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Applications of the EPS:Health 
[and some simple  suggestions on how 
 to use  the ECMWF toolbox]

   F. Di Giuseppe @ecmwf.int



Slide 2                NWP-PR 2013 Applications of the EPS                     © ECMWF 

Part II
The malaria early warning system developed for
 the Africa continent under the QWECI project

Part I 
How to correct model outputs at long time range 
so that they can be used for sectoral applications
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Hindcast -1

Hindcast/ Re-forecast: ForecastForecast produced in the past

Today -n years

Today -2 year 

Today

Today -1 year 

                              Hindcast 

.

.

.

Lead time +1m Lead time +2m Lead time +3m

The monthly-varEPS has 20 years of hindcast (4 members)
The seasonal forecast (system-4) has 30 years of hindcast 1981-2011 
(15 members) 

                              Forecast
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Hindcast -2

Why at the monthly to seasonal time scale 
we need an hindcast [ while at shorter leadtime an hindcast 
is not used] 

1 . At long lead times we have low predictability. Therefore forecast 
has to be intended to provide information in a statistical
sense [such as positive/negative anomaly compared to a
mean climate.... ] this is why an hindcast is provided. 

2. The  hindcast dataset provides the  model climate needed
to bias correct  model outputs
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At very long lead times forecast errors 
are dominated by the model bias  

Forecast for west Africa monsoon JJA 2006
 [1 month lead-time]

GPCP dataset Model 
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Observed mean

Predicted meanbias

Hindcast Years Forecast 

Model (climate) bias versus model skill  - 1

The 'climate' of the model is dry BUT the temporal 
variability is good ( this means good model skills)
→ the predicted anomalies are good even if forecast fields are biased 
→ a simple bias correction [i.e adding the mean bias ]
     can improve the forecast fields 
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Observed mean

Predicted mean

Hindcast Years Forecast 

Model (climate) bias versus model skill  - 2

The 'climate' of the model is very good BUT the temporal 
variability is in anti-phase with the observations (bad model prediction
 skills)
→ the predicted anomaly are reversed respect to the observations!! 
→ a simple (i.e. statistical) bias correction could NOT help to 
provide  a good forecast 
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Observed mean

Predicted mean

bias

Hindcast Years Forecast 

Observed mean

Predicted mean

Hindcast Years Forecast 

bias

Lead time X 

Lead time Y 
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Model drift example from cycle 35R1  

DAY-1 DAY-5 DAY-10
Precipitation: Model- GPCP for different lead times

Amalgamation of day1, day 5 and day-10 lead times
for JJA-2006

The southerly shift in the monsoon progression shifts
 northwards as a function of lead-time
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The  hindcast for a given model has to be
 updated at each model cycle

1. An hindcast set needs to be calculated each time
there is an upgrade of a model cycle since biases can change 
across new model releases. 

35R1 36R1

Hindcast Upgrade
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Model releases 

2-4 model cycle (CY) releases (R) every year for the 
Deterministic and the monthly.
 
The seasonal forecast is released only each ~5 yr 
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Can we go from the short to the long 
range merging together all the systems?

This is what is called seamless forecasting  seamless forecasting  

For many practical applications this would be 
an advantage  … but  a correction in time and space 
is required to concatenate different systems in a way 
transparent to the final user
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Bias correction techniques in three steps 

1. Training dataset composed of  simultaneous modelled
     and observed fields [ I. e. long time series 
    of precipitation from observations and hindacst]
 

2. Some sort of inferential method to match the distribution 
properties of the observation into the model
[mean bias removal, quantile matching, more complex 
statistical decompositions, SVD, EOF]
 

3.  Application of  the correction to the forecast 
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Point-wise methods

 Point-wise methods are relatively simple to  implement and can be 
used successfully to remove systematic model  deficiencies in, say, the 
representation of the hydrological cycle,  but do not account for 
spatially coherent  signals. (Kolmogorov-Smirnov statistics). 
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Spatial Methods

Rely on a one-to-one mapping of model and observational modes.  If the leading 
observational mode of variability in observations corresponds to the second order or lower 
mode in the model, or possibly a combination of modes,  this will not be accounted for.
 For this reason techniques have only been applied  to monthly rainfall  average anomalies 
which are much more smooth and Gaussian then daily precipitation data.  



