# Assimilation Algorithms <br> Lecture 1: Basic Concepts 

Mike Fisher

ECMWF

May 31, 2013

## Outline

(1) History and Terminology
(2) Elementary Statistics - The Scalar Analysis Problem
(3) Extension to Multiple Dimensions
(4) Optimal Interpolation
(5) Summary

## Analysis

- Analysis: The process of approximating the true state of a (geo)physical system at a given time.
- For example:
- Hand analysis of synoptic observations (1850 LeVerrier, Fitzroy).
- Polynomial Interpolation (1950s Panofsky)
- An important step forward was made by Gilchrist and Cressman (1954), who introduced the idea of using a previous numerical forecast to provide a preliminary estimate of the analysis.
- This prior estimate was called the background.


## Optimal interpolation

- Bergthorsson and Döös (1955) took the idea of using a background field a step further by casting the analysis problem in terms of increments which were added to the background.
- The increments were weighted linear combinations of nearby observation increments (observation minus background), with the weights determined statistically.
- This idea of statistical combination of background and synoptic observations led ultimately to Optimal Interpolation.
- The use of statistics to merge model fields with observations is fundamental to all current methods of analysis.


## Data Assimilation

- An important change of emphasis happened in the early 1970s with the introduction of primitive-equation models.
- Primitive equation models support inertia-gravity waves. This makes them much more fussy about their initial conditions than the filtered models that had been used hitherto.
- The analysis procedure became much more intimately linked with the model. The analysis had to produce an initial state that respected the model's dynamical balances.
- Unbalanced increments from the analysis procedure would be rejected as a result of geostrophic adjustment.
- Initialization techniques (which suppress inertia-gravity waves) became important.


## Data Assimilation

The idea that the analysis procedure must present observational information to the model in a way in which it can be absorbed (i.e. not rejected by geostrophic adjustment) led to the coining of the term data assimilation.
Google define:Assimilate

- To incorporate nutrients into the body after digestion
- To incorporate or absorb knowledge into the mind
- The social process of absorbing one cultural group into harmony with another
- The process by which the Borg integrate beings and cultures into their collective.
- The process of objectively adapting the model state to observations in a statistically optimal way taking into account model and observation errors


## Data Assimilation

- A final impetus towards the modern concept of data assimilation came from the increasing availability of asynoptic observations from satellite instruments.
- It was no longer sufficient to think of the analysis purely in terms of spatial interpolation of contemporaneous observations.
- The time dimension became important, and the model dynamics assumed the role of propagating observational information in time to allow a synoptic view of the state of the system to be generated from asynoptic data.


## Elementary Statistics

Suppose we want to estimate the temperature of this room, given:

- A prior estimate: $T_{b}$.
- E.g., we measured the temperature an hour ago, and we have some idea (i.e. a model) of how the temperature varies as a function of time, the number of people in the room, whether the windows are open, etc.
- A thermometer: $T_{0}$.

Denote the true temperature of the room by $T^{*}$.

- The errors in $T_{b}$ and $T_{o}$ are:

$$
\begin{aligned}
\epsilon_{b} & =T_{b}-T^{*} \\
\epsilon_{o} & =T_{o}-T^{*}
\end{aligned}
$$

- We will assume that the error statistics of $T_{b}$ and $T_{o}$ are known, and that $T_{b}$ and $T_{o}$ have been adjusted (bias corrected) so that their mean errors are zero:

$$
\overline{\epsilon_{b}}=\overline{\epsilon_{o}}=0
$$

## Elementary Statistics

- We estimate the temperature of the room as a linear combination of $T_{b}$ and $T_{o}$ :

$$
T_{a}=\alpha T_{o}+\beta T_{b}+\gamma
$$

- Denote the error of our estimate as $\epsilon_{a}=T_{a}-T^{*}$.
- We want the estimate to be unbiased: $\overline{\epsilon_{a}}=0$.
- We have:

$$
T_{a}=T^{*}+\epsilon_{a}=\alpha\left(T^{*}+\epsilon_{o}\right)+\beta\left(T^{*}+\epsilon_{b}\right)+\gamma
$$

- Taking the mean and rearranging gives:

$$
\overline{\epsilon_{a}}=(\alpha+\beta-1) T^{*}+\gamma
$$

- Since this holds for any $T^{*}$, we must have
- $\gamma=0$, and
- $\alpha+\beta-1=0$.
- I.e. $T_{a}=\alpha T_{o}+(1-\alpha) T_{b}$


