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Parametrizations in Data Assimilation

• Introduction

• An example of physical initialization

• A very simple variational assimilation problem

• 3D-Var assimilation

• The concept of adjoint

• 4D-Var assimilation

• Tangent-linear and adjoint coding

• Issues related to physical parametrizations in assimilation

• Physical parametrizations in ECMWF’s current 4D-Var system

• Examples of applications involving linearized physical parametrizations

• Summary and conclusions
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Why do we need data assimilation?

• Physical parametrizations used in NWP models are constantly being 

improved:

 more and more prognostic variables (cloud variables, precipitation, aerosols),

 more and more processes accounted for (e.g. detailed microphysics).

• However, they remain approximate representations of the true atmospheric 

behaviour.

• Another way to improve forecasts is to improve the initial state.

• The goal of data assimilation is to periodically constrain the initial conditions 

of the forecast using a set of accurate observations that provide our best  

estimate of the local true atmospheric state.

• By construction, numerical weather forecasts are imperfect:

 discrete representation of the atmosphere in space and time (horizontal and

vertical grids, spectral truncation, time step)

 subgrid-scale processes (e.g. turbulence, convective activity) need to be

parametrized as functions of the resolved-scale variables.

 errors in the initial conditions.



General features of data assimilation

 Goal: to produce an accurate four dimensional representation of the

atmospheric state to initialize numerical weather prediction models.

 This is achieved by combining in an optimal statistical way all the information 

on the atmosphere, available over a selected time window (usually 6 or 12h):

 Observations with their accuracies (error statistics),

 Short-range model forecast (background) with associated error

statistics,

 Atmospheric equilibria (e.g. geostrophic balance),

 Physical laws (e.g. perfect gas law, condensation)

 The optimal atmospheric state found is called the analysis.



Which observations are assimilated?

Operationally assimilated since many years ago:

* Surface measurements (SYNOP, SHIPS, DRIBU,…),

* Vertical soundings (TEMP, PILOT, AIREP, wind profilers,…),

* Geostationary satellites (METEOSAT, GOES,…)

Polar orbiting satellites (NOAA, SSM/I, AIRS, AQUA, QuikSCAT,…):  

- radiances (infrared & passive microwave in clear-sky conditions),

- products (motion vectors, total column water vapour, ozone,…).

More recently:

* Satellite radiances/retrievals in cloudy and rainy regions (SSM/I, TMI,…),

* Precipitation measurements from ground-based radars and rain gauges.

Still experimental:

* Satellite cloud/precipitation radar reflectivities/products (TRMM, CloudSat),

* Lidar backscattering/products (wind vectors, water vapour) (CALIPSO),

* GPS water vapour retrievals, 

* Satellite measurements of aerosols, trace gases,....

* Lightning data (TRMM-LIS).



Why physical parametrizations in data assimilation?

 In current operational systems, most used observations are directly or indirectly

related to temperature, wind, surface pressure and humidity outside cloudy

and precipitation areas (~ 10 million observations assimilated in ECMWF 4D-Var

every 12 hours).

 Physical parametrizations are used during the assimilation to link the model’s

prognostic variables (typically: T, u, v, qv and Ps) to the observed quantities

(e.g. radiances, reflectivities,…).

 Observations related to clouds and precipitation are starting to be routinely

assimilated,

 but how to convert such information into proper corrections of the model’s initial

state (prognostic variables T, u, v, qv and, Ps) is not so straightforward.

For instance, problems in the assimilation can arise from the discontinuous or

non-linear nature of moist processes.



Improvements are still needed… 

 More observations are needed to improve the analysis and forecasts of:

 Mesoscale phenomena (convection, frontal regions),

 Vertical and horizontal distribution of clouds and precipitation,

 Planetary boundary layer processes (stratocumulus/cumulus clouds),

 Surface processes (soil moisture),

 The tropical circulation (monsoons, squall lines, tropical cyclones).

 Recent developments and improvements have been achieved in:

 Data assimilation techniques (OI  3D-Var  4D-Var  Ensemble DA),

 Physical parametrizations in NWP models (prognostic schemes,

detailed convection and large-scale condensation processes),

 Radiative transfer models (infrared and microwave frequencies),

 Horizontal and vertical resolutions of NWP models (currently at 

ECMWF: T1279 ~ 15 km, 137 levels),

 New satellite instruments (incl. microwave imagers/sounders, 

precipitation/cloud radars, lidars,…).



Observations

with errors

a priori information from model 

= background state with errors

Data assimilation system 

(e.g. 4D-Var)

Analysis

Forecast

NWP model

Physical parametrizations are needed in data assimilation:

- to link the model variables to the observed quantities,

- to evolve the model state in time during the assimilation (e.g. 4D-Var).

