Assimilation Algorithms
 Lecture 2: 3D-Var

Mike Fisher

ECMWF

May 31, 2013

Outline

(1) From Optimal Interpolation to 3D-Var
(2) The Maximum Likelihood Approach
(3) Minimization
(4) Summary

From Optimal Interpolation to 3D-Var

- In my last lecture, we derived the linear analysis equation

$$
\mathbf{x}_{a}=\mathbf{x}_{b}+\mathbf{K}\left(\mathbf{y}-\mathcal{H}\left(\mathbf{x}_{b}\right)\right)
$$

where

$$
\mathbf{K}=\mathbf{P}^{b} \mathbf{H}^{\mathrm{T}}\left[\mathbf{H} \mathbf{P}^{b} \mathbf{H}^{\mathrm{T}}+\mathbf{R}\right]^{-1} \equiv\left[\left(\mathbf{P}^{b}\right)^{-1}+\mathbf{H}^{\mathrm{T}} \mathbf{R}^{-1} \mathbf{H}\right]^{-1} \mathbf{H}^{\mathrm{T}} \mathbf{R}^{-1}
$$

- Optimal Interpolation (OI) applies direct solution methods to invert the matrix $\left[\mathbf{H P}^{b} \mathbf{H}^{\mathrm{T}}+\mathbf{R}\right]$.
- Data selection is applied to reduce the dimension of the matrix.
- Direct methods require access to the matrix elements. In particular, $\mathbf{H} \mathbf{P}^{b} \mathbf{H}^{\mathrm{T}}$ must be available in matrix form.
- This limits us to very simple observation operators.

From Optimal Interpolation to 3D-Var

- Iterative methods have significant advantages over the direct methods used in OI.
- They can be applied to much larger problems than direct techniques, so we can avoid data selection.
- They do not require access to the matrix elements.
- Typically, to solve $\mathbf{A x}=\mathbf{b}$, requires only the ability to calculate matrix-vector products: Ax.
- This allows us to use operators defined by pieces of code rather than explicitly as matrices.
- Examples of such operators include radiative-transfer codes, numerical models, Fourier transforms, etc.

Example: Conjugate Gradients

To solve $\mathbf{A x}=\mathbf{b}$, where \mathbf{A} is real, symmetric and positive-definite:

$$
\mathbf{r}_{0}:=\mathbf{b}-\mathbf{A} \mathbf{x}_{0} \quad \mathbf{p}_{0}:=\mathbf{r}_{0} \quad k:=0
$$

repeat until \mathbf{r}_{k+1} is sufficiently small

$$
\begin{aligned}
\alpha_{k} & :=\frac{\mathbf{r}_{k}^{\mathrm{T}} \mathbf{r}_{k}}{\mathbf{p}_{k}^{\mathrm{T}} \mathbf{A} \mathbf{p}_{k}} \\
\mathbf{x}_{k+1} & :=\mathbf{x}_{k}+\alpha_{k} \mathbf{p}_{k} \\
\mathbf{r}_{k+1} & :=\mathbf{r}_{k}-\alpha_{k} \mathbf{A} \mathbf{p}_{k} \\
\beta_{k} & :=\frac{\mathbf{r}_{k+1}^{\mathrm{T}} \mathbf{r}_{k+1}}{\mathbf{r}_{k}^{\mathrm{T}} \mathbf{r}_{k}} \\
\mathbf{p}_{k+1} & :=\mathbf{r}_{k+1}+\beta_{k} \mathbf{p}_{k} \\
k & :=k+1
\end{aligned}
$$

The result is x_{k+1}

From Optimal Interpolation to 3D-Var

- There are two ways to apply iterative methods to the linear analysis equation, depending which expression we adopt for \mathbf{K} :
- For $\mathbf{K}=\mathbf{P}^{b} \mathbf{H}^{\mathrm{T}}\left[\mathbf{H} \mathbf{P}^{b} \mathbf{H}^{\mathrm{T}}+\mathbf{R}\right]^{-1}$ we have:

$$
\mathbf{x}_{a}=\mathbf{x}_{b}+\mathbf{P}^{b} \mathbf{H}^{\mathrm{T}} \mathbf{z} \quad \text { where } \quad\left[\mathbf{H} \mathbf{P}^{b} \mathbf{H}^{\mathrm{T}}+\mathbf{R}\right] \mathbf{z}=\mathbf{y}-\mathcal{H}\left(\mathbf{x}_{b}\right)
$$

