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Parametrizations in Data Assimilation

• Introduction

• Why are physical parametrizations needed in data assimilation?

• Tangent-linear and adjoint coding

• Issues related to physical parametrizations in assimilation

• Physical parametrizations in ECMWF’s current 4D-Var system

• Examples of applications

• Summary and conclusions



Observations
with errors

a priori information from model 
= background state with errors

Data assimilation system 
(e.g. 4D-Var)

Analysis

Forecast

NWP model

Data assimilation



Model trajectory from 
first guess xb

time15129

xb

All observations yo between 
ta-9h and ta+3h are valid at 

their actual time

yo

analysis time ta

4D-Var

6

xa

Model trajectory from 
corrected initial state

3

model state

assimilation window

initial time t0

4D-Var produces the analysis (xa) that minimizes the distance to a set of

available observations (yo) under the constraint of some a priori background

information from the model (xb) and given the respective errors of observations
and model background.
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4D-Var

Adjoint of forecast model with simplified linearized physics 
(simplified: to reduce computational cost and to avoid non-linear processes)  
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where:  i = time index (inside 4D-Var window, typ. 12h).
x0 = x0  xb

0 (increment).
Hi = tangent-linear of observation operator.
Mi = tangent-linear of forecast model (t0  ti).
di = yo

i  Hi(Mi[x
b

0])  (innovation vector).
B = background error covariance matrix.
Ri = observation error covariance matrix.

Incremental 4D-Var minimizes the following cost function:



Why do we need physical parametrizations in DA?

Physical parametrizations are needed in data assimilation:

1) To evolve the model state in time during the 4D-Var assimilation,

2) To convert the model state variables to observed equivalents,

 so that obsmodel differences can be computed at obs time.
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time ti
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= satellite cloudy radiances
time ti

model 
initial 
state

For example:

M = forecast model with physics
H = radiative transfer model



Why do we need physical parametrizations in DA?

Tangent-linear operators are applied to perturbations:
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yδδx HM

time ti

time t0

Adjoint operators are applied to cost function gradient:
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from Marécal and
Mahfouf (2002)

Betts-Miller (adjustment 
scheme)

Jacobians of surface rainfall rate w.r.t. T and qv

Tiedtke (ECMWF’s oper 
mass-flux scheme)

The choice of physical parametrizations will affect the results of 4D-Var

M: input = model state (T,qv)   output = surface convective rainfall rate
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The adjoint test should be correct at the level of machine 
precision (i.e. 13 to 15 digits, typically). 
If not, something is still wrong somewhere in the code!



Linearity assumption

• Variational assimilation is based on the strong assumption that the analysis is 

performed in a (quasi-)linear framework.

• However, in the case of physical processes, strong non-linearities can occur in 
the presence of discontinuous/non-differentiable processes 
(e.g. switches or thresholds in cloud water and precipitation formation).

 “Regularization” needs to be applied: smoothing of functions, reduction of 
some perturbations.

y (tangent-linear)

original tangent in x0

x (finite size perturbation)

y (non-linear)

x0

x

y

0

Precipitation 
formation 

rate

Cloud water amount



Linearity issue

y (tangent-linear) = 0
tangent in x0

x

y

0

threshold

x (finite size perturbation)

y (non-linear)

x0

Precipitation 
formation 

rate

Cloud water amount



Illustration of discontinuity effect on cost function shape:
Model background = {Tb, qb};  Observation = RRobs

Simple parametrization of rain rate:  
RR =    {q  qsat(T)}   if q > qsat(T), 

0   otherwise
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Saturated background

J min

{Tb, qb}
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Several local minima of cost functionSingle minimum of cost function

No convergence!

OK





Janisková et al. 1999



Evolution of temperature increments
(24-hour forecast) with the tangent 

linear model using different 
approaches for the exchange 

coefficient K in the vertical diffusion 
scheme.

