Applications of the EPS: Droughts

Emanuel Dutra

emanuel.dutra@ecmwf.int

 Droughts caused the highest number of deaths among natural disasters in 1984 Ethiopia/Sudan (450,000 persons), 1974 Sahel (325,000 persons) (UN 2008);

• The recent 2010/11 drought in the Horn of Africa caused an humanitarian crisis affecting about 10 million people;

• The US drought in 2012/13 caused a significant reduction in crop/livestock production and cost more than \$35 billion in the Midwest (estimated reduction of the GDP by 0.5-1% of the US as a whole)

Outline

Droughts indices and seasonal forecasts

Meteorological drought : Standardized precipitation index (SPI)

- Monitoring and forecasting meteorological droughts:
 - Probabilistic monitoring of SPI (using ENS precipitation)
 - Merging of ECMWF precipitation products (monitoring + forecasting)
 - Drought onset
- The 2010/11 drought in the Horn of Africa: ECMWF products

Seasonal forecasts

• Seasonal forecast: longer time-spatial scales than NWP: statistical summary of the weather events occurring in a given season.

Can seasonal forecasts provide an outlook of the evolution of drought ?

Anomaly correlation (warm colours == skill)

• Monitoring current drought conditions is also very important (cumulative effect of rainfall deficits).

• Can we use ECMWF products to monitor and forecast meteorological droughts ?

© ECMWF

Examples of current systems

http://droughtmonitor.unl.edu/

http://www.cpc.ncep.noaa.gov/products/expert assessment/seasonal drought.html

ECMWF

WMO Regional Climate Outlook Products

http://www.wmo.int/pages/prog/wcp/wcasp/clips/outlooks/climate forecasts.html

Greater Horn of Africa consensus Climate output for Sep-Dec 2012 (ICPAC) http://www.icpac.net/Forecasts/forecasts.html

These seasonal outlooks merge models with forecasters experience

Can we process model data and provide a useful and straightforward product to forecasters ? A meteorological drought index ?

© ECMWF

Predictability training course 2015, EPS applications: Droughts Slide 5

Drought indices

Why "indices" ?

-Represent an anomaly in terms of the past climate (observations or model)

-Easier to understand / comparable in space and time (60 mm rain anomaly is not the same everywhere / every time).

Drought indices are normally divided in three categories :

•Meteorological drought :

•Precipitation anomalies :

Standardized Precipitation Index (SPI);

•Drought spells (define thresholds of number of days with no rain);

•Hydrological drought :

•Soil moisture / discharge / reservoirs:

•Palmer Drought severity Index (PDSI);

•Standardized runoff index (SRI);

•Soil moisture anomalies (SMA);

•Agricultural drought :

•Crop production / vegetation / available soil moisture:

Crop moisture index;

•Vegetation indexes (e.g. NDVI);

More details in Heim 2002 BAMS

The Standardized Precipitation index (SPI) : Calculation

-Why the SPI ?

- Recommended by WMO;
- -Many weather services and stakeholders know about the SPI.
- -Only based on monthly precipitation (model / observations);
- -Can be calculated for different accumulation periods: related with different affected systems.

From precipitation to SPI:

1) Monthly time series of precipitation:

- local observation, model grid point, region average;
- long and homogenous time series (at least 30 years);

2) Selection of the accumulation time period *k*: e.g. 3, 6, 12 months

(depend on the particular application)

Accumulate precipitation : $P^*(m) = sum [P(m-k+1) : P(m)].$

3) Normalize the precipitation distribution:

Transform the precipitation distribution in to a standard normal distribution (mean 0 and standard deviation 1)

SPI: normalization

Normalize the precipitation distribution:

Transform the accumulated precipitation distribution in to a standard normal distribution (mean 0 and standard deviation 1).

The normalization is applied separately for each calendar month (i.e. pulling together all the Januarys, Februarys, etc.).

