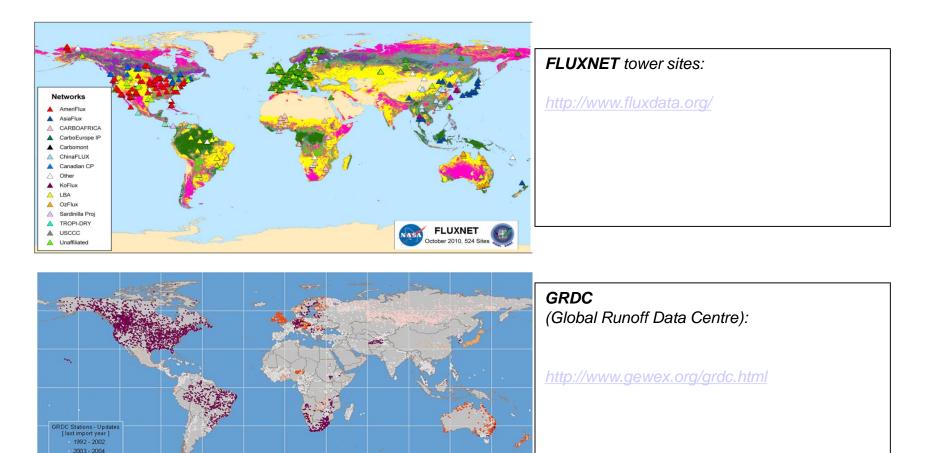
30*E

Soil moisture verification

International Soil Moisture Network (ISMN) TU-Wien http://www.ipf.tuwien.ac.at/insitu/


From Albergel et al. (2012).

PA Surface I of IV - traning course 2015


Soil temperature verification

Averaged over Germany stations 26 April 2001

PA Surface I of IV - traning course 2015

Land Fluxes (E, H₂O, CO₂) verification

X

🛞 GRDC 🖗

PA Surface I of IV - traning course 2015

8.131 stations with monthly discharge data, including data derived from daily data (Status, 5 Jan 2012) Koblenz: Global Runoff Data Centre, 2012.

2005 - 2006 2007 - 2008 2009 - 2010

• 2011 - 2012

ECMWF surface model milestones

Vegetation based evaporation	1989
CY48 (4 layers + …)	1993 / ERA15
Initial conditions for soil water	1994
Stable BL/soil water freezing	1996
Albedo of snow forests	1996
Ol increments of soil water	1999
TESSEL, new snow and sea ice	2000 / ERA40
HTESSEL, revised soil hydrology	2007
HTESSEL+SNOW, revised snow	2009
HTESSEL+SNOW+LAI, seasonal vegetation	2010
CHTESSEL (carbon-land surface)	2012
LAKETESSEL (addition of lake tile)	2013
PA Surface I of IV - traning course 2015 Slide 32	CECMWF

TESSEL model and validation

Model Description

Viterbo and Beljaars, 1995. J. Climate, 2716-2748.

van den Hurk et al, 2000. EC Tech Memo 295.

ID validation

-Cabauw

Beljaars and Viterbo, 1994. BLM, 71, 135-149. Viterbo and Beljaars, 1995. J. Climate.

-FIFE

Viterbo and Beljaars, 1995. J. Climate.

Betts et al. 1996. JGR, 101D, 7209-7225.

Betts et al., 1998. Mon. Wea. Rev., 126, 186-198.

Douville et al, 2000: MWR, 128, 1733-1756.

-ARME

Viterbo and Beljaars, 1995. J. Climate.

-SEBEX

Beljaars and Viterbo, 1999. Cambridge Univ Press.

van den Hurk et al, 2000.

-All the above + HAPEX-MOBIHLY+BOREAS van den Hurk et al, 2000.

• US Summer 1993

Beljaars et al. 1996. MWR, 124, 362-383.

Betts et al. 1996. JGR, 101D, 7209-7225.

Viterbo and Betts, 1999: JGR, 104D, 19,361-19,366.

Soil water initial conditions

Viterbo, 1996. Douville et al, 2000.

Soil freezing

Viterbo et al., 1999. QJRMS, 125,2401-2426.