## Elementary Statistics

- The general Linear Unbiased Estimate is:

$$
T_{a}=\alpha T_{o}+(1-\alpha) T_{b}
$$

- Now consider the error of this estimate.
- Subtracting $T^{*}$ from both sides of the equation gives

$$
\epsilon_{a}=\alpha \epsilon_{o}+(1-\alpha) \epsilon_{b}
$$

- The variance of the estimate is:

$$
\overline{\epsilon_{a}^{2}}=\alpha^{2} \overline{\epsilon_{o}^{2}}+2 \alpha(1-\alpha) \overline{\epsilon_{o} \epsilon_{b}}+(1-\alpha)^{2} \overline{\epsilon_{b}^{2}}
$$

- The quantity $\overline{\epsilon_{o} \epsilon_{b}}$ represents the covariance between the error of our prior estimate and the error of our thermometer measurement.
- There is no reason for these errors to be connected in any way.
- We will assume that $\overline{\epsilon_{o} \epsilon_{b}}=0$.


## Elementary Statistics

$$
\overline{\epsilon_{a}^{2}}=\alpha^{2} \overline{\epsilon_{o}^{2}}+(1-\alpha)^{2} \overline{\epsilon_{b}^{2}}
$$

We can easily derive some properties of our estimate:

- $\frac{d \overline{\epsilon_{2}^{2}}}{d \alpha}=2 \alpha \overline{\epsilon_{o}^{2}}-2(1-\alpha) \overline{\epsilon_{b}^{2}}$
- For $\alpha=0, \overline{\epsilon_{a}^{2}}=\overline{\epsilon_{b}^{2}}$ and $\frac{d \overline{\epsilon_{a}^{2}}}{d \alpha}=-2 \overline{\epsilon_{b}^{2}}<0$
- For $\alpha=1, \overline{\epsilon_{a}^{2}}=\overline{\epsilon_{o}^{2}}$ and $\frac{d \overline{\epsilon_{2}^{2}}}{d \alpha}=2 \overline{\epsilon_{o}^{2}}>0$


From this we can deduce:

- For $0 \leq \alpha \leq 1, \overline{\epsilon_{a}^{2}} \leq \max \left(\overline{\epsilon_{b}^{2}}, \overline{\epsilon_{o}^{2}}\right)$
- The minimum-variance estimate occurs for $\alpha \in(0,1)$.
- The minimum-variance estimate satisfies $\overline{\epsilon_{a}^{2}}<\min \left(\overline{\epsilon_{b}^{2}}, \overline{\epsilon_{o}^{2}}\right)$


## Elementary Statistics

The minimum-variance estimate occurs when

$$
\begin{aligned}
\frac{d \overline{\epsilon_{a}^{2}}}{d \alpha} & =2 \alpha \overline{\epsilon_{o}^{2}}-2(1-\alpha) \overline{\epsilon_{b}^{2}}=0 \\
\Rightarrow \quad \alpha & =\overline{\overline{\epsilon_{b}^{2}}} \overline{\overline{\epsilon_{b}^{2}}+\overline{\epsilon_{o}^{2}}}
\end{aligned}
$$

It is not difficult to show that the error variance of this minimum-variance estimate is:

$$
\overline{\epsilon_{a}^{2}}=\left(\frac{1}{\overline{\epsilon_{b}^{2}}}+\frac{1}{\overline{\epsilon_{o}^{2}}}\right)^{-1}
$$

## Extension to Multiple Dimensions

- Now, let's turn our attention to the multi-dimensional case.
- Instead of a scalar prior estimate $T_{b}$, we now consider a vector $\mathbf{x}_{b}$.
- We can think of $\mathbf{x}_{b}$ as representing the entire state of a numerical model at some time.
- The elements of $\mathbf{x}_{b}$ might be grid-point values, spherical harmonic coefficients, etc., and some elements may represent temperatures, others wind components, etc.
- We refer to $\mathbf{x}_{b}$ as the background
- Similarly, we generalize the observation to a vector $\mathbf{y}$.
- y can contain a disparate collection of observations at different locations, and of different variables.