In general:

1) Fit a cumulative distribution function (CDF) to the precipitation (parametric, non-parametric,...)Gamma is commonly used;

2) - For each precipitation value (P*) find the probability (X) (on the fitted cdf);

3) – For each probability (X) find the inverse normal with mean zero and standard deviation 1.

Precipitation

X: 507.5 Y: 0.4172

600

700

Acc precip

Gamma F

400

500

0.9

0.8

0.7 0.6 0.5 0.4

0.3

0.1

SPI: selection of the precipitation accumulation period

Which accumulation period should be selected: 3, 6, 12 months ? (or others ?)

No rule: depend on the application.

In general:

SPI-3: 3 months accumulation: soil moisture / crop production in rainfed areas;

SPI-6/12 : 6 to 12 months accumulation: water reservoirs (e.g. river discharge, ground water)

Example: Upper Niger basin

Temporal correlation between SPI (different time scales) and river discharge

More examples:Vicente-Serrano et al 2012 EOS Vicente-Serrano et al 2012 AG

Outline

Droughts indices and seasonal forecasts

Meteorological drought : Standardized precipitation index (SPI)

- Monitoring and forecasting meteorological droughs:
 - Probabilistic monitoring of SPI (using EPS precipitation)
 - Merging of ECMWF precipitation products (monitoring + forecasting)

© ECMWF

- Drought onset
- The 2010/11 drought in the Horn of Africa: ECMWF products

Why probabilistic monitoring ?

Average number of rain-gauges in 1x1 grid-box in **GPCC**

Reanalysis v6 (Doi:10.5676/DWD_GPCC/FD_M_V6_100) First guess (Doi: 10.5676/DWD_GPCC/FG_M_100)

Large reduction of stations reporting in near real time in the last decade.

-> Uncertainty in near-real time precipitation observations

This will affect the SPI monitoring.

Could we use the ECMWF ENS short-range forecasts to generate probabilistic monthly means of precipitation anomalies ?

Need to define the precipitation anomaly (will be merged with GPCC data)

- Use the hindcast dataset, available since March 2008;
- For a particular month, the model climate is generated by the 18* past forecast dates +/- 2 weeks : 5 (weeks) x 18* (years) x 5 (ensemble members) : 450 samples (Fc)

© ECMWF

FCMV/F

Monthly mean anomalies of F'= F/FC are multiplied by the GPCC climatology.

* 20 years since July 2012

Monthly precipitation in the Horn of Africa

Initial results showed that monthly means of the EPS had a reduced spread:

- The ENS is not designed to generate a large spread in the first forecast hours and/or to generate monthly means;
- If we use a longer forecast lead time (e.g. 5 days), we would increase the spread, but loose skill
- Artificially increase the monthly means forecast spread:
- F' = F a + F* (1-a); a inflation factor (4 was selected), F* the forecast ensemble mean

SPI6 in the Horn of Africa

Time mean (2009-12) root mean square error of the ensemble mean SPI

© ECMWF

Time mean (2009-12) root mean square error of the ensemble mean SPI, compared with the time-mean ensemble spread about the ensemble-mean SPI: With 4 times spread inflation the RMS error is similar to the spread in most regions.

Assuming GPCC as baseline: correlations with the different SPI products: 2009-2012

ENS4 – comparable results with GPCC First guess

An independent dataset: FAPAR Fraction of Absorbed Photosynthetically Active Radiation

- Proxy for vegetation conditions

There is not a 1-to-1 relation between SPI/FAPAR.

With this independent dataset, it is not possible to rank the different SPI products:

Validating/ verifying SPI is not straightforward. The global scale data should be evaluated locally.

