Land Surface: Snow

Emanuel Dutra

emanuel.dutra@ecmwf.int

Outline

Snow in the climate system, an overview:

- Observations;
- Modeling;
- Forecasts impact.
- Snow representation in the ECMWF model:
 - Energy/Water balance;
 - Density/ Albedo / Snow cover fraction;
 - Evaluation examples.
- Ongoing & future work.

Snow in the climate system

- Snow cover is the seconds largest component of the Cryosphere (after seasonally frozen ground) with a mean maximum areal extend of 47 million km² (98% in the Northern Hemisphere, and 1/3 of the total land);
- Several fundamental physical properties of snow modulate the **energy/water exchanges** between the surface and the atmosphere:
 - Surface reflectance:
 - Albedo, snow-albedo feedback.
 - Thermal properties:
 - Effective de-coupling heat and moisture transfers.
 - Phase changes:
 - Delayed warming during the melt period.
- Implications for all forecasts ranges (medium to seasonal).
- Predictability impact.
- Climate change impacts.

(see Armstrong and Brun (2008) for a good reference of snow and climate)

Snow cover and NH variability - observations

b) Mid-October 1988 Observed Snow Extent

(Gong et al. 2007)

- In addition to cover a substantial part of the Northern hemisphere,
- Large inter-annual variability
- In particular during the accumulation period (e.g. Mid October)
- This has been widely studied as potential source of long-range predictability
- Can these anomalies in snow-cover in October influence Winter circulation ?

Other teleconnections:

© ECMWF

 Snow cover in Eurasia and Indian summer monsoon: questionable (see Peings and Douville 2010)

Snow cover and NH variability - observations

(Gong et al. 2007, Cohen and Saito 2003)

- The spatial anomaly patterns resemble the Artic Oscillation pattern of variability
- This allows the development of statistical prediction models for winter variability based on early Autumn snow cover that beat current dynamical seasonal forecast systems (why...?)

Snow cover and NH variability – modeling studies

• Experiment with high (low) snow cover in the Siberia region during Autumn (high-low):

- Cooling of surface temperature restricted to the region where snow was imposed during Autumn;
- Hemispheric scale response latter in winter. See Gong et al. (2007) for a detailed chain of events from the surface cooling to a weakening of the stratospheric polar vortex and latter changes in the zonal wind anomalies in mid-latitudes in the troposphere.

Trends and climate change implications

⁽Derksen and Brown 2012)

- Snow cover extent in the N.H land:
 - Red satellite data
 - Black CMIP5 mean
- Normalized by maximum extend in each month
- April/May observed trends are within the CMIP5 range#
- June observed trend is very large in the last years and not captured by any model (models only get there around 2050 !)
- What are the models (we) missing?

Snow initialization and sub-seasonal forecasts

- **Changes in potential** predictability r² between initializing snow depth or not
- General increase of about 10% in particular during the first month.
- In this study the signal in actual predictability is smaller, but there is still some signal..

Jeong et al. 2012

0.0

0.04 0.07 -0.1

Case study: Boreal forest albedo (2)

Considering a lower value of SNOW Forest ALbedo was beneficial.

7 CECMWF

© ECMWE

Case study: Boreal forest albedo (3)

- The surface albedo is the direct regulator of the energy available to the surface. The albedo of natural surfaces has a limited range (0.1-0.3), but in nonforested snow covered areas can reach values up to 0.8.
- Snow covered boreal forests have a much lower albedo than grassland to their south and tundra to their north; the presence of boreal forests has a direct control on the climate of highlatitudes.

© ECMWF

Viterbo and Betts 1999

CMWF

Outline

Snow in the climate system, a very quick overview:

- Observations;
- Modeling;
- Forecasts impact.
- Snow representation in the ECMWF model:
 - Energy/Water balance;
 - Density/ Albedo / Snow cover fraction;

© ECMWF

ECMWF

Evaluation examples.

Ongoing & future work.