## Extension to Multiple Dimensions

- The major difference between the simple scalar example and the multi-dimensional case is that there is no longer a one-to-one correspondence between the elements of the observation vector and those of the background vector.
- It is no longer trivial to compare observations and background.
- Observations are not necessarily located at model gridpoints
- The observed variables (e.g. radiances) may not correspond directly with any of the variables of the model.
- To overcome this problem, we must asume that our model is a more-or-less complete representation of reality, so that we can always determine "model equivalents" of the observations.


## Extension to Multiple Dimensions

- We formalize this by assuming the existance of an observation operator, $\mathcal{H}$.
- Given a model-space vector, $\mathbf{x}$, the vector $\mathcal{H}(\mathbf{x})$ can be compared directly with $\mathbf{y}$, and represents the "model equivalent" of $\mathbf{y}$.
- For now, we will assume that $\mathcal{H}$ is perfect. I.e. it does not introduce any error, so that:

$$
\mathcal{H}\left(\mathbf{x}^{*}\right)=\mathbf{y}^{*}
$$

where $\mathbf{x}^{*}$ is the true state, and $\mathbf{y}^{*}$ contains the true values of the observed quantities.

## Extension to Multiple Dimensions

- As we did in the scalar case, we will look for an analysis that is a linear combination of the available information:

$$
\mathbf{x}_{a}=\mathbf{F} \mathbf{x}_{b}+\mathbf{G} \mathcal{H}\left(\mathbf{x}_{b}\right)+\mathbf{K} \mathbf{y}+\mathbf{c}
$$

where $\mathbf{F}, \mathbf{G}$ and $\mathbf{K}$ are matrices, and where $\mathbf{c}$ is a vector.

- If $\mathcal{H}$ is linear, we can proceed as in the scalar case and look for a linear unbiased estimate.
- In the more general case of nonlinear $\mathcal{H}$, we will require that error-free inputs ( $\mathbf{x}_{b}=\mathbf{x}^{*}$ and $\mathbf{y}=\mathbf{y}^{*}$ ) produce an error-free analysis ( $\mathbf{x}_{a}=\mathbf{x}^{*}$ ):

$$
\mathbf{x}^{*}=\mathbf{F} \mathbf{x}^{*}+\mathbf{G} \mathcal{H}\left(\mathbf{x}^{*}\right)+\mathbf{K} \mathcal{H}\left(\mathbf{x}^{*}\right)+\mathbf{c}
$$

- Since this applies for any $\mathbf{x}^{*}$, we must have $\mathbf{c}=0$ and

$$
\mathbf{F}+\mathbf{G} \mathcal{H}(\cdot) \equiv \mathbf{I}-\mathbf{K} \mathcal{H}(\cdot)
$$

- Our analysis equation is thus:

$$
\mathbf{x}_{a}=\mathbf{x}_{b}+\mathbf{K}\left(\mathbf{y}-\mathcal{H}\left(\mathbf{x}_{b}\right)\right)
$$

## Extension to Multiple Dimensions

$$
\mathbf{x}_{a}=\mathbf{x}_{b}+\mathbf{K}\left(\mathbf{y}-\mathcal{H}\left(\mathbf{x}_{b}\right)\right)
$$

- Remember that in the scalar case, we had

$$
\begin{aligned}
T_{a} & =\alpha T_{o}+(1-\alpha) T_{b} \\
& =T_{b}+\alpha\left(T_{o}-T_{b}\right)
\end{aligned}
$$

- We see that the matrix $\mathbf{K}$ plays a role equivalent to that of the coefficient $\alpha$.
- $\mathbf{K}$ is called the gain matrix.
- It determines the weight given to the observations
- It handles the transformation of information defined in "observation space" to the space of model variables.


## Extension to Multiple Dimensions

- The next step in deriving the analysis equation is to describe the statistical properties of the analysis errors.
- We define

$$
\begin{aligned}
\epsilon_{a} & =\mathbf{x}_{a}-\mathbf{x}^{*} \\
\epsilon_{b} & =\mathbf{x}_{b}-\mathbf{x}^{*} \\
\epsilon_{o} & =\mathbf{y}-\mathbf{y}^{*}
\end{aligned}
$$

- We will assume that the errors are small, so that

$$
\mathcal{H}\left(\mathbf{x}_{b}\right)=\mathcal{H}\left(\mathbf{x}^{*}\right)+\mathbf{H} \epsilon_{b}+O\left(\epsilon_{b}^{2}\right)
$$

where $\mathbf{H}$ is the Jacobian of $\mathcal{H}$.