© ECMWF

Outline

Droughts indices and seasonal forecasts

Meteorological drought : Standardized precipitation index (SPI)

- Monitoring and forecasting meteorological droughs:
 - Probabilistic monitoring of SPI (using EPS precipitation)
 - Merging of ECMWF precipitation products (monitoring + forecasting)

© ECMWF

- Drought onset
- The 2010/11 drought in the Horn of Africa: ECMWF products

Monitoring and forecasting SPI: African basins

Products: Monthly means of precipitation:

ERA-Interim reanalysis Jan 1979 to present (near real-time update): monitoring

EMCWF System 4 seasonal forecasts: 6 months lead time, issued once per month. Hindcast: 1981 to 2010 (evaluate system performance)

Other products:

CAMS-OPI: monthly means of precipitation 1979 to present (alternative for monitoring), based on rain-gauges/satellite (reduced number of stations reporting in real time)

GPCP: monthly means of precipitation 1979 to 2010: Verification Rain-gauges/satellite (quality control)

ERA-Interim: www.ecmwf.int/research/era/do/get/index Seasonal forecasts S4: http://www.ecmwf.int/products/forecasts/seasonal/documentation/system4/index.html

More details: datasets, methods: Dutra et al. 2013 HESS

Monitoring and forecasting SPI: merging data

How to merge the monitoring with the seasonal forecast? 12 month accumulation Long lead time **Observation Forecast** - monitoring + forecast Nov11 Jan12 Mar12 May12 Jul12 Sep12 Nov12 Short lead time Monitoring Forecast Observation + monitoring - forecast Probabilistic forecasts Probabilistic monitoring not used. **Forecast date** Verification date Short period (only since 2008) to evaluate the skill of seasonal forecasts

1) Spatial averaging of monitoring and forecast to the target region

2) Bias correct seasonal forecast

$$P'_{m,l} = \alpha_{m,l} P_{m,l} \qquad \alpha_{m,l} = \overline{P}_m^{mon} / \overline{P}_{m,l}$$

3) Merge monitoring and forecasts to create the SPI

Yoon et al 2012, *J. Hydrometeor* Dutra et al. 2013 HESS

© ECMWF

CMWF

Monitoring and forecasting SPI: merging data

Limpopo 1991/1992 drought: SPI-12 Example of displaying the seasonal forecasts, S4 (blue), CLM (gray).

ECMWF

Aug91 Sep91 Oct91 Nov91 Dec91 Jan92 Feb92 Mar92 Apr92

Oct91 Nov91 Dec91 Jan92 Feb92 Mar92 Apr92 May92 Jun92

Monitoring (magenta: ERA-Interim) in good agreement with verification (red, GPCP)

Slide 19 Predictability training course 2015, EPS applications: Droughts

How to evaluate skill of the SPI forecasts ?

Many methods and tools available to evaluate skill of probabilistic forecasts Anomaly correlation, ROC and REL diagrams, etc...

e.g. see the ECMWF training course material:

Potential skill vs. Real skill

We merge a monitoring product, that might have problems (e.g. ERAI), with the seasonal forecasts.

The potential skill can be evaluated by merging the forecasts with the "perfect" monitoring, i.e. our verification (GPCP).

Benchmark the forecast

Can our merged forecasts beat a simple climatology ?

Create a forecast ensemble based on previous years of the monitoring: SPI evolution in case the next months are "normal" : difficult to beat (previous slide)

Example of forecast benchmark and potential vs. Real skill (1) Climate forecasts (CLM) : select past 15 years (S4 hindcast ensemble size)

Horizontal axis: verification calendar month Vertical axis: Lead time

Potential skill: Merge the S4 and CLM forecasts with the verification, in this case GPCP (not available in real time)

ACC- Anomaly correlation coefficient Retter closer to 1.

Forecast valid for June 5 months : issued in January

Real skill: Merge the S4 and CLM forecasts with the monitoring product, in this case ERAI.

© ECMWF

	3 .	e observed	
ROC (Relative Operating Characteristics)	e predicted	Yes	No
	yes	а	b
1) Define a treshold: e.g SPI < -1 (moderate/extreme drought)	no	С	d
2) Calculate False alarm rate and hit rate for different	8		1473 C.M. ²

hit rate $H_i = \frac{a}{a+c}$ false alarm rate $F_i = \frac{b}{b+d}$

SPI-6: 5 months lead time

probabilities.