Snow in HTESSEL

Two tiles:

1) Exposed snow;

2) Snow under high vegetation

Single snow-pack evolution

Prognostic evolution:

- 1)Snow mass
- 2)Snow density

3) Snow temperature

4) Snow Albedo

Diagnostics:

© ECMWF

- 1) Snow depth
- 2) Snow cover fraction
- 3) Liquid water content

See Dutra et al. 2010 for more details

Snow in HTESSEL – energy balance

Snow liquid water capacity

Snow in HTESSEL – water balance

- Rainfall and Sublimation only over the snow cover fraction
- Rainfall is considered to reach the snow at freezing point
- Runoff is the rate at which liquid water leaves the snowpack
- Runoff is generated when the liquid water content exceeds the snow liquid water capacity

Before 2009 liquid water was not considered

© ECMWF

CMWF

$$\frac{1}{\rho_{\mathrm{sn}}} \frac{\partial \rho_{\mathrm{sn}}}{\partial t} = \frac{\sigma_{\mathrm{sn}}}{\eta_{\mathrm{sn}}(T_{\mathrm{sn}}, \rho_{\mathrm{sn}})} + \xi_{\mathrm{sn}}(T_{\mathrm{sn}}, \rho_{\mathrm{sn}}) + \frac{\max(0, Q_{\mathrm{sn}}^{\mathrm{INT}})}{L_f(S - S_l)}$$

- 1st term: overburden increase density due to the snow weight
- 2nd term: thermal metamorphism: snow crystal destruction with time as function of temperature and density
- 3rd term: Increased density due to re-freezing

$$\rho_{sn}^{*} = \frac{S + \Delta tF}{\frac{\Delta tF}{\rho_{new}} + \frac{S}{\rho_{sn}^{t}}}$$

- Snow density update after snowfall;
- Snowfall density as a function of Wind speed, and air temperature

$$\rho_{\mathrm{sn}}^{t+1} = (\rho_{\mathrm{sn}}^* - \rho_{\mathrm{sn}_{\mathrm{max}}}) \exp(-\tau_f \Delta t / \tau_1) + \rho_{\mathrm{sn}_{\mathrm{max}}}$$

Snow density formulation before 2009

© ECMWF

CMWF

Snow in HTESSEL – snow albedo

$$\alpha_{\rm sn}^{t+1} = \begin{cases} \alpha_{\rm sn}^t - \tau_a \Delta t / \tau_1, & M_{\rm sn} = 0\\ (\alpha_{\rm sn}^t - \alpha_{\rm min}) \exp(-\tau_f \Delta t / \tau_1) + \alpha_{\rm min}, & M_{\rm sn} > 0 \end{cases}$$

- Linear decay in normal conditions;
- Exponential decay in melting condictions;
- Min/Max albedos of 0.5 and 0.85.

$$\alpha_{\rm sn}^{t+1} = \alpha_{\rm sn}^t + \min\left(1, \frac{F\Delta t}{10}\right)(\alpha_{\rm max} - \alpha_{\rm sn}^t)$$

Vegetation type	Albedo
Evergreen needleleaf trees	0.27
Deciduous needleleaf trees	0.33
Deciduous broadleaf trees	0.31
Evergreen broadleaf trees	0.38
Mixed forest-woodland	0.29
Interrupted forest	0.29

 For snow under high vegetation we keep the albedo constant (derived from Satellite data)

0.90 0.85 0.80

op 0.75 0.70 0.65

0.60

0.55 0.50

10

Davs

ECMWF

5

15

20

Neglect seasonal variations

Snow in HTESSEL – snow cover fraction

 $c_{\rm sn} = \min\left(1, \frac{S/\rho_{\rm sn}}{0.1}\right)$

Snow cover fraction as a function of snow depth

- Affects the tile fraction : direct albedo effect
- Energy balance indirectly
- Actual snow depth: $D_{
 m sn} = rac{1}{
 ho_{
 m sn}} rac{S}{c_{
 m sn}}$

We have a depth "barrier" at 10 cm Pile the snow as snow mass / snow-cover fraction reduces

Slide 17

Parameterizations training course 2015, Land-surface: Snow

Outline

Snow in the climate system, a very quick overview:

- Observations;
- Modeling;
- Forecasts impact.

Snow representation in the ECMWF model:

- Energy/Water balance;
- Density/ Albedo / Snow cover fraction;

CECMWF

© ECMWF

Evaluation examples.

Ongoing & future work.