## Extension to Multiple Dimensions

- Substituting the expressions for the errors into our analysis equation, and using $\mathcal{H}\left(\mathbf{x}^{*}\right)=\mathbf{y}^{*}$, gives (to first order):

$$
\epsilon_{a}=\epsilon_{b}+\mathbf{K}\left(\epsilon_{o}-\mathbf{H} \epsilon_{b}\right)
$$

- As in the scalar example, we will assume that the mean errors have been removed, so that $\overline{\epsilon_{b}}=\overline{\epsilon_{o}}=0$. We see that this implies that $\overline{\epsilon_{a}}=0$.
- In the scalar example, we derived the variance of the analysis error, and defined our optimal analysis to minimize this variance.
- In the multi-dimensional case, we must deal with covariances.


## Covariance

- The covariance between two variables $x_{i}$ and $x_{j}$ is defined as

$$
\operatorname{cov}\left(x_{i}, x_{j}\right)=\overline{\left(x_{i}-\overline{x_{i}}\right)\left(x_{j}-\bar{x}_{j}\right)}
$$

- Given a vector $\mathbf{x}=\left(x_{1}, x_{2}, \cdots, x_{N}\right)^{\mathrm{T}}$, we can arrange the covariances into a covariance matrix, $\mathbf{C}$, such that $C_{i j}=\operatorname{cov}\left(x_{i}, x_{j}\right)$.
- Equivalently:

$$
C=\overline{(x-\bar{x})(x-\bar{x})^{T}}
$$

- Covariance matrices are symmetric and positive definite


## Extension to Multiple Dimensions

- The analysis error is:

$$
\begin{aligned}
\epsilon_{a} & =\epsilon_{b}+\mathbf{K}\left(\epsilon_{o}-\mathbf{H} \epsilon_{b}\right) \\
& =(\mathbf{I}-\mathbf{K} \mathbf{H}) \epsilon_{b}+\mathbf{K} \epsilon_{o}
\end{aligned}
$$

- Forming the analysis error covariance matrix gives:

$$
\begin{aligned}
\overline{\epsilon_{a} \epsilon_{a}^{\mathrm{T}}}= & \overline{\left[(\mathbf{I}-\mathbf{K} \mathbf{H}) \epsilon_{b}+\mathbf{K} \epsilon_{o}\right]\left[(\mathbf{I}-\mathbf{K} \mathbf{H}) \epsilon_{b}+\mathbf{K} \epsilon_{o}\right]^{\mathrm{T}}} \\
= & (\mathbf{I}-\mathbf{K H}) \overline{\epsilon_{b} \epsilon_{b}^{\mathrm{T}}}(\mathbf{I}-\mathbf{K} \mathbf{H})^{\mathrm{T}}+(\mathbf{I}-\mathbf{K} \mathbf{H}) \overline{\epsilon_{b} \epsilon_{o}^{\mathrm{T}}} \mathbf{K}^{\mathrm{T}} \\
& +\mathbf{K} \overline{\epsilon_{o} \epsilon_{b}^{\mathrm{T}}}(\mathbf{I}-\mathbf{K} \mathbf{H})^{\mathrm{T}}+\mathbf{K} \overline{\epsilon_{o} \epsilon_{o}^{\mathrm{T}}} \mathbf{K}^{\mathrm{T}}
\end{aligned}
$$

- Assuming that the backgound and observation errors are uncorrelated (i.e. $\overline{\epsilon_{o} \epsilon_{b}^{\mathrm{T}}}=\overline{\epsilon_{b} \epsilon_{o}^{\mathrm{T}}}=0$ ), we find:

$$
\overline{\epsilon_{a} \epsilon_{a}^{\mathrm{T}}}=(\mathbf{I}-\mathbf{K} \mathbf{H}) \overline{\epsilon_{b} \epsilon_{b}^{\mathrm{T}}}(\mathbf{I}-\mathbf{K} \mathbf{H})^{\mathrm{T}}+\mathbf{K} \overline{\epsilon_{o} \epsilon_{o}^{\mathrm{T}}} \mathbf{K}^{\mathrm{T}}
$$