To summarize…



Empirical initialization

Example from Ducrocq et al. (2000), Météo-France:

- Using the mesoscale research model Méso-NH (prognostic clouds and precipitation).

- Particular focus on strong convective events.

- Method: Before running the forecast:

1) A mesoscale surface analysis is performed (esp. to identify convective cold pools)

2) the model humidity, cloud and precipitation fields are empirically adjusted to match

ground-based precipitation radar observations and METEOSAT infrared brightness

temperatures.

Radar

METEOSAT



Ducrocq et al. (2004)

2.5-km resolution 

model Méso-NH

Flash flood over

South of France 

(8-9 Sept 2002)

+Nîmes

+Nîmes

12h FC from operational analysis

+

Rain gauges

Nîmes radar 

+

12h FC from modified analysis

100 km

12h accumulated precipitation: 8 Sept 12 UTC  9 Sept 2002 00 UTC
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A very simple example of variational data assimilation

- Short-range forecast (background) of 2m temperature from model: xb with error b.

- Simultaneous observation of 2m temperature: yo with error o.

The best estimate of 2m temperature (xa=analysis) minimizes the following cost

function:

In other words:
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And the analysis error, a, verifies:
),min(
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= quadratic distance to

background and obs 

(weighted by their errors)

The analysis is a linear combination of the model background and the observation

weighted by their respective error statistics.
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Important remarks on variational data assimilation

 Minimizing the cost function J is equivalent to finding the so-called Best Linear 

Unbiased Estimator (BLUE) if one can assume that:

- Model background and observation errors are unbiased and uncorrelated,

- their statistical distributions are Gaussian.

(then, the final analysis is the maximum likelihood estimator of the true state).

 The analysis is obtained by adding corrections to the background which depend 

linearly on background-observations departures.

 In this linear context, the observation operator (to go from model space to  

observation space) must not be too non-linear in the vicinity of the model state,  

else the result of the analysis procedure is not optimal.

 The result of the minimization depends on the background and observation error 

statistics (matrices B and R) but also on the Jacobian matrix (H) of the observation 

operator (H).



Marécal and

Mahfouf (2002)

Betts-Miller (adjustment 

scheme)

Jacobians of surface rainfall rate w.r.t. T and qv

Tiedtke (ECMWF’s oper 

mass-flux scheme)

An example of observation operator

H: input = model state (T,qv)   output = surface convective rainfall rate

vq

H





T

H





vq

H





T

H













22

2

1

2

1







 








 


o

o

b

b yxxx
J



 bo

ob

b
ba xyxx 




22

2




222

111

oba 


   o

T

ob

T

b HHJ yxRyxxxBxx   )()(
2

1
)()(

2

1 11

 )()( 1

bo

TT

ba H xyRHBHBHxx  

HRHBA
111   T

0D-Var

3D-Var



The minimization of the cost function J is usually 

performed using an iterative minimization procedure

cost function J J(xb)

Jmini

)(x

n

n J x

)(1 n

xn

nn J xxx  

Example with control vector x = (x1,x2)
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and around 30 iterations are

35

(T1279 L91)

(T255 L137)

(T1279 L137)

minimization in the second and third minimizations).with

(T255 L137)

needed in each minimization.







As an alternative to the matrix method, adjoint coding can be carried out using a

line-by-line approach (what we do at ECMWF).

Automatic adjoint code generators do exist, but the output code is not optimized

and not bug-free.



Tangent linear code Adjoint code

δx = 0 δx* = 0

δx = A δy + B δz δy* = δy* + A δx*

δz* = δz* + B δx*

δx* = 0

δx = A δx + B δz δz* = δz* + B δx*

δx* = A δx*

do k = 1, N

δx(k) = A δx(k1) + B δy(k)

end do

do k = N, 1,  1  (Reverse the loop!)

δx*(k 1) = δx*(k1) + A δx*(k)

δy*(k ) = δy*(k) + B δx*(k)

δx*(k) = 0

end do

if (condition)  tangent linear code if (condition) adjoint code

Basic rules for line-by-line adjoint coding (1)

And do not forget to initialize local adjoint variables to zero ! 

Adjoint statements are derived from tangent linear ones in a reversed order



Tangent linear code Trajectory and adjoint code

if (x > x0) then

δx = A δx / x

x = A Log(x) 

end if

------------- Trajectory ----------------

xstore = x     (storage for use in adjoint)

if (x > x0) then

x = A Log(x) 

end if

--------------- Adjoint ------------------

if (xstore > x0) then

δx* = A δx* / xstore

end if

Basic rules for line-by-line adjoint coding (2)

The most common sources of error in adjoint coding are:

1) Pure coding errors (often: confusion trajectory/perturbation variables),

2) Forgotten initialization of local adjoint variables to zero,

3) Mismatching trajectories in tangent linear and adjoint (even slightly),

4) Bad identification of trajectory updates:

To save memory, the trajectory can be recomputed just before the adjoint 

calculations.
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Linearity assumption

• Variational assimilation is based on the strong assumption that the analysis is 

performed in a (quasi-)linear framework.