- For $\mathbf{K}=\left[\left(\mathbf{P}^{b}\right)^{-1}+\mathbf{H}^{\mathrm{T}} \mathbf{R}^{-1} \mathbf{H}\right]^{-1} \mathbf{H}^{\mathrm{T}} \mathbf{R}^{-1}$, we have:

$$
\mathbf{x}_{a}=\mathbf{x}_{b}+\delta \mathbf{x} \quad \text { where }\left[\left(\mathbf{P}^{b}\right)^{-1}+\mathbf{H}^{\mathrm{T}} \mathbf{R}^{-1} \mathbf{H}\right] \delta \mathbf{x}=\mathbf{H}^{\mathrm{T}} \mathbf{R}^{-1}\left(\mathbf{y}-\mathcal{H}\left(\mathbf{x}_{b}\right)\right)
$$

- The first of these alternatives is called PSAS
- The second (although it may not look like it yet) is 3D-Var

3D-Var

- As we have seen, (linear) 3D-Var analysis can be seen as an application of iterative solution methods to the linear analysis equation.
- Historically, 3D-Var was not developed this way.
- We will now consider this alternative derivation.
- We will need to apply Bayes' theorem:

$$
p(A \mid B)=\frac{p(B \mid A) p(A)}{p(B)}
$$

where $p(A \mid B)$ is the probability of A given B, etc.

Maximum Likelihood

- We developed the linear analysis equation by searching for a linear combination of observation and background that minimized the variance of the error.
- An alternative approach is to look for the most probable solution, given the background and observations:

$$
\mathbf{x}_{a}=\arg \max _{\mathbf{x}}\left(p\left(\mathbf{x} \mid \mathbf{y} \text { and } \mathbf{x}_{b}\right)\right)
$$

- It will be convenient to define a cost function

$$
J=-\log \left(p\left(\mathbf{x} \mid \mathbf{y} \text { and } \mathbf{x}_{b}\right)\right)+\text { const }
$$

- Then, since log is a monotonic function:

$$
\mathbf{x}_{a}=\arg \min _{\mathbf{x}}(J(\mathbf{x}))
$$

Maximum Likelihood

- Applying Bayes' theorem gives:

$$
p\left(\mathbf{x} \mid \mathbf{y} \text { and } \mathbf{x}_{b}\right)=\frac{p\left(\mathbf{y} \text { and } \mathbf{x}_{b} \mid \mathbf{x}\right) p(\mathbf{x})}{p\left(\mathbf{y} \text { and } \mathbf{x}_{b}\right)}
$$

- Now, $p\left(\mathbf{y}\right.$ and $\left.\mathbf{x}_{b}\right)$ is independent of \mathbf{x}.
- A Priori we know nothing about \mathbf{x} - all values of \mathbf{x} are equally likely.
- Hence, we can regard $p(\mathbf{x}) / p\left(\mathbf{y}\right.$ and $\left.\mathbf{x}_{b}\right)$ as independent of \mathbf{x}, and write:

$$
p\left(\mathbf{x} \mid \mathbf{y} \text { and } \mathbf{x}_{b}\right) \propto p\left(\mathbf{y} \text { and } \mathbf{x}_{b} \mid \mathbf{x}\right)
$$

- Furthermore, if observation errors and backgound errors are uncorrelated, then

$$
\begin{gathered}
p\left(\mathbf{y} \text { and } \mathbf{x}_{b} \mid \mathbf{x}\right)=p(\mathbf{y} \mid \mathbf{x}) p\left(\mathbf{x}_{b} \mid \mathbf{x}\right) \\
\Rightarrow \quad J(\mathbf{x})=-\log (p(\mathbf{y} \mid \mathbf{x}))-\log \left(p\left(\mathbf{x}_{b} \mid \mathbf{x}\right)\right)+\text { const. }
\end{gathered}
$$