## Extension to Multiple Dimensions

$$
\overline{\epsilon_{a} \epsilon_{a}^{\mathrm{T}}}=(\mathbf{I}-\mathbf{K} \mathbf{H}) \overline{\epsilon_{b} \epsilon_{b}^{\mathrm{T}}}(\mathbf{I}-\mathbf{K} \mathbf{H})^{\mathrm{T}}+\mathbf{K} \overline{\epsilon_{o} \epsilon_{o}^{\mathrm{T}}} \mathbf{K}^{\mathrm{T}}
$$

- This expression is the equivalent of the expression we obtained for the error of the scalar analysis:

$$
\overline{\epsilon_{a}^{2}}=(1-\alpha)^{2} \overline{\epsilon_{b}^{2}}+\alpha^{2} \overline{\epsilon_{o}^{2}}
$$

- Again, we see that $\mathbf{K}$ plays essentially the same role in the multi-dimensional analysis as $\alpha$ plays in the scalar case.
- In the scalar case, we chose $\alpha$ to minimize the variance of the analysis error.
- What do we mean by the minimum-variance analysis in the multi-dimensional case?


## Extension to Multiple Dimensions

- Note that the diagonal elements of a covariance matrix are variances $C_{i i}=\operatorname{cov}\left(x_{i}, x_{i}\right)=\overline{\left(x_{i}-\overline{x_{i}}\right)^{2}}$.
- Hence, we can define the minimum-variance analysis as the analysis that minimizes the sum of the diagonal elements of the analysis error covariance matrix.
- The sum of the diagonal elements of a matrix is called the trace.
- In the scalar case, we found the minimum-variance analysis by setting $\frac{d \overline{\epsilon_{2}^{2}}}{d \alpha}$ to zero.
- In the multidimensional case, we are going to set

$$
\frac{\partial \operatorname{trace}\left(\overline{\epsilon_{a} \epsilon_{a}^{\mathrm{T}}}\right)}{\partial \mathbf{K}}=\mathbf{0}
$$

- (Note: $\frac{\partial \operatorname{trace}\left(\overline{\epsilon_{\epsilon} \epsilon_{a}^{T}}\right)}{\partial \mathrm{K}}$ is the matrix whose $i j^{\text {th }}$ element is $\frac{\partial \operatorname{trace}\left(\overline{\epsilon_{e} \epsilon_{\mathrm{a}}^{\mathrm{T}}}\right)}{\partial K_{i j}}$.)


## Extension to Multiple Dimensions

- We have: $\overline{\epsilon_{a} \epsilon_{a}^{\mathrm{T}}}=(\mathbf{I}-\mathbf{K H}) \overline{\epsilon_{b} \epsilon_{b}^{\mathrm{T}}}(\mathbf{I}-\mathbf{K H})^{\mathrm{T}}+\mathbf{K} \overline{\epsilon_{o} \epsilon_{o}^{\mathrm{T}}} \mathbf{K}^{\mathrm{T}}$.
- The following matrix identities come to our rescue:

$$
\begin{gathered}
\frac{\partial \operatorname{trace}\left(\mathbf{K A K}^{\mathrm{T}}\right)}{\partial \mathbf{K}}=\mathbf{K}\left(\mathbf{A}+\mathbf{A}^{\mathrm{T}}\right) \\
\frac{\partial \operatorname{trace}(\mathbf{K A})}{\partial \mathbf{K}}=\mathbf{A}^{\mathrm{T}}
\end{gathered}
$$

- Applying these to $\partial \operatorname{trace}\left(\overline{\epsilon_{a} \epsilon_{a}^{\mathrm{T}}}\right) / \partial \mathbf{K}$ gives:

$$
\frac{\partial \operatorname{trace}\left(\overline{\epsilon_{a} \epsilon_{a}^{\mathrm{T}}}\right)}{\partial \mathbf{K}}=2 \mathbf{K}\left[\mathbf{H} \overline{\epsilon_{b} \epsilon_{b}^{\mathrm{T}}} \mathbf{H}^{\mathrm{T}}+\overline{\epsilon_{o} \epsilon_{o}^{\mathrm{T}}}\right]-2 \overline{\epsilon_{b} \epsilon_{b}^{\mathrm{T}}} \mathbf{H}^{\mathrm{T}}=\mathbf{0}
$$

- Hence: $\mathbf{K}=\overline{\epsilon_{b} \epsilon_{b}^{\mathrm{T}}} \mathbf{H}^{\mathrm{T}}\left[\overline{\mathbf{H}} \overline{\epsilon_{b} \epsilon_{b}^{\mathrm{T}}} \mathbf{H}^{\mathrm{T}}+\overline{\epsilon_{o} \epsilon_{o}^{\mathrm{T}}}\right]^{-1}$.