No monitoring, first 6 months of forecasts

Gray: CLM forecast no skill (ROC≈ 0.5) Black: S4 , forecast has skill (ROC 0.69)

ECMWF

Gray: CLM has skill (ROC 0.84), coming from the monitoring

S4: higher skill than for SPI-6 (ROC 0.91), better than CLM

Drop in skill due to the monitoring.

© ECMWF

ECMWF

For long accumulation SPI time-scales, difficult to beat a climatology based forecast. Skill dependent on the underlying skill of precipitation in the seasonal forecast.

Potential vs. Real skill : Importance of good quality monitoring

Good quality monitoring can increase the skill of the forecasts in 1 to 2 months lead time.

© ECMWF

CMWF

ERA-Interim, with a global coverage and near real-time update can be used for monitoring (particular assessment should be performed for each region)

Outline

Droughts indices and seasonal forecasts

Meteorological drought : Standardized precipitation index (SPI)

Monitoring and forecasting meteorological droughs:

- Probabilistic monitoring of SPI (using EPS precipitation)
- Merging of ECMWF precipitation products (monitoring + forecasting)

© ECMWF

- Drought onset
- The 2010/11 drought in the Horn of Africa: ECMWF products

Drought onset

Drought event: SPI-6 < thr for at least 3 months **Drought onset month**: first month SPI6 < thr

Given a non drought condition: SPI6 (t-1) > thr, what is the probability of drought occurrence in the next 3 months based on the seasonal forecasts: SPI6(t-1) > thr & (SPI6(t)<thr, SPI6(t+1)<thr,SPI6(t+2)<thr Thr == -0.8

Create a contingency table (global):

Hit rate a/(a+c) (probability of detection) False alarm ratio : b/(a+b) (not the false alarm rate as we use for ROC)

A=24161 B=19995 C=113741 D=3864955

Citation: Yuan, X., and E. F. Wood (2013), Multimodel seasonal forecasting of global drought onset, *Geophys. Res. Lett.*, 40, doi:10.1002/grl.50949.

	e observed	
e predicted	Yes	No
yes	а	Ь
no	С	d

FCMWF

Drought onset

Model	$p(y_1 o_1)$	$p(o_0 y_1)$	ETS
ESP	0.16	0.36	0.14
CCSM3	0.21	0.46	0.17
CM2.2	0.27	0.49	0.20
ECHAMA	0.21	0.42	0.17
ECHAMD	0.21	0.42	0.18
GEOS5	0.27	0.45	0.21
CFSv1	0.23	0.41	0.19
CFSv2	0.23	0.37	0.19
CanCM3	0.27	0.49	0.20
CanCM4	0.29	0.49	0.21
NMME1	0.22	0.33	0.19
NMME2	0.32	0.42	0.24

Our GPCC CLM forecast have similar scores to the ESP forecasts: shows that this analysis is not dependent on the datasets used;

GPCC S4 with similar results to the NMME2 (multi-model with postprocessing (110 ensemble members) – north American multimodel ensemble)

Model	POD	FAR	ETS
GPCC CLM	0.17(0.27)	0.40(0.57)	0.15(0.21)
GPCC S4	0.30(0.42)	0.47(0.57)	0.25(0.29)
ERAI CLM	0.14(0.25)	0.85(0.87)	0.09(0.12)
ERAI S4	0.22(0.31)	0.82(0.84)	0.13(0.14)

This analysis is only based in the SPI ensemble mean forecasts – when we "rescale the ensemble mean to have a standard deviation == 1(): Increase POD but also FAR, with some increase in the ETS.

Drought onset - brier score and decomposition

GPCC S4 lower Brier score than GPCC CLM: worst reliability (climate is better), better resolution (use of S4).

