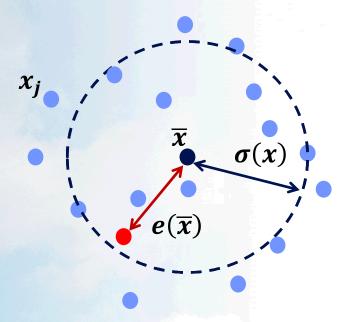
# Using stochastic physics to represent model error

Sarah-Jane Lock

Ensemble Prediction Section,

Predictability Division


## Using stochastic physics to represent model error

- Why represent model error in an ensemble forecast?
- What are the sources of model error?
- How do we represent model error?
  - 2 stochastic physics schemes in the IFS
- Impact of stochastic physics schemes in the IFS:
  - Medium-range ensemble (ENS)
  - Seasonal forecast (S4)



# **Ensemble reliability**

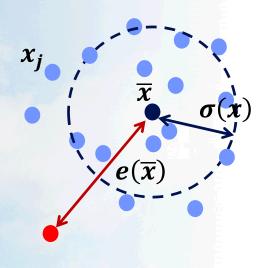
In a reliable ensemble, ensemble spread is a predictor of ensemble error



- Ensemble member
- Ensemble mean
- Observation

i.e. averaged over many ensemble forecasts,

$$e(\bar{x}) \approx \sigma(x)$$

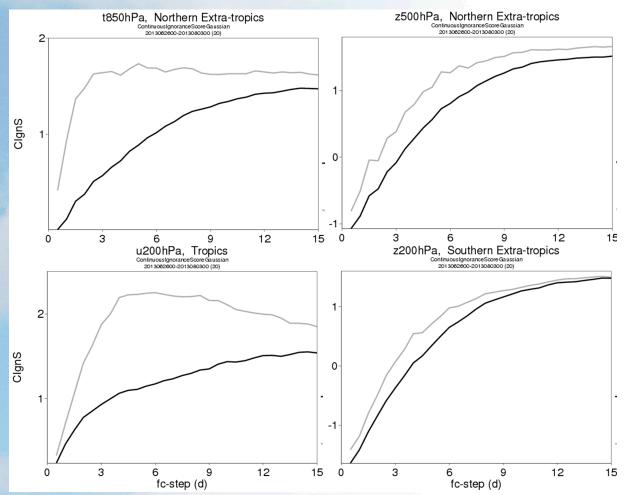

For a thorough discussion of this relationship:

Martin Leutbecher's lectures (22<sup>nd</sup>/23<sup>rd</sup> April)

# **Ensemble reliability**

In an under-dispersive ensemble,

$$e(\bar{x}) \gg \sigma(x)$$




- Ensemble member
- Ensemble mean
- Observation

and ensemble spread does not provide a good estimate of error.

What happens when the ensemble includes no representation of model error?

#### What happens with no accounting for model error?



#### **Ensemble skill score**

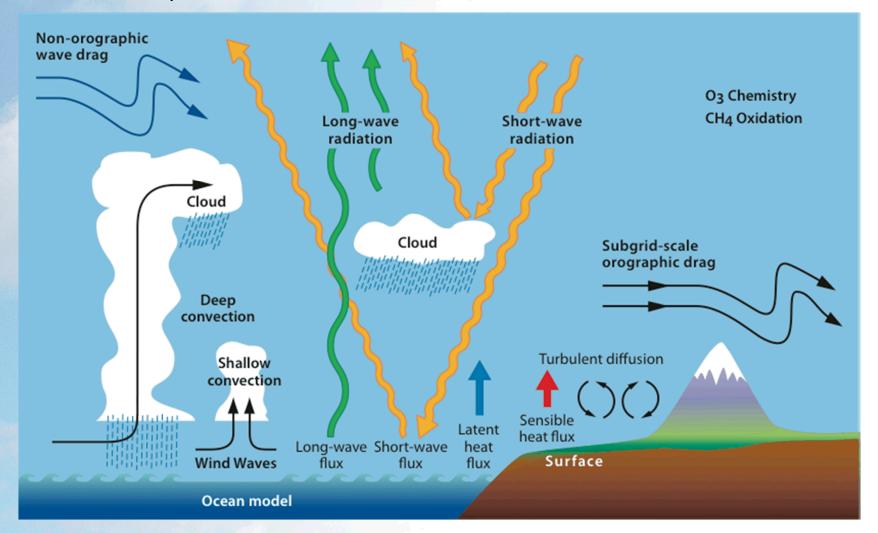
(Continuous Ignorance Score) forecast times up to day 15

#### Key:

Initial perturbations ONLY

Initial + model error perts

#### For details of skill scores:


Martin Leutbecher's lectures

(22<sup>nd</sup>/23<sup>rd</sup> April)



#### Model error: where does it come from?

Processes represented in the model:



#### Model error: where does it come from?

- Any other sources: processes not captured by the underlying model?
- Atmosphere exhibits upscale propagation of kinetic energy (KE)
  - at ALL scales: no concept of "resolved" and "unresolved" scales
  - How can the model represent upscale KE transfer from unresolved to resolved scales?