Point evaluation

Point simulations (offline) in a forest and open areas nearby CTR (gray) : model before 2009 NEW (black) : current model

- Better simulations of snow mass
 - Albedo changes
 - Liquid water representation
- Improved snow density

© ECMWF

- Before exponential increase
- Snow follows closely observations. Still some problems during melting

ECMWF

Basin scale evaluation

Regional offline simulations over the Ob (Siberia basin)

- Increase in snow mass

 Interception of rainfall
- Lower densities during accumulation/winter seasons
- Reduction of soil freezing
- Increase of surface runoff
- Decrease of bottom drainage
- Improvement of total runoff
- Lower densities -> less coupling -> less soil freezing -> less surface runfoff

ECMWF

Snow in HTESSEL – Snow cover / albedo

The early spring snow melt was in part associated with a negative bias in albedo (less albedo + energy absorbed => faster melting)

Frequency of missing snow cover (early melting) Largely reduced in the current model

Near-future work – multi-layer (1)

$$(\rho C)_{\mathrm{sn},i} D_{\mathrm{sn},i} \frac{\partial T_{\mathrm{sn},i}}{\partial t} = G_{\mathrm{sn},i-1} - G_{\mathrm{sn},i} - Q_{\mathrm{sn},i}$$

CECMWF

Energy balance for each snow layer

Point simulations in the Alps:

Improved simulations of deep snow pack (e.g. melting episodes during winter)

Similar evolution of snow density

Improved snow runoff simulations

Near-future work – multi-layer (2)

Climate simulations, impact on 2-meters temperature:

Multi-layer snow leads to a stronger cooling of surface temperature Increased decoupling as each snow layer is thermally insulated

Slide 23 Parameterizations training course 2015, Land-surface: Snow

Snow in HTESSEL – neglected processes

- Rain on snow
 - Rainfall is assumed to fall at freezing point : No heat flux advection
 - Rainfall interception partially treated but would require a prognostic liquid water reservoir for a proper evolution;
- Blowing snow
 - No snow mass displacement (reasonable at the resolutions we ran the model);
 - Neglect the effects of blowing snow sublimation (estimates of about +/- 5 kg m² during a winter season over Siberia (Brun et. al 2012);
- Snowfall interception by vegetation:
 - Changes albedo, different sublimation rates;
- Vertical structure of snowpack
 - Single layer cannot represent the vertical structure (memory); Thermal implications;
- Snow on top of Glaciers / Sea-ice
 - Glaciers set to 10 meters of snow ! And no snow on top of sea-ice
- Any others?

7 CECMWF

Further Reading

- Armstrong, R. L., and Brun, E., 2008: Snow and Climate. Physical processes, surface energy exchange and modeling. Cambridge University press, 222 pp.
- Brun, E., V. Vionnet, et al. (2012). "Simulation of Northern Eurasian Local Snow Depth, Mass, and Density Using a Detailed Snowpack Model and Meteorological Reanalyses." <u>Journal of Hydrometeorology</u> 14(1): 203-219.
- Cohen, J. and J. Jones (2011). "A new index for more accurate winter predictions." <u>Geophysical Research</u> <u>Letters</u> 38(21): L21701.
- Derksen, C. and R. Brown (2012). "Spring snow cover extent reductions in the 2008–2012 period exceeding climate model projections." <u>Geophysical Research Letters</u> 39(19): L19504.
- Dutra, E., G. Balsamo, et al. (2010). "An Improved Snow Scheme for the ECMWF Land Surface Model: Description and Offline Validation." Journal of Hydrometeorology 11(4): 899-916.
- Dutra, E., S. Kotlarski, et al. (2011). "Snow cover sensitivity to horizontal resolution, parameterizations, and atmospheric forcing in a land surface model." Journal of Geophysical Research-Earth Surface 116(D21): D21109.
- Dutra, E., P. Viterbo, et al. (2012). "Complexity of Snow Schemes in a Climate Model and Its Impact on Surface Energy and Hydrology." Journal of Hydrometeorology 13(2): 521-538.
- Gong, G., J. Cohen, et al. (2007). "Hemispheric-scale climate response to Northern Eurasia land surface characteristics and snow anomalies." <u>Global and Planetary Change</u> 56(3-4): 359-370.
- Jeong, J.-H., H. W. Linderholm, et al. (2012). "Impacts of Snow Initialization on Subseasonal Forecasts of Surface Air Temperature for the Cold Season." Journal of Climate 26(6): 1956-1972.
- Orsolini, Y. J., R. Senan, et al. (2013). "Impact of snow initialization on sub-seasonal forecasts." <u>Climate</u> <u>Dynamics</u> 41(7-8): 1969-1982.
- Peings, Y. and H. Douville (2010). "Influence of the Eurasian snow cover on the Indian summer monsoon variability in observed climatologies and CMIP3 simulations." <u>Climate Dynamics</u> 34(5): 643-660.

CECMWF