Maximum Likelihood

- The maximum likelihood approach is applicable to any probability density functions $p(\mathbf{y} \mid \mathbf{x})$ and $p\left(\mathbf{x}_{b} \mid \mathbf{x}\right)$.
- However, let us consider the special case of Gaussian p.d.f's:

$$
\begin{aligned}
p\left(\mathbf{x}_{b} \mid \mathbf{x}\right) & =\frac{1}{(2 \pi)^{N / 2}\left|\mathbf{P}_{b}\right|^{1 / 2}} \exp \left[-\frac{1}{2}\left(\mathbf{x}_{b}-\mathbf{x}\right)^{\mathrm{T}}\left(\mathbf{P}_{b}\right)^{-1}\left(\mathbf{x}_{b}-\mathbf{x}\right)\right] \\
p(\mathbf{y} \mid \mathbf{x}) & =\frac{1}{(2 \pi)^{M / 2}|\mathbf{R}|^{1 / 2}} \exp \left[-\frac{1}{2}(\mathbf{y}-\mathcal{H}(\mathbf{x}))^{\mathrm{T}} \mathbf{R}^{-1}(\mathbf{y}-\mathcal{H}(\mathbf{x}))\right]
\end{aligned}
$$

- Now, $J(\mathbf{x})=-\log (p(\mathbf{y} \mid \mathbf{x}))-\log \left(p\left(\mathbf{x}_{b} \mid \mathbf{x}\right)\right)+$ const.
- Hence, with an appropriate choice of the constant const.:

$$
J(\mathbf{x})=\frac{1}{2}\left(\mathbf{x}_{b}-\mathbf{x}\right)^{\mathrm{T}}\left(\mathbf{P}_{b}\right)^{-1}\left(\mathbf{x}_{b}-\mathbf{x}\right)+\frac{1}{2}(\mathbf{y}-\mathcal{H}(\mathbf{x}))^{\mathrm{T}} \mathbf{R}^{-1}(\mathbf{y}-\mathcal{H}(\mathbf{x}))
$$

- This is the 3D-Var cost function

Maximum Likelihood

$$
J(\mathbf{x})=\frac{1}{2}\left(\mathbf{x}_{b}-\mathbf{x}\right)^{\mathrm{T}}\left(\mathbf{P}_{b}\right)^{-1}\left(\mathbf{x}_{b}-\mathbf{x}\right)+\frac{1}{2}(\mathbf{y}-\mathcal{H}(\mathbf{x}))^{\mathrm{T}} \mathbf{R}^{-1}(\mathbf{y}-\mathcal{H}(\mathbf{x}))
$$

- The maximum likelihood analysis corresponds to the global minimum of the cost function
- At the minimum, the gradient of the cost function $(\nabla J(\mathbf{x})$ or $\partial J / \partial \mathbf{x})$ is zero:

$$
\nabla J(\mathbf{x})=\left(\mathbf{P}_{b}\right)^{-1}\left(\mathbf{x}-\mathbf{x}_{b}\right)+\mathbf{H}^{\mathrm{T}} \mathbf{R}^{-1}(\mathcal{H}(\mathbf{x})-\mathbf{y})=\mathbf{0}
$$

Maximum Likelihood

$$
\nabla J(\mathbf{x})=\left(\mathbf{P}_{b}\right)^{-1}\left(\mathbf{x}-\mathbf{x}_{b}\right)+\mathbf{H}^{\mathrm{T}} \mathbf{R}^{-1}(\mathcal{H}(\mathbf{x})-\mathbf{y})=\mathbf{0}
$$

- Now, if \mathcal{H} is linear (or if we neglect second-order terms) then

$$
\mathcal{H}(\mathbf{x})=\mathcal{H}\left(\mathbf{x}_{b}\right)+\mathbf{H}\left(\mathbf{x}-\mathbf{x}_{b}\right)
$$

