Ensemble Verification I

Martin Leutbecher

CECMWF

Training Course 2015

- introduction
- eliability (statistical consistency)
- Ichotomous predictands (yes/no)
 - contingency tables
 - Brier score
 - relative operating characteristic (ROC)
 - logarithmic score
- sensible probabilities: p=0 and p=1?

CECMWF

Objectives of verification (... evaluation and diagnostics)

Assess the quality of a forecast system for

- administrative purposes
 - tool to monitor the system
- scientific/diagnostic purposes
 - Identify strengths and weaknesses of a forecast system
 - Guide the future development of a forecast system
- economic purposes/ support for decision making
 - Whether a forecast is useful or valuable for a specific user depends on error characteristics but also what other information the user has (eg. climatology) and the particular decision that (s)he needs to make.
 - An accurate forecast can be of little value (blue desert sky)
 - An inaccurate forecast can be of high value (an intense storm that is predicted but with position error)
 - The actual forecast value may differ from the potential forecast value (availability of relevant fc information, user's constraints: economic, time limits, lack of training, etc.)

Concepts

Forecast attributes and forecast skill

- Forecast verification is the investigation of the properties of the joint distribution of forecasts and observations (Murphy & Winkler 1987)
- Scalar aspects (attributes) of the forecast quality include:
 - ▶ accuracy (e.g. mean absolute error, mean squared error, threat score)
 - bias
 - reliability
 - resolution
 - discrimination
 - sharpness (property of forecast only, e.g. ensemble spread)
- Forecast skill: relative accuracy of one forecast system with respect to a reference forecast (e.g. climatology)
- More generally: observations \rightarrow estimates of the true state (e.g. also analyses)

Concepts (II)

Examples of scores for single forecasts

sample of N forecast-observation pairs (x_j, y_j) :

• root mean square error $\left(\frac{1}{N}\sum_{j=1}^{N}(x_j - y_j)^2\right)^{1/2}$ • mean absolute error $\frac{1}{N}\sum_{j=1}^{N}|x_j - y_j|$

• mean error
$$\frac{1}{N} \sum_{j=1}^{n} (x_j - y_j)$$

- anomaly correlation coefficient
- scores for dichotomous events (e.g. rain/no rain)
 - Peirce skill score (= Hansen-Kuipers, true skill statistic)
 - Gilbert skill score (Equitable threat score)
 - frequency bias
- All of these scores can be applied to the ensemble mean.

CECMWF

Concepts (III)

Probabilistic forecasts and ensemble forecasts

- The ensemble predicted rain with a probability of 10%.
- It did rain on the day
- Is this a good forecasts?
 - Yes
 - No
 - I don't know

For probabilistic forecast, the prediction (an ensemble or a probability distribution) and the observation (a value) are different objects. The distribution is not known more precisely after the verifying observation becomes available.

Classification

by predicted object

- discrete set of events: e.g. cloudy/clear sky; rain/no rain; temperature in lower, middle or upper tercile ...
- continuous scalar variable: temperature in London
- continuous field: 2-metre temperature field in Europe; profile of wind at Frankfurt airport
- discrete sample (an ensemble) or probability distribution
 - ensemble predicts 50 values of temperature in London
 - probability distribution for temperature in London fitted to an ensemble of forecasts
 - probability distribution of temperature in London determined from a single forecast + a fit of a Gaussian distribution to past errors of this single forecast.
 - climatological probability distribution estimated from reanalyses

Statistical consistency and reliability

- Are the true values (or observations) statistically indistinguishable from the members of the ensemble?
- Measures to assess reliability
 - bias
 - "spread" versus "error"
 - rank histogram
 - reliability diagram (for dichotomous (binary) prediction, e.g. rain/no rain or 0/1)

definitions and examples ...

• Reliability alone does not imply skill. The climatological distribution is perfectly reliable for a stationary climate.