• However, in the case of physical processes, strong non-linearities can occur in 

the presence of discontinuous/non-differentiable processes 

(e.g. switches or thresholds in cloud water and precipitation formation).

 “Regularization” needs to be applied: smoothing of functions, reduction of 

some perturbations.

Dy (tangent-linear)

original tangent in x0

Dx (finite size perturbation)

Dy (non-linear)

x0

x

y

0

Precipitation 

formation 

rate

Cloud water amount



Linearity issue

Dy (tangent-linear) = 0
tangent in x0

x

y

0

threshold

Dx (finite size perturbation)

Dy (non-linear)

x0

Precipitation 

formation 

rate

Cloud water amount



Illustration of discontinuity effect on cost function shape:

Model background = {Tb, qb};  Observation = RRobs

Simple parametrization of rain rate:  

RR =    {q  qsat(T)}   if q > qsat(T), 

0   otherwise

q
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Dry background
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Saturated background

J min

{Tb, qb}

T

Several local minima of cost functionSingle minimum of cost function

No convergence!

OK





Janisková et al. 1999



Evolution of temperature increments

(24-hour forecast) with the tangent 

linear model using different 

approaches for the exchange 

coefficient K in the vertical diffusion 

scheme.

Perturbations of K included in TL

Perturbations of K set to zero in TL

Importance of regularization to prevent instabilities in tangent-linear model



Corresponding 

perturbations evolved 

with tangent-linear 

model

No regularization in 

convection scheme

12-hour ECMWF model 

integration (T159 L60) 

Temperature on level 48

(approx. 850 hPa)

Finite difference 

between two non-linear 

model integrations

Importance of regularization to prevent instabilities in tangent-linear model



Corresponding 

perturbations evolved 

with tangent-linear 

model

Regularization in 

convection scheme

(buoyancy & updraught 

velocity reduced 

perturb.)

12-hour ECMWF model 

integration (T159 L60) 

Temperature on level 48

(approx. 850 hPa)

Finite difference 

between two non-linear 

model integrations

Importance of regularization to prevent instabilities in tangent-linear model
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Forecasts

Climate runs

No
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OK ?

M’ M(x+x)M(x)  M’x

No

OK ?

Yes

M* <M’x,y> = <x,M*y>

No

OK ?

Yes

4D-Var (minim)

Singular Vectors 

(EPS)
OK ?

OK ?

No

No
NL

TL

AD

APPL

Debugging and testing

(incl. regularization)

Pure coding

Timing:



ECMWF operational LP package (operational 4D-Var)

Currently used in ECMWF operational 4D-Var minimizations (main simplifications with respect 

to the full non-linear versions are highlighted in red):

• Radiation: TL and AD of longwave and shortwave radiation available [Janisková et al. 2002]
- shortwave: based on Morcrette (1991), only 2 spectral intervals (instead of 6 in non-linear 

version),

- longwave: based on Morcrette (1989), called every 2 hours only.

• Large-scale condensation scheme: [Tompkins and Janisková 2004]
- based on a uniform PDF to describe subgrid-scale fluctuations of total water,

- melting of snow included,

- precipitation evaporation included,

- reduction of cloud fraction perturbation and in autoconversion of cloud into rain.

• Convection scheme: [Lopez and Moreau 2005]
- mass-flux approach [Tiedtke 1989],
- deep convection (CAPE closure) and shallow convection (q-convergence) are treated,

- perturbations of all convective quantities are included,

- coupling with cloud scheme through detrainment of liquid water from updraught,

- some perturbations (buoyancy, initial updraught vertical velocity) are reduced.



ECMWF operational LP package (operational 4D-Var)

• RTTOV is employed to simulate radiances at individual frequencies (infrared, longwave 

and microwave, with cloud and precipitation effects included) to compute model–satellite 

departures in observation space.

• Orographic gravity wave drag: [Mahfouf 1999]
- subgrid-scale orographic effects [Lott and Miller 1997],
- only low-level blocking part is used.

• Vertical diffusion:

- mixing in the surface and planetary boundary layers,

- based on K-theory and Blackadar mixing length,

- exchange coefficients based on Louis et al. [1982], near surface,

- Monin-Obukhov higher up,

- mixed layer parametrization and PBL top entrainment recently added.

- Perturbations of exchange coefficients are smoothed (esp. near the surface).