- Hence: $\left.\left(\mathbf{P}_{b}\right)^{-1}\left(\mathbf{x}-\mathbf{x}_{b}\right)+\mathbf{H}^{\mathrm{T}} \mathbf{R}^{-1}\left(\mathcal{H}\left(\mathbf{x}_{b}\right)+\mathbf{H}\left(\mathbf{x}-\mathbf{x}_{b}\right)\right)-\mathbf{y}\right)=\mathbf{0}$
- Rearranging a little gives:

$$
\left[\left(\mathbf{P}_{b}\right)^{-1}+\mathbf{H}^{\mathrm{T}} \mathbf{R}^{-1} \mathbf{H}\right] \delta \mathbf{x}=\mathbf{H}^{\mathrm{T}} \mathbf{R}^{-1}\left(\mathbf{y}-\mathcal{H}\left(\mathbf{x}_{b}\right)\right)
$$

where $\delta \mathbf{x}=\mathbf{x}-\mathbf{x}_{b}$

- This is exactly the equation for the minimum-variance analysis we derived at the start of the lecture!

Maximum Likelihood

- We have shown that the maximum likelihood approach is naturally expressed in terms of a cost function representing minus the log of the probability of the analysis state.
- The minimum of the cost function corresponds to the maximum likelihood (probability) solution.
- For Gaussian errors and linear observation operators, the maximum likelihood analysis coincides with the minimum variance solution.
- This is not the case in general:

Maximum Likelihood

- In the nonlinear case, the minimum variance approach is difficult to apply.
- The maximum-likelihood approach is much more generally applicable
- As long as we know the p.d.f's, we can define the cost function
- However, finding the global minimum may not be easy for highly non-Gaussian p.d.f's.
- In practice, background errors are usually assumed to be Gaussian (or a nonlinear transformation is applied to make them Gaussian).
- This makes the background-error term of the cost function quadratic.
- However, non-Gaussian observation errors are taken into account. For example:
- Directionally-ambiguous wind observations from scatterometers
- Observations contaminated by occasional gross errors, which make outliers much more likely than implied by a Gaussian model.

Minimization

- In 3D-Var, the analysis is found by minimizing the cost function:

$$
J(\mathbf{x})=\frac{1}{2}\left(\mathbf{x}_{b}-\mathbf{x}\right)^{\mathrm{T}}\left(\mathbf{P}_{b}\right)^{-1}\left(\mathbf{x}_{b}-\mathbf{x}\right)+\frac{1}{2}(\mathbf{y}-\mathcal{H}(\mathbf{x}))^{\mathrm{T}} \mathbf{R}^{-1}(\mathbf{y}-\mathcal{H}(\mathbf{x}))
$$

- This is a very large-scale $\left(\operatorname{dim}(\mathbf{x}) \approx 10^{8}\right)$ minimization problem.
- The size of the problem restricts on the algorithms we can use.
- Derivative-free algorithms (which require only the ability to calculate $J(\mathbf{x})$ for arbitrary \mathbf{x}) are too slow.
- This is because each function evaluation gives very limited information about the shape of the cost function.
- E.g. a finite difference, $J(\mathbf{x}+\delta \mathbf{v})-J(\mathbf{x}) \approx \delta \mathbf{v}^{\mathrm{T}} \nabla J(\mathbf{x})$, gives a single component of the gradient.
- We need $O\left(10^{8}\right)$ components to work out which direction is "downhill".

Minimization

- Practical algorithms for minimizing the 3D-Var cost function require us to calculate its gradient:

$$
\nabla J(\mathbf{x})=\left(\mathbf{P}_{b}\right)^{-1}\left(\mathbf{x}-\mathbf{x}_{b}\right)+\mathbf{H}^{\mathrm{T}} \mathbf{R}^{-1}(\mathcal{H}(\mathbf{x})-\mathbf{y})
$$

- The simplest gradient-based minimization algorithm is called steepest descent:
- Let \mathbf{x}_{0} be an initial guess of the analysis. Repeat the following steps for $k=0,1,2$, etc. until the gradient is sufficiently small:
- Define a descent direction: $\mathbf{d}_{k}=-\nabla J\left(\mathbf{x}_{k}\right)$.
- Find a step α_{k}, e.g. by line minimization of the function $J\left(\mathbf{x}_{k}+\alpha \mathbf{d}_{k}\right)$, for which $J\left(\mathbf{x}_{k}+\alpha \mathbf{d}_{k}\right)<J\left(\mathbf{x}_{k}\right)$.
- Set $\mathbf{x}_{k+1}=\mathbf{x}_{k}+\alpha \mathbf{d}_{k}$.