Perturbations of K included in TL

Perturbations of K set to zero in TL

Importance of regularization to prevent instabilities in tangent-linear model



Corresponding 
perturbations evolved 

with tangent-linear 
model

No regularization in 
convection scheme

12-hour ECMWF model 
integration (T159 L60) 

Temperature on level 48
(approx. 850 hPa)

Finite difference 
between two non-linear 

model integrations

Importance of regularization to prevent instabilities in tangent-linear model



Corresponding 
perturbations evolved 

with tangent-linear 
model

Regularization in 
convection scheme

(buoyancy & updraught 
velocity reduced 

perturb.)

12-hour ECMWF model 
integration (T159 L60) 

Temperature on level 48
(approx. 850 hPa)

Finite difference 
between two non-linear 

model integrations

Importance of regularization to prevent instabilities in tangent-linear model
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Forecasts

Climate runs

No

Yes

OK ?

M’ M(x+x)M(x)  M’x

No

OK ?

Yes

M* <M’x,y> = <x,M*y>

No

OK ?

Yes

4D-Var (minim)

Singular Vectors 
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Debugging and testing
(incl. regularization)

Pure coding

Timing:



A short list of existing LP packages used in operational DA

 Tsuyuki (1996): Kuo-type convection and large-scale condensation schemes 
(FSU 4D-Var).

 Mahfouf (1999): full set of simplified physical parametrizations 
(gravity wave drag currently used in ECMWF operational 4D-Var and EPS).

 Janisková et al. (1999): full set of simplified physical parametrizations 
(Météo-France operational 4D-Var).

 Janisková et al. (2002): linearized radiation (ECMWF 4D-Var).

 Lopez (2002): simplified large-scale condensation and precipitation scheme 
(Météo-France).

 Tompkins and Janisková (2004): simplified large-scale condensation and 
precipitation scheme (ECMWF).

 Lopez and Moreau (2005): simplified mass-flux convection scheme (ECMWF).

 Mahfouf (2005): simplified Kuo-type convection scheme (Environment Canada).



ECMWF operational LP package (operational 4D-Var)

Currently used in ECMWF operational 4D-Var minimizations (main simplifications with respect 

to the full non-linear versions are highlighted in red):

• Radiation: TL and AD of longwave and shortwave radiation available [Janisková et al. 2002]
- shortwave: based on Morcrette (1991), only 2 spectral intervals (instead of 6 in non-linear 

version).
- longwave: based on Morcrette (1989), called every 2 hours only.

• Large-scale condensation scheme: [Tompkins and Janisková 2004]
- based on a uniform PDF to describe subgrid-scale fluctuations of total water.
- melting of snow included.
- precipitation evaporation included.
- reduction of cloud fraction perturbation and in autoconversion of cloud into rain.

• Convection scheme: [Lopez and Moreau 2005]
- mass-flux approach [Tiedtke 1989].
- deep convection (CAPE closure) and shallow convection (q-convergence) are treated.
- perturbations of all convective quantities are included.
- coupling with cloud scheme through detrainment of liquid water from updraught.
- some perturbations (buoyancy, initial updraught vertical velocity) are reduced.



ECMWF operational LP package (operational 4D-Var)

• RTTOV is employed to simulate radiances at individual frequencies (infrared, longwave 
and microwave, with cloud and precipitation effects included) to compute model–satellite 
departures in observation space.

• Orographic gravity wave drag: [Mahfouf 1999]
- subgrid-scale orographic effects [Lott and Miller 1997].
- only low-level blocking part is used.

• Vertical diffusion:
- mixing in the surface and planetary boundary layers.
- based on K-theory and Blackadar mixing length.
- exchange coefficients based on: Louis et al. [1982] in stable conditions,

Monin-Obukhov in unstable conditions.
- mixed-layer parametrization and PBL top entrainment.
- Perturbations of exchange coefficients are smoothed (esp. near the surface).

• Non-orographic gravity wave drag: [Oor et al. 2010]
- isotropic spectrum of non-orographic gravity waves [Scinocca 2003].
- Perturbations of output wind tendencies below 200 hPa reset to zero.