Reliability of the ensemble spread

• Consider ensemble variance ("spread") for an *M*-member ensemble

$$\frac{1}{M}\sum_{j=1}^{M}(x_j-\overline{x})^2$$

and the squared error of the ensemble mean

$$(\overline{x} - y)^2$$

- Average the two quantities for many locations and/or start times.
- The averaged quantities have to match for a reliable ensemble (within sampling uncertainty).
- Finite ensemble size can be corrected for in the estimation of the error of the ensemble mean and the ensemble variance.
- Cave: Even in a perfect ensemble, the correlation of ensemble spread and rms error is not 1.

CECMWF

M. Leutbecher

Ensemble Verification I

Examples of spread and error ECMWF EPS — 500 hPa geopotential

Examples of spread and error ECMWF EPS — mean sea level pressure

Rank Histogram

- Are the ensemble members statistically indistinguishable from the verification data?
- Determine where **observation** lies with respect to the ensemble members:

Rank Histogram

A uniform rank histogram is a necessary but not sufficient criterion for determining that the ensemble is reliable (see also: T. Hamill, 2001, MWR)

Dichotomous predictands

Joint distribution of forecasts and obs

- Consider the probabilistic prediction of the event that the temperature exceeds 25° C.
- Hypothetical verification sample of 30 start dates and 2200 grid points = 66000 forecasts.
- How often was the event ($T > 25^{\circ}$ C) predicted with probability p?

FC Prob.	# FC	OBS-Frequency (perfect model)	OBS-Frequency (imperfect model)
100%	8000	8000 (100%)	7200 (90%)
90%	5000	4500 (90%)	4000 (80%)
80%	4500	3600 (80%)	3000 (66%)
10%	5500	550 (10%)	800 (15%)
0%	7000	0 (0%)	700 (10%)

Dichotomous predictands

Reliability diagram

Over- and under-confidence

Reliability diagram

over-confident model

under-confident model

Scores for dichotomous predictions

- Extended contingency tables
- Scores
 - Brier score (reliability and resolution)
 - Logarithmic score (reliability and resolution)
 - Relative Operating Characteristic (discrimination)

Contingency table

single forecast

- Consider an event e (e.g. $T>25^{\circ}$ C)
- The joint distribution of forecasts and observations can be condensed in a 2×2 contingency table:

	e observed				
e predicted	Yes	No			
Yes	hits a	false alarms <i>b</i>			
No	misses <i>c</i>	correct rejections d			

- hit rate $H = \frac{a}{a+c}$
- false alarm rate $F = \frac{b}{b+d}$
- N = a + b + c + d sample size

(Extended) contingency table

ensemble

The joint distribution of forecasts and observations for a *M*-member ensemble can be summarized in a $(M + 1) \times 2$ contingency table **T**

M M	e pred. by	e observed		
sample size $N = \sum n_j + \sum \widetilde{n}_j$	<i>m</i> _e members	Yes	No	
$j{=}0$ $j{=}0$	М	n _M	ñ _M	
Each row corresponds to a	M-1	n_{M-1}	\tilde{n}_{M-1}	
probability value, e.g.				
$p = j/M \longrightarrow$	j	nj	ñj	
	1	n_1	\tilde{n}_1	
	0	<i>n</i> 0	ñ ₀	

 $\begin{array}{l} \mbox{Contingency tables are additive:} \\ \mbox{T(sample1} \cup \mbox{sample2}) = \mbox{T(sample1)} + \mbox{T(sample2)} \end{array}$

Brier score

definition and decomposition

$$BS = \frac{1}{N} \sum_{k=1}^{N} (p_k - o_k)^2$$

- *p_k* is the predicted probability of the *k*-th forecast and *o_k* = 1 (0) if the event occurred (did not occur)
- The Brier score BS is the **mean squared error** of the probability forecast.
- The BS can be decomposed in three components that measure
 - reliability
 - resolution
 - uncertainty