Minimization

- Steepest descent can work well on very well conditioned problems in which the iso-surfaces of the cost function are nearly spherical.
- In this case, the steepest descent direction points towards the minimum.
- For poorly conditioned problems, with ellipsoidal iso-surfaces, steepest descent is not efficient:

©ЕСМWF

Minimization

- Steepest Descent is inefficient because it does not use information about the curvature (i.e. the second derivatives) of the cost function.
- The simplest algorithm that uses curvature is Newtons method.
- Newton's method uses a local quadratic approximation:

$$
J(\mathbf{x}+\delta \mathbf{x}) \approx J(\mathbf{x})+\delta \mathbf{x}^{\mathrm{T}} \nabla J(\mathbf{x})+\frac{1}{2} \delta \mathbf{x}^{\mathrm{T}} J^{\prime \prime} \delta \mathbf{x}
$$

- Taking the gradient gives:

$$
\nabla J(\mathbf{x}+\delta \mathbf{x}) \approx \nabla J(\mathbf{x})+J^{\prime \prime} \delta \mathbf{x}
$$

- Since the gradient is zero at the minimum, Newton's method chooses the step at each iteration by solving:

$$
J^{\prime \prime} \delta \mathbf{x}=-\nabla J(\mathbf{x})
$$

Minimization

- Newton's method:
- Start with an initial guess, \mathbf{x}_{0}.
- Repeat the following steps for $k=0,1,2$, etc. until the gradient is sufficiently small:
- Solve $J^{\prime \prime} \delta \mathbf{x}_{k}=-\nabla J\left(\mathbf{x}_{k}\right)$.
- Set $\mathbf{x}_{k+1}=\mathbf{x}_{k}+\delta \mathbf{x}_{k}$.
- Newton's method works well for cost functions that are well approximated by a quadratic - i.e. for quasi-linear observation operators.
- However, it suffers from several problems...
- There is no control on the step length $\|\delta \mathbf{x}\|$. The method can make huge jumps into regions where the local quadratic approximation is poor.
- This can be controlled using line searches, or by trust region methods that limit the step size to a region where the approximation is valid.

Minimization

- Newton's method requires us to solve $J^{\prime \prime} \delta \mathbf{x}_{k}=-\nabla J\left(\mathbf{x}_{k}\right)$ at every iteration.
- Now, $\mathrm{J}^{\prime \prime}$ is a $\sim 10^{8} \times 10^{8}$ matrix! Clearly, we cannot explicilty construct the matrix, or use direct methods to invert it.
- However, if we have a code that calculates Hessian-vector products, then we can use an iterative method (e.g. conjugate gradients) to solve for $\delta \mathbf{x}_{k}$.
- Such a code is call a second order adjoint. See Wang, Navon, LeDimet, Zou, 1992 Meteor. and Atmos. Phys. 50, pp3-20 for details.
- Alternatively, we can use a method that constructs an approximation to $\left(J^{\prime \prime}\right)^{-1}$.
- Methods based on approximations of $J^{\prime \prime}$ or $\left(J^{\prime \prime}\right)^{-1}$ are called quasi-Newton methods.

Minimization

- By far the most popular quasi-Newton method is the BFGS algorthm, named after its creators Broyden, Fletcher, Goldfarb and Shanno.
- The BFGS method builds up an approximation to the Hessian:

$$
\mathbf{B}_{k+1}=\mathbf{B}_{k}+\frac{\mathbf{y}_{k} \mathbf{y}_{k}^{\mathrm{T}}}{\mathbf{y}_{k} \mathbf{s}_{k}^{\mathrm{T}}}-\frac{\mathbf{B}_{k} \mathbf{s}_{k}\left(\mathbf{B}_{k} \mathbf{s}_{k}\right)^{\mathrm{T}}}{\mathbf{s}_{k} \mathbf{B}_{k} \mathbf{s}_{k}^{\mathrm{T}}}
$$

where $\mathbf{s}_{k}=\mathbf{x}_{k+1}-\mathbf{x}_{k}$ and $\mathbf{y}_{k}=\nabla J\left(\mathbf{x}_{k+1}\right)-\nabla J\left(\mathbf{x}_{k}\right)$.