• Non-orographic gravity wave drag: [Oor et al. 2010]
- isotropic spectrum of non-orographic gravity waves [Scinocca 2003],
- Perturbations of output wind tendencies below 200 hPa reset to zero.



Diagnostics:

• mean absolute errors:

• relative error change:                                            (improvement if < 0)

• here:  REF = adiabatic run (i.e. no physical parametrizations in tangent-linear)

        bganbgan MM xxMxx 

%100
    




REF

REFEXP





Comparison:

Finite difference of two NL integrations   TL evolution of initial perturbations 

 Examination of the accuracy of the linearization for typical analysis increments:

)()()( bganbgan MM xxMxx 

Impact of linearized physics on tangent-linear approximation

typical size of 4D-Var 

analysis increments



EXP - REF

EXP

relative improvement

REF = ADIAB

[%]

Temperature Impact of operational vertical diffusion scheme
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EXP - REF

EXP

relative improvement [%]

Impact of dry + moist physical processes
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Impact of all physical processes (including new moist  

physics & radiation)

EXP - REF

EXP

relative improvement [%]
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Applications



1D-Var with radar reflectivity profiles

Background

xb=(Tb,qb,…)
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Reflectivity observations

Zobs with errors obs

K = number of model vertical levels

Analysis
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1D-Var with TRMM/Precipitation Radar data

Tropical Cyclone Zoe (26 December 2002 @1200 UTC; Southwest Pacific)

TRMM Precipitation Radar 

AQUA MODIS image 

TRMM-PR swath

Cross-section



1D-Var with TRMM/Precipitation Radar data

Tropical Cyclone Zoe (26 December 2002 @1200 UTC)

Vertical cross-section of rain rates (top, mm h-1) and reflectivities (bottom, dBZ): 

observed (left), background (middle), and analyzed (right).

Black isolines on right panels = 1D-Var specific humidity increments.

2A25 Rain Background Rain

2A25 Reflectivity Background Reflect.

1D-Var Analysed Rain

1D-Var Analysed Reflect.



Impact of ECMWF linearized physics on forecast scores

Comparison of two T511 L91 4D-Var 3-month experiments with & without 

full linearized physics: Relative change in forecast anomaly correlation.

> 0 = 



Three 4D-Var assimilation experiments (20 May - 15 June 2005):

CTRL = all standard observations.

CTRL_noqUS = all obs except no moisture obs over US (surface & satellite).

NEW_noqUS = CTRL_noqUS + NEXRAD hourly rain rates over US ( “1D+4D-Var”).

CTRL_noqUS – CTRL NEW_noqUS – CTRL_noqUS

Mean differences of TCWV analyses at 00UTC

Own impact of NCEP Stage IV hourly precipitation data over the U.S.A.

(combined ground-based radar & rain gauge observations)

Lopez and Bauer (Monthly Weather Review, 2007)



Adjoint sensitivities

Idea: The time integration of the adjoint model allows the computation of

adjoint sensitivities of any physical aspect (J) inside a target geographical

domain to the model control variables several hours earlier.

Here:

J = 3h total surface precipitation averaged over a selected domain (Npoints).
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Adjoint sensitivities for a European winter storm:

J = mean 3h precipitation accumulation inside black box.



J/x after 24 hours of “backward” adjoint integration 

J/T level 64 (500 hPa)



Tropical singular vectors in EPS [Leutbecher and Van Der Grijn 2003]
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The validity of the linear assumption for precipitation quickly drops in

the first hours of the forecast, especially for smaller scales.
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Influence of time and resolution on linearity assumption in physics

Results from ensemble runs with the MC2 model (3 km resolution) 

over the Alps, from Walser et al. (2004).
Comparison of a pair of “opposite twin” experiments.

Linearity







 Developing new simplified parametrizations for data assimilation requires:

 Compromise between realism, linearity and computational cost,

 Evaluation in terms of Jacobians (not to noisy in space and time),

 Validation of forward simplified code against observations,

 Comparison to full non-linear code used in forecast mode (4D-Var trajectory),

 Numerical tests of tangent-linear and adjoint codes for small perturbations,

 Validity of the linear hypothesis for perturbations with larger size (typical of 
analysis increments).

 Successful convergence of 4D-Var minimizations.

 Physical parametrizations have become important components in recent

variational data assimilation systems.

General conclusions

 This is particularly true for the assimilation of observations related to
precipitation, clouds and soil moisture, to which a lot of efforts are
currently devoted.

 However, their linearized versions (tangent-linear and adjoint) require

some special attention (regularizations/simplifications) in order to

eliminate possible discontinuities and non-differentiability of the

physical processes they represent.



Thank you!
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Example of observation operator H (radiative transfer model): 
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and its tangent-linear operator H: 