Brier score components BS=REL-RES+UNC

stratify sample in terms of the rows j in the contingency table

Reliability: deviation of observed relative frequency from forecasted probability

$$\text{REL} = \frac{1}{N} \sum_{j=0}^{M} \ell_j (\overline{o}_j - p_j)^2$$

Resolution: ability of forecast to identify periods in which observed frequencies differ from average RES = $\frac{1}{N} \sum_{j=0}^{M} \ell_j (\overline{o}_j - \overline{o})^2$

Uncertainty: Variance of obs. (0/1) in sample

 $UNC = \overline{o}(1 - \overline{o})$

CECMWF

M. Leutbecher

 $\begin{array}{ll} N & \text{total number of cases} \\ M & \text{number of probability bins } -1 \\ p_j &= j/M \text{ probability in bin } j \\ \ell_j &= n_j + \tilde{n}_j \text{ number of cases in bin } j \\ \overline{o}_j &= n_j/\ell_j \text{ frequency of event occuring} \\ & \text{when forecasted with probability } p_j \\ \overline{o} & \text{event frequency in whole sample} \\ & \text{Ensemble Verification I} \\ \end{array}$

Brier Skill Score

- Skill scores are used to compare the performance of forecasts with that of a reference forecast (e.g. climatological distribution)
- They are defined so that the perfect forecast has a skill score of 1 and the reference forecast has the skill score of 0

skill score =
$$\frac{\text{actual fc} - \text{ref}}{\text{perfect fc} - \text{ref}}$$

• BS for perfect forecast is 0 \Rightarrow

$$\mathrm{BSS} = 1 - \frac{\mathrm{BS}}{\mathrm{BS}_{\mathrm{ref}}}$$

• positive (negative) BSS \Rightarrow forecast is better (worse) than the reference forecast

Brier score

Attributes diagram

Reliability score (the smaller, the better) Resolution score (the bigger, the better)

Positive contribution to skill

diagnosed from the attributes diagram

Cave: Using sample climatology as reference can lead to ficticious skill

Discrimination and ROC

- until now, we looked at question:
 What is the distribution of observations o if the forecast system predicts an event to occur with probability p?
- To measure the ability of a forecast system to *discriminate* between occurrence and non-occurrence of an event, one has to ask: What distributions of probabilities have been predicted when the event occurred and when it did not occur?
- For any probability threshold p_i one can then determine the hit rate $H_i = \frac{a}{a+c}$ and the false alarm rate $F_i = \frac{b}{b+d}$
- The *relative operating characteristic* (ROC, also referred to as receiver operating characteristic) is the diagram that shows *H* versus *F* for all probability thresholds.

Relative Operating Characteristic

- random forecast (independent of observed event) on diagonal
- \bullet summary measure: area under the ROC $\in [0.5,1]$

Logarithmic score

• also known as ignorance score (Good 1952, Roulston and Smith 2002)

$$ext{LS} = -rac{1}{N} \sum_{k=1}^{N} \left[o_k \log p_k + (1 - o_k) \log(1 - p_k)
ight]$$

- The score ranges between 0 and ∞. The latter happens if the predicted probability is zero and the event occurs (or if p = 1 and the event does not occur).
- The ignorance score is more sensitive to the cases with probability close to 0 and close to 1 than the Brier score.

Brier score versus logarithmic score

Sensible probabilities

- Never forecast p = 0 or p = 1 unless you are really certain!
- If the true probability is not equal to zero (or one), there will still be cases when no member (or all members) predict(s) the event.
 Sampling uncertainty!
- Wilks proposed to estimate cumulative probabilities using Tukey's plotting positions

10 member

- threshold
- When *n* members of an *M*-member ensemble have a value less than the threshold θ, the probability to not exceed θ is set to

$$p^{(T)}(n) = \frac{n+2/3}{M+4/3}$$

• Consider for example M = 10:

M. Leutbecher

CECMWF

n	0	1	2	3	4	5	6	7	8	9	10
р	0.06	0.15	0.24	0.32	0.41	0.50	0.59	0.68	0.76	0.85	0.94

Training Course 2015

28 / 28

Ensemble Verification I