- The approximation is symmetric and positive definite, and satisfies

$$
\nabla J\left(\mathbf{x}_{j+1}\right)-\nabla J\left(\mathbf{x}_{j}\right)=J^{\prime \prime}\left(\mathbf{x}_{j+1}-\mathbf{x}_{j}\right) \quad \text { for } j=0,1, \cdots, k
$$

- There is an explicit expression for the inverse of \mathbf{B}_{k}, which allows Newton's equation to be solved at the cost of $O(N k)$ operations.

Minimization

- The BFGS quasi-Newton method:
- Start with an initial guess at the solution, \mathbf{x}_{0}, and an initial approximation of the Hessian (typically, $\mathbf{B}_{0}=\mathbf{I}$).
- Repeat the following steps for $k=0,1,2$, etc. until the gradient is sufficiently small:
- Solve the approximate Newton's equation, $\mathbf{B}_{k} \delta \mathbf{x}_{k}=-\nabla J\left(\mathbf{x}_{k}\right)$, to determine the search direction.
- Perform a line search to find a step α_{k} for which for which $J\left(\mathbf{x}_{k}+\alpha_{k} \delta \mathbf{x}_{k}\right)<J\left(\mathbf{x}_{k}\right)$.
- Set $\mathbf{x}_{k+1}=\mathbf{x}_{k}+\alpha_{k} \delta \mathbf{x}_{k}$.
- Generate an updated approximation to the Hessian: \mathbf{B}_{k+1}.
- As k increases, the cost of storing and applying the approximate Hessian increases linearly.
- Moreover, the vectors \mathbf{s}_{k} and \mathbf{y}_{k} generated many iterations ago no longer provide accurate information about the Hessian.
- It is usual to construct \mathbf{B}_{k} from only the $O(10)$ most recent iterations. The algorithm is then called the limited memory BFGS method. ©ECMwF

Minimization

- The methods presented so far apply to general nonlinear functions.
- An important special case occurs if the observation operator \mathcal{H} is linear. In this case, the cost function is strictly quadratic, and the gradient is linear:

$$
\begin{aligned}
\nabla J(\mathbf{x}) & =\left(\mathbf{P}_{b}\right)^{-1} \delta \mathbf{x}+\mathbf{H}^{\mathrm{T}} \mathbf{R}^{-1}\left(\mathcal{H}\left(\mathbf{x}_{b}\right)+\mathbf{H} \delta \mathbf{x}-\mathbf{y}\right) \\
& =\left[\left(\mathbf{P}_{b}\right)^{-1}+\mathbf{H}^{\mathrm{T}} \mathbf{R}^{-1} \mathbf{H}\right] \delta \mathbf{x}+\mathbf{H}^{\mathrm{T}} \mathbf{R}^{-1}\left(\mathcal{H}\left(\mathbf{x}_{b}\right)-\mathbf{y}\right)
\end{aligned}
$$

- In this case, it makes sense to determine the analysis by solving the linear equation $\nabla J(\mathbf{x})=\mathbf{0}$.
- Since the matrix $\left[\left(\mathbf{P}_{b}\right)^{-1}+\mathbf{H}^{\mathrm{T}} \mathbf{R}^{-1} \mathbf{H}\right]$ is symmetric and positive definite, the best algorithm to use is conjugate gradients. (The algorithm was presented earlier in this lecture.)
- A good introduction to the method can be found online: Shewchuk (1994) "An Introduction to the Conjugate Gradient Method Without the Agonizing pain".