Snow forest albedo

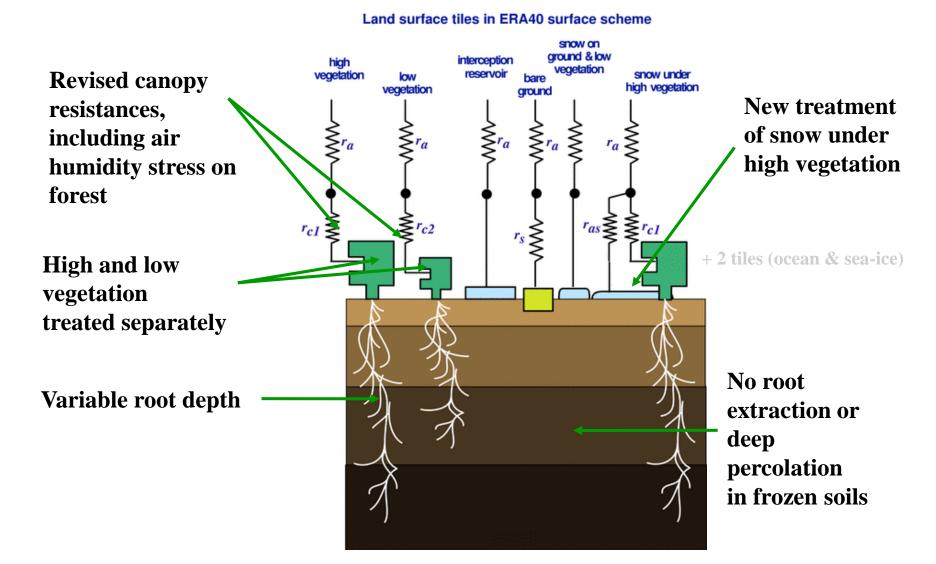
Viterbo and Betts, 1999. JGR, 104D, 27,803-27,810.

• Mississippi river basins

Betts et al., 1998. J. Climate, 11, 2881-2897.

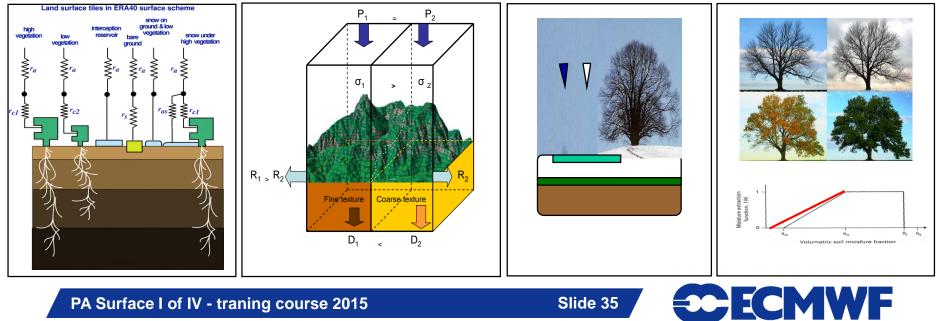
Betts et al., 1999. JGR, 104D, 19, 293-19, 306.

