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Proper scores

A score for a probabilistic forecast is a summary measure that
evaluates the probability distribution. This condenses all the
information into a single number and can be potentially misleading.

Let us assume that we predict the distribution pfc(x) while the
verification is distributed according to a distribution py (x). Not all
scores indicate maximum skill for pfc = py .

A score (or scoring rule) is (strictly) proper if the score reaches its
optimal value if (and only if) the predicted distribution is equal to the
distribution of the verification.

If a forecaster is judged by a score that is not proper, (s)he is
encouraged to issue forecasts that differ from what her/his true belief
of the best forecast is! In such a situation one says that the forecast
is hedged or that the forecaster plays the score.

Examples of proper scores are: Brier Score, continuous (and discrete)
ranked probability score, logarithmic score

see Gneiting and Raftery (2007) for more details
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Example of a score that is not proper

consider the linear score: LinS = |p − o|
dichotomous event e: e occured (o = 1), e did not occur (o = 0)

assume the event occurs with the true probability of 0.4

If the prediction is 0.4, the expected linear score is

E(LinS) = 0.4|0.4− 1|+ (1− 0.4) |0.4− 0| = 0.48

If the prediction is instead 0, the expected linear score is

E(LinS) = 0.4|0− 1|+ (1− 0.4)|0− 0| = 0.40

Note, that is easy to prove that the Brier score is strictly proper (e.g.
Wilks 2011)
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Scores for probabilistic/ensemble forecasts of continuous
scalar variables

some (but not all) useful measures

RMSE and other scores used for single forecasts applied to ensemble
mean

rank histograms (reliability again)

continuous ranked probability score (reliability and resolution)

logarithmic score (for Gaussian) (reliability and resolution)

reliability of the ensemble spread (domain-integrated and local)
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Continuous ranked probability score

CRPS = Mean squared error of the cumulative distribution Pfc

cdf of observation Py (x) = P(y ≤ x) = H(x − y)

cdf of forecast Pfc(x) = P(xfc ≤ x)

CRPS =

∫ +∞

−∞
(Pfc(x)− Py (x))2 dx =

∫ +∞

−∞
BSx dx
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equal to mean absolute error for a single forecast
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How to compute the CRPS
Ensemble

The integral
∫
. . . dx can be evaluated exactly by using the intervals

defined by the M ensemble forecasts and the verification rather than some
fixed interval ∆x :

CRPS =
M∑
j=0

cj

cj = αjp
2
j + βj(1− pj)

2

pj = j/M
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How to compute the CRPS
Gaussian distribution

For a Gaussian distribution an analytical formula for the CRPS is
available.

Assume that the predicted Gaussian has mean µ and variance σ2 and
that the verification is denoted by y .

CRPS =
σ√
π

[
−1 +

√
π
y − µ
σ

Φ

(
y − µ√

2σ

)
+
√

2 exp

(
−(y − µ)2

2σ2

)]

Here, Φ denotes the error function Φ(x) =
2√
π

∫ x

0
exp(−t2)dt.

This relationship is particularly useful for calibration purposes
(Non-homogeneous Gaussian regression).
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CRPS
Decomposition

The CRPS can be decomposed into a reliability component and a
resolution component.

The CRPS is additive: The CRPS for the union of two samples is the
weighted (arithmetic) average of the CRPS of the two samples with
the weights proportional to the respective sample sizes.

The components of the CRPS are not additive. The components can
be computed from the sample averages of the αj and βj distances.

This is similar to the decomposition of the Brier score. However, the
reliability (resolution) component of the CRPS is not the integral of
the reliability (resolution) component of the Brier scores.

The reliability component of the CRPS is related to the rank
histogram but not identical.

see Hersbach (2000) for details
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Ranked Probability Score (RPS)
The CRPS

∫
BSx dx has a discrete analog, the (discrete) ranked

probability score:

RPS =
L∑

k=1

BSxk =
L∑

k=1

(Pfc(k)− Py (k))2

The thresholds xk that separate the L categories can be chosen in
various ways

I equidistant (RPS → CRPS as ∆x → 0)
I climatologically equally likely, e.g. tercile boundaries
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Logarithmic score
Ignorance score

For a forecast consisting of a probability density pfc(x), define

LS = − log(pfc(y))

where y denotes the observation (or analysis).
This score is proper and local.
ensemble forecasts −→ probability density
A simple yet useful exercise is to use the Gaussian density given by
the ensemble mean µ and the ensemble variance σ2. Then, the
logarithmic score is given by

LS =
(µ− y)2

2σ2
+ 1

2 log(2πσ2)

Thus, it consists of the squared error of the ensemble mean
normalized by the ensemble variance and a logarithmic term that
penalizes large variance. The first term is a measure of the reliability
and the second term is a measure of the sharpness of the forecast.
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Daily EPS stdev (shaded) and ens. mean (cont.)
500 hPa geopotential (m2 s−2) at 72 h lead; init. time 8 December 2010
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Spread-reliability
methodology

consider (local) pairs of ensemble variance and squared error of the
ensemble mean — stratified by the ensemble variance
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Spread-reliability: An example
500 hPa height — 20◦–90◦N
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revised initial perturbations
and revised tendency pertns.
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Verification of ensembles and single forecasts

When monitoring an operational forecasting system that consists of
single (unperturbed) forecasts and an ensemble, it is useful to
compare changes in the performance of the ensemble with changes
seen for the single forecast(s).