Slide 16 © ECMWF 

Spatial Mapping developed at ECMWF step 1/3 

Di Giuseppe, F., Molteni, F. and Tompkins, A. M. (2013), A rainfall calibration methodology for impacts modelling based on spatial mapping.
 Q.J.R. Meteorol. Soc., 139: 1389–1401. doi: 10.1002/qj.2019
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Spatial Mapping developed at ECMWF step 2/3 

Di Giuseppe, F., Molteni, F. and Tompkins, A. M. (2013), A rainfall calibration methodology for impacts modelling based on spatial mapping.
 Q.J.R. Meteorol. Soc., 139: 1389–1401. doi: 10.1002/qj.2019
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Spatial Mapping developed at ECMWF step 3/3 

Di Giuseppe, F., Molteni, F. and Tompkins, A. M. (2013), A rainfall calibration methodology for impacts modelling based on spatial mapping.
 Q.J.R. Meteorol. Soc., 139: 1389–1401. doi: 10.1002/qj.2019
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Precipitation correction 

Known bias of southerly displacement of 
West African monsoon overall corrected 
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Conclusions -1 

At long range forecast “calibration”  is needed to remove model 
biases. The simplest form of bias-correction is to use the hindcast 
to calculate the model climate and compare it with an 
observational dataset . 

Hindcast [I.e full forecast range ] are needed because biases can 
change over lead times.lead times.

Calibration [here intended as bias correction] works onlyonly if model 
has 'climate bias' but predictive skills. Forecast skills can be 
improved only improving the model

Once the calibration is performed outputs at long range could  be 
used to drive sectoral applications.
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Part II
The malaria early warning system developed for
 the Africa continent under the QWECI project
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Malaria facts

Malaria parasites are from the genus Plasmodium. 4 species are 
known to infect humans.  Two are wide-spread and particularly dangerous,
falciparum and vivax. Vivax can lie dormant in the liver for weeks to years 
and cause frequent relapses, while faciparum has wide-spread drug 
resistance and causes the most fatal cases due to the potential cerebral 
complications.

Malaria vector The malaria parasite is spread by the anopheles genus of 
mosquito :
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schematic of transmission cycle from Bomblies  WATER
  RESOURCES RESEARCH 2008

Malaria is constrained by weather/climate 
conditions

➔Rainfall :  provides breeding 
sites for larvae.

➔Temperature:  larvae growth, 
vector survival, egg 
development in vector, parasite 
development in vector 
(plasmodium falciparum/      
plasmodium vivax).

➔Relative Humidity:  dessication 
of vector.

➔Wind: Advection of vector, 
strong winds reduce CO2
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Other factors that influence the geographical 
extension of malaria

Factors that can reduce the 
disease range:

1)land use changes (drainage)
2)interventions (bed nets, 
spraying, treatment)
3) socio-economic factors 
(access to health facilities, 
behaviour, poverty) 
4)predators, competition and 
dispersion limits
    
Factors that can increase the 
disease range: 

land use changes (clearance 
of papyrus brings host closer
to vector; papyrus produces 
chemical that limits larvae 
development)
   

Headline extracted from the World Health 
Organization Report 'Preventing disease through 
healthy environments'
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 Malaria distribution since pre-
intervention 

Graphical collection of maps 
from various sources. Areas 
of high and
low risk were merged 
throughout to establish all-
cause malaria
transmission limits.  Each 
map was then overlaid to
create a single global 
distribution map of malaria 
risk which
illustrates range changes 
through time.

Hay, S. I., C. A. Guerra, A. J. Tatem, A. M. Noor, and   R. W. 
Snow, 2004: The global distribution and population at risk of 
malaria: past, present, and future. The Lancet Infectious 
Diseases,  4, 327-336.
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Malaria distribution after intervention

Global distribution of malaria. 
The changing global distribution 
of malaria risk from 1946 to 1994 
shows a disease burden that is 
increasingly being confined to 
tropical regions (Fig. 1 in Sachs 
and Malaney 2002).

" The global distribution of per-capita gross domestic product 
shows a striking correlation between malaria and poverty, and 
malaria-endemic countries also have lower rates of economic 
growth"

Sachs, J., and P. Malaney, 2002: The economic 
and social burden of malaria. Nature, 415, 
680-685
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Approaches to Modelling Malaria

Statistical model

Relate predictor to climate and non-
climate disease drivers

1. Can include poorly understood 
drivers (e.g. poverty/interventions) 
easily
2.Can be simple and fast to implement
3. Needs (long/wide) training dataset in 
target area (transferable?)
4.Care required to avoid overfitting 
data 
5.Trial/error required to determine best 
model
6. Not easy (but possible) to include 
sub-seasonal information

Dynamical model

Solve equations describing the 
vector/parasite cycle where equations 
are mostly derived from controlled lab 
(or field) studies

1.Can account for sub-seasonal variability of 
climate drivers
2.   More transferable from one location to 
another 
3.   More difficult to account for confounding 
factors?
4. Good data/understanding required for 
accurate model, tuning still required for 
poorly specified parameters.
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The VECTRI malaria model 
The most recent models divides the categories into many sub-categories, or bins, or order to try and 
model delays in e.g. adult emergence, and have been applied to spatial   modelling

Schematic of the the dynamic malaria model VECTRI    (Tompkins and Ermert  Journal of Malaria 2012) Freely available at 
http://users.ictp.it/~tompkins/vectri/ 

Temperature / precipitation forcing 
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What do we want to know from a Malaria 
forecasting system?