Diagnostics:

• mean absolute errors:

• relative error change:                                            (improvement if < 0)

• here:  REF = adiabatic run (i.e. no physical parametrizations in tangent-linear)

      bganbgan MM xxMxx 

%100
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Comparison:

Finite difference of two NL integrations   TL evolution of initial perturbations 

 Examination of the accuracy of the linearization for typical analysis increments:

)()()( bganbgan MM xxMxx 

Impact of linearized physics on tangent-linear approximation

typical size of 4D-Var 
analysis increments



EXP - REF

EXP

relative improvement

REF = ADIAB

[%]

Temperature Impact of operational vertical diffusion scheme
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EXP - REF

EXP

relative improvement [%]

Impact of dry + moist physical processes
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Impact of all physical processes (including new moist  
physics & radiation)

EXP - REF
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relative improvement [%]
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Applications



1D-Var with radar reflectivity profiles

Background
xb=(Tb,qb,…)
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Reflectivity observations

Zobs with errors obs

K = number of model vertical levels

Analysis
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1D-Var with TRMM/Precipitation Radar data

Tropical Cyclone Zoe (26 December 2002 @1200 UTC; Southwest Pacific)

TRMM Precipitation Radar 

AQUA MODIS image 

TRMM-PR swath

Cross-section



1D-Var with TRMM/Precipitation Radar data

Tropical Cyclone Zoe (26 December 2002 @1200 UTC)

Vertical cross-section of rain rates (top, mm h-1) and reflectivities (bottom, dBZ): 
observed (left), background (middle), and analyzed (right).

Black isolines on right panels = 1D-Var specific humidity increments.

2A25 Rain Background Rain

2A25 Reflectivity Background Reflect.

1D-Var Analysed Rain

1D-Var Analysed Reflect.



Impact of ECMWF linearized physics on forecast scores

Comparison of two T511 L91 4D-Var 3-month experiments with & without 
full linearized physics: Relative change in forecast anomaly correlation.

> 0 = 



Physics parameter optimization (new research)

Idea: It might be feasible to optimize the values of parameters used in the
physical schemes with the variational data assimilation approach.

This would require to include the parameter(s) in the control vector of the
data assimilation system (4D-Var, for instance):
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Limitations: Only parameters that are present in both the forecast model
and the linearized simplified physics (TL & AD) can be treated in this way.

Discrepancies between the full non-linear physics and the TL & AD physics

(used in the minimization of J ) might lead to sub-optimal results.



The validity of the linear assumption for precipitation quickly drops in
the first hours of the forecast, especially for smaller scales.
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Influence of time and resolution on linearity assumption in physics

Results from ensemble runs with the MC2 model (3 km resolution) 
over the Alps, from Walser et al. (2004).

Comparison of a pair of “opposite twin” experiments.

Linearity







 Developing new simplified parametrizations for data assimilation requires:

 Compromise between realism, linearity and computational cost,

 Validation of simplified forward code against observations,

 Comparison to full non-linear code used in forecast mode (4D-Var trajectory),

 Numerical tests of tangent-linear and adjoint codes for small perturbations,

 Validity of the linear hypothesis for perturbations with larger size (typical of 
analysis increments)  no spurious perturbation growth.

 Successful convergence of 4D-Var minimizations.

 Physical parametrizations have become important components in
variational data assimilation systems because they allow:

- the comparison of the model state with observations (forward model),

- the minimization of the cost function (tangent-linear and adjoint models).

General conclusions

 This is particularly true for the assimilation of observations related to
precipitation, clouds and soil moisture.

 However, their linearized versions (tangent-linear and adjoint) require
some special attention (regularizations/simplifications) in order to
eliminate or smooth possible discontinuities and non-differentiability of
the physical processes they represent.



Thank you!
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Example of observation operator H (radiative transfer model): 
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H

and its tangent-linear operator H: 
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