Preconditioning

- We noted that the steepest descent method works best if the iso-surfaces of the cost function are approximately spherical.
- This is generally true of all minimization algorithms.
- In general, expressing the cost function directly in terms of \mathbf{x} will not lead to spherical iso-surfaces.
- The degree of sphericity of the cost function can be measured by the eigenvalues of the Hessian. (Each eigenvalue corresponds to the curvature in the direction of the corresponding eigenvector.)
- In particular, the convergence rate will depend on the condition number:

$$
\kappa=\frac{\lambda_{\max }}{\lambda_{\min }}
$$

Preconditioning

- We can speed up the convergence of the minimization by a change of variables $\chi=\mathbf{L}^{-1}\left(\mathbf{x}-\mathbf{x}_{b}\right)$, where \mathbf{L} is chosen to make the cost function more spherical.
- A common choice is $\mathbf{L}=\left(\mathbf{P}_{b}\right)^{1 / 2}$. The cost function becomes:

$$
J(\chi)=\frac{1}{2} \chi^{\mathrm{T}} \chi+\frac{1}{2}\left(\mathbf{y}-\mathcal{H}\left(\mathbf{x}_{b}+\mathbf{L} \chi\right)\right)^{\mathrm{T}} \mathbf{R}^{-1}\left(\mathbf{y}-\mathcal{H}\left(\mathbf{x}_{b}+\mathbf{L} \chi\right)\right)
$$

- With this change of variables, the Hessian becomes:

$$
J_{\chi}^{\prime \prime}=\mathbf{I}+\mathbf{L}^{\mathrm{T}} \mathbf{H}^{\mathrm{T}} \mathbf{R}^{-1} \mathbf{H} \mathbf{L} \text { (plus higher order terms) }
$$

- The presence of the identity matrix in this expression guarantees that the minimum eigenvalue is ≥ 1.
- There are no small eigenvalues to destroy the conditioning of the problem.

Calculating the Gradient

- To minimize the cost function, we must be able to calculate gradients.
- If we precondition using \mathbf{L}, the gradient (with respect to χ) is:

$$
\nabla_{\chi} J(\chi)=\chi+\mathbf{L}^{\mathrm{T}} \mathbf{H}^{\mathrm{T}} \mathbf{R}^{-1}\left(\mathbf{y}-\mathcal{H}\left(\mathbf{x}_{b}+\mathbf{L} \chi\right)\right)
$$

- Typically, \mathbf{R} is diagonal - observation errors are treated as being mutually uncorrelated.
- However, the matrices $\mathbf{H}^{\mathrm{T}}, \mathbf{L}^{\mathrm{T}}$ and \mathbf{L} are not diagonal, and are much too large to be represented explicitly.
- We must represent these as operators (subroutines) that calculate matrix-vector products.

Calculating the Gradient

- Take \mathcal{H} as an example. Each line of the subroutine that applies \mathcal{H} can be considered as a function h_{k}, so that

$$
\mathcal{H}(\mathbf{x}) \equiv h_{K}\left(h_{K-1}\left(\cdots\left(h_{1}(\mathbf{x})\right)\right)\right)
$$

- Each of the functions h_{k} can be linearized, to give the corresponding linear function \mathbf{h}_{k}. Each of these is extremely simple, and can be represented by a one or two lines of code.
- The resulting code is called the tangent linear of \mathcal{H}.

$$
\mathbf{H}(\mathbf{x}) \equiv \mathbf{h}_{K} \mathbf{h}_{K-1} \cdots \mathbf{h}_{1} \mathbf{x}
$$

- The transpose, $\mathbf{H}^{\mathrm{T}}(\mathbf{x}) \equiv \mathbf{h}_{1}^{\mathrm{T}} \mathbf{h}_{2}^{\mathrm{T}} \cdots \mathbf{h}_{K}^{\mathrm{T}} \mathbf{x}$, is called the adjoint of \mathcal{H}.
- Again, each $\mathbf{h}_{k}^{\mathrm{T}}$ is extremely simple - just to a few lines of code.
- NB: there is a whole 1-hour lecture on tangent linear and adjoint operators later in the course.

Summary

- We showed that 3D-Var can be considered as an iterative procedure for solving the linear (minimum variance) analysis equation.
- We also derived 3D-Var from the maximum likelihood principle.
- The Maximum Likelihood approach can be applied to non-Gaussian, nonlinear analysis.
- We introduced the 3D-Var cost function.
- We considered how to minimize the cost function using algorithms based on knowledge of its gradient.
- We looked at a simple preconditioning.
- Finally, we saw how it is possible to write code that computes the gradient.