The epidemic belt on the edge of the Sahara is 
associated with lack of rainfall, while cold 
temperatures reduce or eliminate malaria incidence 
at high altitudes over eastern Africa from 
Contribution of Working Group II to the Fourth 
Assessment Report of the Intergovernmental Panel 
on Climate Change, 2007

 Endemic Areas [ high immunity, 
mortality mainly in <5years] 
potential prediction of seasonal 
onset.

Epidemic Areas [ low immunity, 
mortality across all
    age groups ]  prediction of 
outbreaks

Decadal timescales: potential shift 
of epidemic areas to higher 
altitudes (e.g. Pascual et al Proc. 
Natl. Acad. Sci. USA), and 
changing epidemic and endemic 
patterns.
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Why can we develop a Malaria Early Warning System 
(MEWS) now?

Malaria is a very old disease. Fossils of mosquitoes 30 millions years old show 
that the vector for malaria was present well before the earliest history of man. 

(1)Several African nations have implemented improved health monitoring 
systems over the last decade, which in combination with malaria detection kits, 
has greatly improved health data for evaluation

(2)Latest generation seasonal forecast systems are now starting to exhibit skill 
in temperature and precipitation with lead times of one or two months and 
beyond.

(3)Improved understanding of malaria transmission had lead to better dynamical 
malaria modelling systems capable of modelling the disease transmission on a 
regional scale.



Slide 32 © ECMWF 

MEWS evaluation

The model only accounts for CLIMATE and 
POPULATION DENSITY. It does not (yet!) 
account for interventions, (e.g. bed nets, 
spraying) immunity or treatment which all 
reduce PR. Migration is also ignored. Note: 
model does not run when population is < 1 
km-2

(comparison with Hay et al. Lancet Infect Dis. 2004      Jun;4(6):327-
36.  The global distribution and population at risk of malaria: past, 
present, and future. (readapted from  Lebedew AW, editor. Itogi 
Nauki: Medicinskaja Geografija. Academy of Sciences, USSR; 
Moscow:  1968. pp. 25-146)



Slide 33 © ECMWF 

The importance of the calibration

Demonstration of successful malaria forecasts for Botswana using an operational seasonal climate model  Dave A MacLeod, Anne Jones, Francesca Di Giuseppe 
, Cyril Caminade, and Andrew P Morse 2015 Environ. Res. Lett.doi:10.1088/17489326/10/4/044005

Bias in temperature and precipitation over 
Botwana 

The  uncalibrated temperatures generally 
remain below the sporogonic temperature 
threshold (18 °C), preventing parasite 
development within the mosquito vector as 
simulated by the model. Therefore without bias 
correction the malaria model would predict no 
cases 
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Definition of epidemic and endemic regions

Epidemic/Endemic areas 
with predictable 
information

Predictable areas are 
defined by looking at the 
time variance of the number 
of cases  (~ln(EIR)) over 30 
years of re-analysis runs. 

Small variances  (< 0.10) 
defines endemic areas. 
High variance for the  
malaria transmission (> 0.10) 
define epidemic area where 
useful information can arise 
from a MEWS.

http://dx.doi.org/10.1088/1748-9326/10/4/044005


Slide 35 © ECMWF 

MEWS useful predictable information

Epidemic/Endemic areas 
with predictable 
information

In the sahel the variability 
is due to the rain annula  
cycle (West Africa 
Monsoon)

In the highlands malaria 
variability is due to the 
temperature annual cycle 
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Malaria 
forecast: 
predictability 
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Conclusions -2 

We have seen the example of a prototype malaria early warning 
system.

The meteorological inputs from the long-range forecast of ECMWF 
required rainfall and temperature calibration before they could be used 
to drive the dynamical malaria models. 

In this preliminary validation stage the system has been tested against 
reanalysis runs (i.e. in the “model world!”) showing reasonable results 
compared to early studies 

The system will be tested over Malawi, Uganda and Rwanda with 
ministry of health partners from the QWeCI and HEALTHY FUTURES 
projects.
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