© ECMWF

Drought onset – Probability of detection

Citation: Yuan, X., and E. F. Wood (2013), Multimodel seasonal forecasting of global drought onset, *Geophys. Res. Lett.*, 40, doi:10.1002/grl.50949.

course 2015, EPS applications: Droughts

Drought onset - brier skill score and Equitable threat Score

Brier skill score with similar spatial patterns to ETS. Still the fields are a bit noise (even after a 3x3 smoothing). Regions vs. maps evaluation ? How should be the best way ?

CECMWF

Outline

Droughts indices and seasonal forecasts

Meteorological drought : Standardized precipitation index (SPI)

- Monitoring and forecasting meteorological droughs:
 - **Probabilistic monitoring of SPI (using EPS precipitation)**
 - Merging of ECMWF precipitation products (monitoring + forecasting)

© ECMWF

- Drought onset
- The 2010/11 drought in the Horn of Africa: ECMWF products

Horn of Africa 2010/11: Monitoring

Mean annual cycle of precipitation in the HoA region

Drought monitoring is not restricted to precipitation, what about soil moisture, vegetation, etc...

© ECMWF

The 2010/11 event was so extreme due to the failure two consecutive rainy seasons: Oct-Dec 2010 and Mar-May 2011

Captured by ERA-Interim (precipitation / soil moisture)

Slide 32 Predictability training course 2015, EPS applications: Droughts

More details: Dutra et al. 2012 IJC

Horn of Africa 2010/11: Oct-Dec 2010 forecasts

Greater Horn of Africa Consensus Climate Outlook for September to December 2010 GHACOF26 (ICPAC)

Probabilities between 20-40 : Normal conditions

© ECMWF

Dry conditions in Sept-Dec 2010 in the HoA associated with La-Nina, that was correctly forecasted by ECMWF seasonal forecasts from June 2010 onwards.

Horn of Africa 2010/11: Mar-May 2011 forecasts

Greater Horn of Africa Consensus Climate Outlook for the March May 2011 GHACOF27 (ICPAC)

Precipitation forecasts for Mar-May 2011 3 months means anomaly: equivalent to May SPI-3

Probabilities between 20-40 : Normal conditions

Dry conditions in Mar-May 2011 were not forecasted in advance (expect for the forecasts starting in Mar 2011)

Slide 34 Predictability training course 2015, EPS applications: Droughts

Horn of Africa 2010/11

In each particular application, the performance of the monitoring and forecasting products should be carefully evaluated

Finding that there is no skill can be also useful: Try to understand why, and avoid misleading use.

Merging observations with ECMWF products?

Observations of monthly precipitation are available for a long period (20-30 years)?

- 1) Quality control of the station data;
- 2) Is the data continuously updated in near real time?
 - No: Maybe ERA-Interim could be used for the near real time forecasts: Compare it with observations.
- 3) Seasonal forecasts of SPI:

3.1 Using "climatological" benchmark forecasts: Selection of past years: random or analogue (years with similar conditions to 2012) What will be the evolution of the SPI if the next months are normal ?

3.2 Using ECMWF seasonal forecast: Forecast*: Forecast issued in October 2012; Bias correct the mean using the hindcast data;

FCMV/F

© ECMWF

Point 3.2 can be extended by using other forecasts (dynamical / statistical)

Extend 3.1 and 3.2 for the past, and compare the skill of both: Are they skilful ? Reliable ? This is an important information to consider when communicating the forecasts.

Final Remarks

- Drought forecasting is strongly dependent on good quality monitoring and seasonal forecast products;
- For monitoring, local observations should be used, when available. If ERAI is used, a careful validation should be performed;
- ENS short-range forecasts can be used to generate a probabilistic monitoring of SPI:
 - Increase the ensemble spread, and rely in the skill of short-range precipitation forecasts.
- Take advantage of the past forecasts (hindcasts) of the seasonal system:
 - Allow a robust verification of the forecast system;
 - Apply bias correction methods, tailor made for the application/region ;
- Use probabilistic information (e.g. % of members bellow a threshold), not only the ensemble mean;
- Forecasts of SPI strongly dependent on the underlying skill of precipitation (reduced in some regions).
- Consider other fields other fields such as near surface temperature and soil moisture.