• Mackenzie river basin

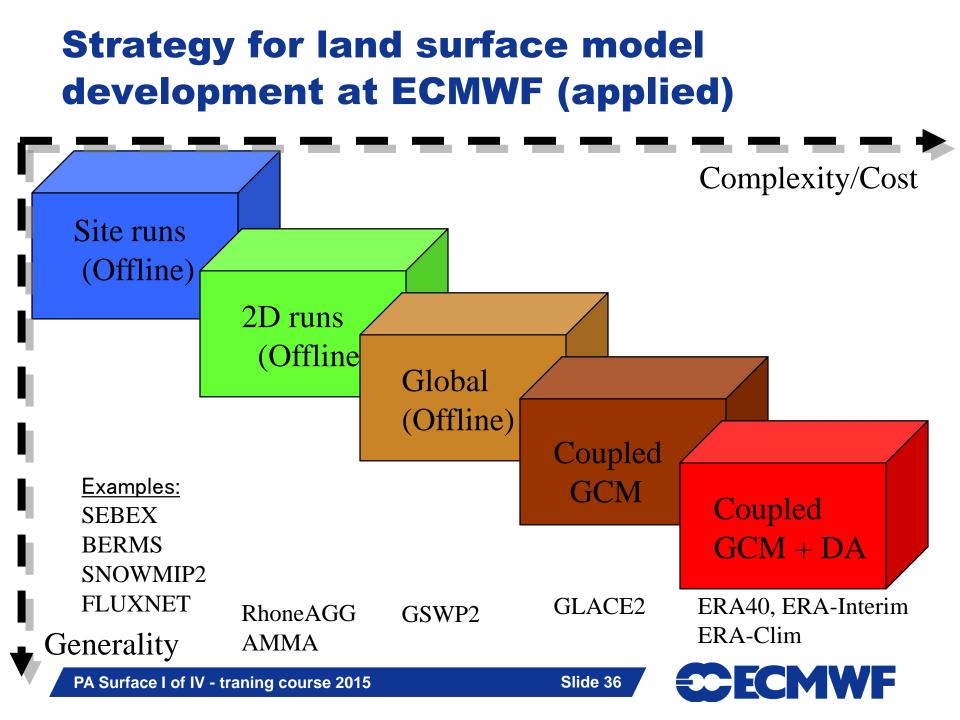

Betts and Viterbo, 2000: J. Hydrometeor, 1, 47-60.

Impact of land on weather

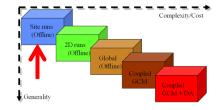
Viterbo and Beliaars, 2002; Springer,

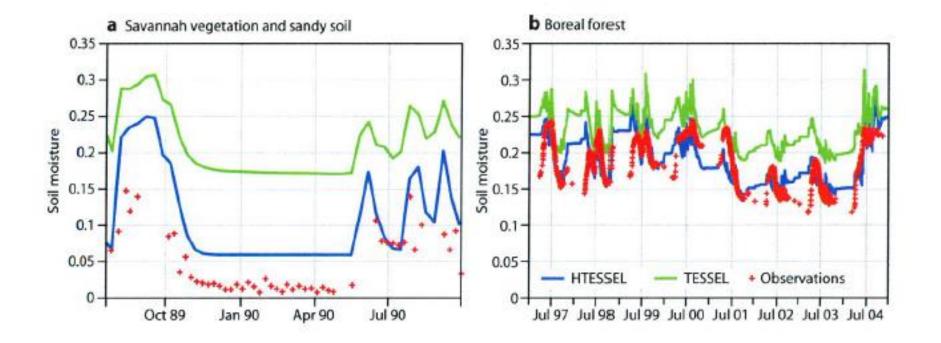

(CH)TESSEL scheme in a nutshell

Tiled ECMWF Scheme for Surface Exchanges over Land

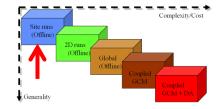


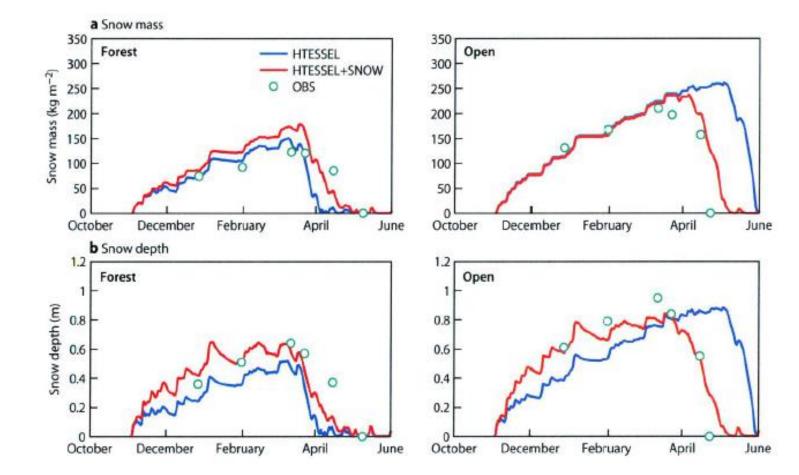
Land surface model evolution

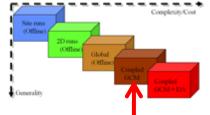

2000/06	2007/11	2009/03	2009/09	2010
• TESSEL	Hydrology-TESSEL	• NEW	SNOW	• NEW LAI
Van den Hurk et al. (2000)	Balsamo et al. (2009)	Dut	ra et al. (2010)	Boussetta et al. (2010)
Viterbo and Beljaars (1995), Viterbo et al (1999)	van den Hurk and Viterbo (2003)	Rev	rised snow density	New satellite-based
Up to 8 tiles (binary Land-Sea mask)	Global Soil Texture (FAO)	Liqu	uid water reservoir	Leaf-Area-Index
GLCC veg. (BATS-like)	New hydraulic properties	Revision of Albedo and sub-grid snow		• COll Eveneration
ERA-40 and ERA-I scheme	Variable Infiltration capacit	•	cover	SOIL Evaporation
	surface runoff revision			Mahfouf and Noilhan (1991)