## Extension to Multiple Dimensions

$$
\mathbf{K}=\overline{\epsilon_{b} \epsilon_{b}^{\mathrm{T}}} \mathbf{H}^{\mathrm{T}}\left[\mathbf{H} \overline{\epsilon_{b} \epsilon_{b}^{\mathrm{T}}} \mathbf{H}^{\mathrm{T}}+\overline{\epsilon_{o} \epsilon_{o}^{\mathrm{T}}}\right]^{-1}
$$

- This optimal gain matrix is called the Kalman Gain Matrix.
- Note the similarity with the optimal gain we derived for the scalar analysis: $\alpha=\overline{\epsilon_{b}^{2}} /\left(\overline{\epsilon_{b}^{2}}+\overline{\epsilon_{o}^{2}}\right)$.
- The variance of analysis error for the optimal scalar problem was:

$$
\overline{\epsilon_{a}^{2}}=\left(\frac{1}{\overline{\epsilon_{b}^{2}}}+\frac{1}{\overline{\epsilon_{o}^{2}}}\right)^{-1}
$$

- The equivalent expression for the multi-dimensional case is:

$$
\overline{\epsilon_{a} \epsilon_{a}^{\mathrm{T}}}=\left[\left(\overline{\epsilon_{b} \epsilon_{b}^{\mathrm{T}}}\right)^{-1}+\mathbf{H}^{\mathrm{T}}\left(\overline{\epsilon_{o} \epsilon_{o}^{\mathrm{T}}}\right)^{-1} \mathbf{H}\right]^{-1}
$$

## Notation

- The notation we have used for covariance matrices can get a bit cumbersome.
- The standard notation is:

$$
\begin{aligned}
\mathbf{P}^{a} & \equiv \overline{\epsilon_{a} \epsilon_{a}^{\mathrm{T}}} \\
\mathbf{P}^{b} & \equiv \overline{\epsilon_{b} \epsilon_{b}^{\mathrm{T}}} \\
\mathbf{R} & \equiv \overline{\epsilon_{o} \epsilon_{o}^{\mathrm{T}}}
\end{aligned}
$$

- In many analysis schemes, the true covariance matrix of background error, $\mathbf{P}^{b}$, is not known, or is too large to be used.
- In this case, we use an approximate background error covariance matrix. This approximate matrix is denoted by $\mathbf{B}$.


## Alternative Expression for the Kalman Gain

Finally, we derive an alternative expression for the Kalman gain:

$$
\mathbf{K}=\mathbf{P}^{b} \mathbf{H}^{\mathrm{T}}\left[\mathbf{H} \mathbf{P}^{b} \mathbf{H}^{\mathrm{T}}+\mathbf{R}\right]^{-1}
$$

Multiplying both sides by $\left[\left(\mathbf{P}^{b}\right)^{-1}+\mathbf{H}^{T} \mathbf{R}^{-1} \mathbf{H}\right]$ gives:

$$
\begin{aligned}
{\left[\left(\mathbf{P}^{b}\right)^{-1}+\mathbf{H}^{\mathrm{T}} \mathbf{R}^{-1} \mathbf{H}\right] \mathbf{K} } & =\left[\mathbf{H}^{\mathrm{T}}+\mathbf{H}^{\mathrm{T}} \mathbf{R}^{-1} \mathbf{H} \mathbf{P}^{b} \mathbf{H}^{\mathrm{T}}\right]\left[\mathbf{H} \mathbf{P}^{b} \mathbf{H}^{\mathrm{T}}+\mathbf{R}\right]^{-1} \\
& =\mathbf{H}^{\mathrm{T}} \mathbf{R}^{-1}\left[\mathbf{R}+\mathbf{H} \mathbf{P}^{b} \mathbf{H}^{\mathrm{T}}\right]\left[\mathbf{H} \mathbf{P}^{b} \mathbf{H}^{\mathrm{T}}+\mathbf{R}\right]^{-1} \\
& =\mathbf{H}^{\mathrm{T}} \mathbf{R}^{-1}
\end{aligned}
$$