© ECMWF

Further Reading

- Dutra, E., Di Giuseppe, F., Wetterhall, F., and Pappenberger, F.: Seasonal forecasts of droughts in African basins using the Standardized Precipitation Index, Hydrol. Earth Syst. Sci., 17, 2359-2373, doi:10.5194/hess-17-2359-2013, 2013.
- Dutra, E., Wetterhall, F., Di Giuseppe, F., Naumann, G., Barbosa, P., Vogt, J., Pozzi, W., and Pappenberger, F.: Global meteorological drought Part 1: Probabilistic monitoring, Hydrol. Earth Syst. Sci. Discuss., 11, 889-917, doi:10.5194/hessd-11-889-2014, 2014.
- Dutra, E., Pozzi, W., Wetterhall, F., Di Giuseppe, F., Magnusson, L., Naumann, G., Barbosa, P., Vogt, J., and Pappenberger, F.: Global meteorological drought Part 2: Seasonal forecasts, Hydrol. Earth Syst. Sci. Discuss., 11, 919-944, doi:10.5194/hessd-11-919-2014, 2014.
- Dutra, E., Magnusson, L., Wetterhall, F., Cloke, H. L., Balsamo, G., Boussetta, S., and Pappenberger, F.: The 2010–2011 drought in the Horn of Africa in ECMWF reanalysis and seasonal forecast products, Int. J. Climatol., doi: 10.1002/joc.3545, 2012
- Heim, R. R.: A review of twentieth-century drought indices used in the United States, Bull. Amer. Meteor. Soc., 83, 1149-1165, 2002
- Lloyd-Hughes, B., and Saunders, M. A.: A drought climatology for Europe, Int. J. Climatol., 22, 1571-1592, 2002
- UN. Trends in sustainable development. Agriculture, rural development, land, desertification and drought. United Nations. New York: Department of Economic and Social Affairs. 2008
- Vicente-Serrano, S. M., Beguería, S., Lorenzo-Lacruz, J., Camarero, J. J., López-Moreno, J. I., Azorin-Molina, C., Revuelto, J., Morán-Tejeda, E., and Sánchez-Lorenzo, A.: Performance of drought indices for ecological, agricultural and hydrological applications, Earth Interactions, doi: 10.1175/2012ei000434.1, 2012
- Vicente-Serrano, S. M., Beguería, S., Gimeno, L., Eklundh, L., Giuliani, G., Weston, D., El Kenawy, A., López-Moreno, J. I., Nieto, R., Ayenew, T., Konte, D., Ardö, J., and Pegram, G. G. S.: Challenges for drought mitigation in Africa: The potential use of geospatial data and drought information systems, Applied Geography, 34, 471-486, doi: 10.1016/j.apgeog.2012.02.001, 2012
- ECMWF newsletter No. 106 (Winter 2005/2006): Ensemble prediction: A pedagogical prespective.
- Yuan, X., and E. F. Wood (2013), Multimodel seasonal forecasting of global drought onset, Geophys. Res. Lett., 40, 4900–4905, doi:10.1002/grl.50949.

http://droughtmonitor.unl.edu/

http://www.cpc.ncep.noaa.gov/products/expert_assessment/seasonal_drought.html

http://www.wmo.int/pages/prog/wcp/wcasp/clips/outlooks/climate_forecasts.html

http://www.icpac.net/Forecasts/forecasts.html

http://drought.mssl.ucl.ac.uk/

http://edo.jrc.ec.europa.eu/

http://www.ecmwf.int/research/era/do/get/index

http://www.ecmwf.int/products/forecasts/seasonal/documentation/system4/index.html