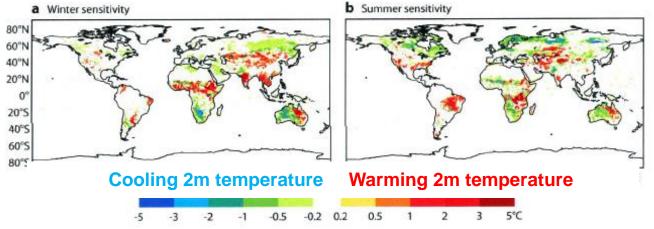


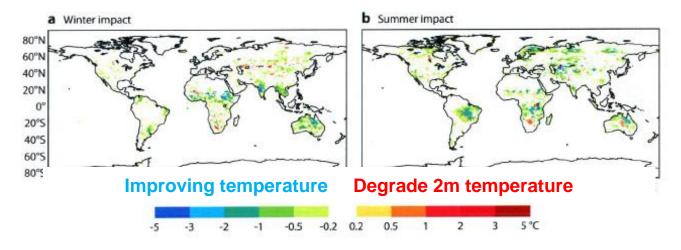
PA Surface I of IV - traning course 2015

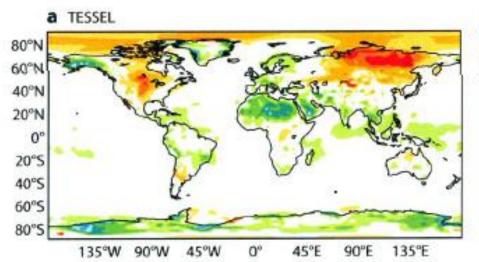

Soil hydrology (Balsamo et al. 2009)

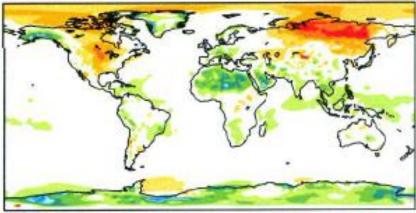



New snow scheme (Dutra et al. 2010)

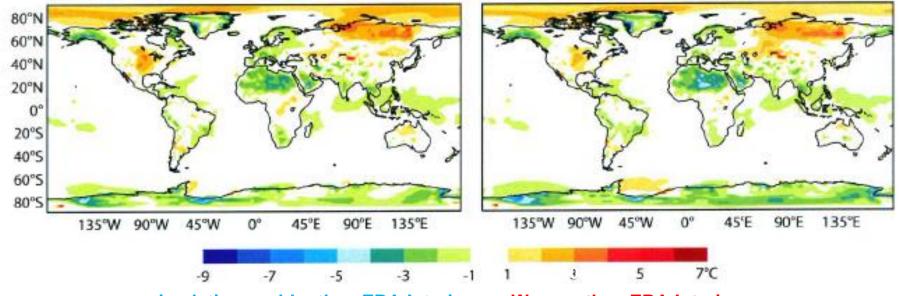



Forecasts (+36-h) impact


Forecast sensitivity

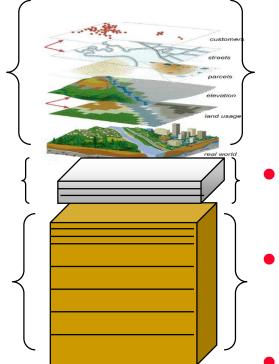

Forecast Impact

Climate simulation impact



b HTESSEL

135°W 90°W 45°W 0° 45°E 90°E 135°E d HTESSEL + SNOW + LAI


C HTESSEL + SNOW

simulations colder than ERA-Interim

Warmer than ERA-Interim

Perspectives for the land surface in Earth System Prediction

- Better characterisation of the vertical profiles
- Better respresentation on heterogeneity and ecosystems interaction
- Unification of processes (cryosphere)

Modularity of the land system is a key to ESP model integrations and inter-operability of parameterizations

- Complexity needs a step-wise approach
- The assimilation methods are integral part of the model diagnostics
- A better coupling between subsystems is the ultimate goal, achievable by enhanced knowledge on each sub-system and the mutual interactions

Slide 41

Parameterization of land-surface processes

...modelling should be always guided by observations...but in case of land surface your senses are also amazing instruments

Slide 42

http://www.youtube.com/watch?v=jfa29pq6NFs

PA Surface I of IV - traning course 2015