Hence:

$$
\mathbf{K}=\left[\left(\mathbf{P}^{b}\right)^{-1}+\mathbf{H}^{\mathrm{T}} \mathbf{R}^{-1} \mathbf{H}\right]^{-1} \mathbf{H}^{\mathrm{T}} \mathbf{R}^{-1}
$$

## Optimal Interpolation

- Optimal Interpolation is a statistical data assimilation method based on the multi-dimensional analysis equations we have just derived.
- The method was used operationally at ECMWF from 1979 until 1996, when it was replaced by 3D-Var.
- The basic idea is to split the global analysis into a number of boxes which can be analysed independently:

$$
\mathbf{x}_{a}^{(i)}=\mathbf{x}_{b}^{(i)}+\mathbf{K}^{(i)}\left(\mathbf{y}^{(i)}-\mathcal{H}^{(i)}\left(\mathbf{x}_{b}\right)\right)
$$

where

$$
\mathbf{x}_{a}=\left(\begin{array}{c}
\mathbf{x}_{a}^{(1)} \\
\mathbf{x}_{a}^{(2)} \\
\vdots \\
\mathbf{x}_{a}^{(M)}
\end{array}\right) \quad \mathbf{x}_{b}=\left(\begin{array}{c}
\mathbf{x}_{b}^{(1)} \\
\mathbf{x}_{b}^{(2)} \\
\vdots \\
\mathbf{x}_{b}^{(M)}
\end{array}\right) \quad \mathbf{K}=\left(\begin{array}{c}
\mathbf{K}^{(1)} \\
\mathbf{K}^{(2)} \\
\vdots \\
\mathbf{K}^{(M)}
\end{array}\right)
$$

## Optimal Interpolation

$$
\mathbf{x}_{a}^{(i)}=\mathbf{x}_{b}^{(i)}+\mathbf{K}^{(i)}\left(\mathbf{y}^{(i)}-\mathcal{H}^{(i)}\left(\mathbf{x}_{b}\right)\right)
$$

- In principle, we should use all available observations to calculate the anaysis for each box. However, this is too expensive.
- To produce a computationally-feasible algorithm, Optimal Interpolation (OI) restricts the observations used for each box to those observations which lie in a surrounding selection area:


## Optimal Interpolation

- The gain matrix used for each box is:

$$
\mathbf{K}^{(i)}=\left(\mathbf{P}^{b} \mathbf{H}^{\mathrm{T}}\right)^{(i)}\left[\left(\mathbf{H} \mathbf{P}^{b} \mathbf{H}^{\mathrm{T}}\right)^{(i)}+\mathbf{R}^{(i)}\right]^{-1}
$$

- Now, the dimension of the matrix $\left[\left(\mathbf{H P}^{b} \mathbf{H}^{T}\right)^{(i)}+\mathbf{R}^{(i)}\right]$ is equal to the number of observtions in the selection box.
- Selecting observations reduces the size of this matrix, making it feasible to use direct solution methods to invert it.
- Note that to implement Optimal Interpolation, we have to specify $\left(\mathbf{P}^{b} \mathbf{H}^{\mathrm{T}}\right)^{(i)}$ and $\left(\mathbf{H} \mathbf{P}^{b} \mathbf{H}^{\mathrm{T}}\right)^{(i)}$. This effectively limits us to very simple observation operators, corresponding to simple interpolations.
- This, together with the artifacts introduced by observation selection, was one of the main reasons for abandoning Optimal Interpolation in favour of 3D-Var.


## Summary

- We derived the linear analysis equation for a simple scalar example.
- We showed that a particular choice of the weight $\alpha$ given to the observation resulted in an optimal minimum-variance analysis.
- We repeated the derivation for the multi-dimensional case. This required the introduction of the observation operator.
- The derivation for the multi-dimensional case closely parallelled the scalar derivation.
- The expressions for the gain matrix and analysis error covariance matrix were recognisably similar to the corresponding scalar expressions.
- Finally, we considered the practical implementation of the analysis equation, in an Optimal Interpolation data assimilation scheme.