But what scores should be compared when looking at a single forecast
versus an ensemble?

Many scores for ensembles are meaningful when computed for single
forecasts

equivalences
I CRPS — MAE
I BS — BS single fc (using probabilities 0 and 1)

Obviously, probabilistic skill of a “naked” (= raw) single forecast is
inferior to the probabilistic skill of a dressed single forecast. The
dressing kernel can be estimated from past error statistics.
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Dressed control forecast: v 850 hPa, 35◦–65◦N, DJF09

EPS raw prob. for CRPS; Gaussian for LS

N(CF, σ2
err(CF)) σerr estimated from reforecasts

CRPS
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Dressed ens. mean forecast: v 850 hPa, 35◦–65◦N, DJF09

EPS raw prob. for CRPS; Gaussian for LS

N(EM, σ2
err(EM)) σerr estimated from reforecasts

CRPS
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EM more accurate than CF ⇒ this permits a sharper Gaussian distribution.

The Logarithmic score discriminates better the value of flow-dependent variations
in ensemble variance than the CRPS.
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Uncertainty of the verifying observations
or, more generally, the verifying data

In real applications the true state xt of the atmosphere is not know
exactly. The observation y has an error

y = xt + ε

Assume an ensemble is perfectly reliable, i.e. ensemble members
xe ∼ ρe and the true state xt ∼ ρt are realisations of the same
distribution ρe = ρt .

Then, the observation y is a realisation of the distribution given by
the convolution of the true distribution and the error distribution

ρy = ρt ∗ ρε

Thus, a verification with respect to y will indicate a lack of reliability.
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Verification in the presence of observation uncertainties

ρε ρt = ρe , ρy = ρE

solution: postprocess ensemble members prior to verification

verify ensemble members to which noise has been added:
xE = xe + ε with ε ∼ ρε
Then ρE = ρy
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The climatological distribution
temperature in 850 hPa

15 March (based on ERA-Interim 1989–2008)
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Ficticious skill due to a poor climatological distribution

If one uses the same climatological distribution for a domain with
different climatological characteristics (mean, stdev, . . . ), the skill
with respect to that distribution is not real skill. It reflects the poor
quality of the climatological distribution.

Same applies if seasonal variations of the climatological distribution
are not represented.

This criticism applies for instance if the climatological distribution is
derived from the verification sample itself by aggregating different
start times and different locations.

It can also be misleading to compare skill scores from different
prediction centres when the skill scores have been computed against
own analyses.

If the same climatological distribution (say ERA-Interim) is used as
reference, this climatological distribution has the lowest skill when
verified against the analysis that deviates most from the analyses used
for computing the climatological distribution.
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More verification topics

statistical significance of differences of verification statistics between
different forecast systems etc.

sensitivity to ensemble size and estimation of verification statistics in
the limit M →∞
skill on different spatial scales

multivariate aspects

decision making and verification
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Probabilities can help with making decisions
Open air restaurant scenario:

I to open additional tables costs £20 and provides £100 extra income
(if T > 24◦ C)

I On a particular day, the forecast is P(T > 24◦ C) = 0.30
I What should the restaurant do?

Compute the profit/loss (£) over 100 days (assuming reliable
probabilities):

profit on warm days(T > 24◦ C) = 30× (100− 20) = +2400

profit on cool days(T ≤ 24◦ C ) = 70× (0− 20) = −1400

total profit = +1000

It is profitable to open additional tables if the probability of a warm
day exceeds 0.20 .

The ratio of cost to loss (or cost to extra profit) determines at what
probability value it is beneficial to take action. For low (high)
cost/loss, action should be taken already (only) if the event is
predicted with a low (high) probability.
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Decision making — cost loss model

expense when using climatological prob. Ec = min(C , oL)

expense when using a perfect forecast Ep = oC

expense when using the forecast Ef = aC + bC + cL

value V =
saving from using forecast

saving from using perfect fc.
=

Ec − Ef

Ec − Ep
=

=
min(α, o)− F (1− o)α + Ho(1− α)− o

min(α, o)− oα
where

α = C/L; H =
a

a + c
; F =

b

b + d
; o = a + c
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(Potential) economic value

maximum value reached at α = C/L = o

maximum value for all C/L is maxV = H − F

when a (reliable) probabilistic forecast predicts an event with
probability p, all users with C/L < p should act.

one speaks of potential economic value if calibrated probabilities are
used to make decision
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Potential economic value
and ensemble size
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Decision making — weather roulette

Hagedorn and Smith (2009)
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Decision making — weather roulette
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Decision making — weather roulette
3-day forecasts
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Decision making — weather roulette
3-day forecasts
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Decision making — weather roulette
10-day forecasts

weather roulette capital gains are closely related to the logarithmic score
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