#### Model error: how to simulate it?

- What do the model errors look like?
- What is the relative size of model error from different sources?
- How can we represent model errors?
- Multi-model ensembles [Tim Stockdale, 28th April]
- Multi-physics ensembles
- Perturbed parameter ensembles
- "Stochastic parametrisations"

# Stochastic physics schemes in IFS

- IFS ensemble forecasts (ENS and S4) include 2 model uncertainty schemes:
  - Stochastically perturbed physics tendencies (SPPT) scheme
  - Stochastic kinetic energy backscatter (SKEB) scheme
- SPPT scheme: simulates uncertainty due to sub-grid parametrisations
- SKEB scheme: parametrises a missing and uncertain process

#### **SPPT** scheme

- Initially implemented in IFS, 1998 (Buizza et al., 1999); revised in 2009:
- Simulates model uncertainty due to physical parameterisations by
  - taking the net parameterized physics tendency:

$$\boldsymbol{X} = \left[ X_U, X_V, X_T, X_Q \right]$$

coming from radiation gravity wave drag vertical mixing convection cloud physics

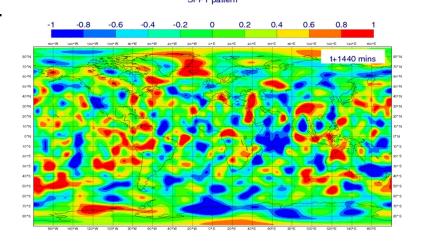
• and perturbing with multiplicative noise  $r \in [-1, +1]$  as:

$$X' = (1 + \mu r)X$$

where  $\mu \in [0,1]$  tapers the perturbations to zero near the surface & in the stratosphere.

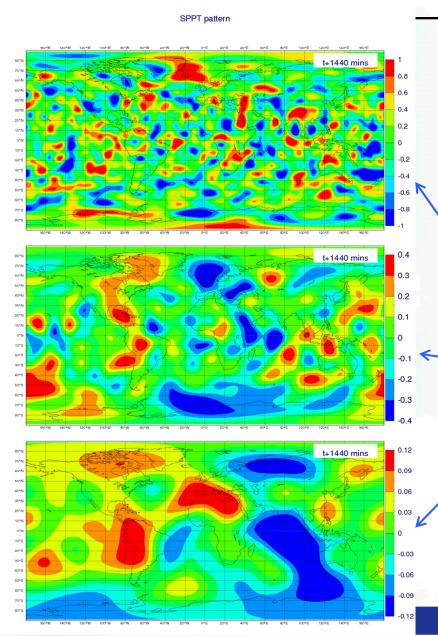
Shutts et al. (2011, ECMWF Newsletter); Palmer et al., (2009, ECMWF Tech. Memo.)

- 2D random pattern in spectral space:
- First-order auto-regressive [AR(1)] process for evolving spectral coefficients  $\hat{r}$

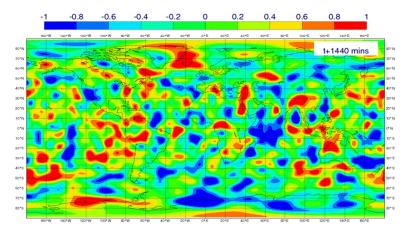

$$\hat{r}(t + \Delta t) = \phi \hat{r}(t) + \rho \eta(t)$$

where  $\phi=\exp(-\Delta t/\tau)$  controls the correlation over timestep  $\Delta t$ ; and spatial correlations (Gaussian) for each wavenumber define  $\rho$  for random numbers,  $\eta$ 

- Resulting pattern in grid-point space r:
- clipped such that  $r \in [-1, +1]$
- applied at all model levels to preserve vertical structures\*\*
- \*\*Except: tapered to zero at model top/bottom, avoiding:
  - instabilities due to perturbations in the boundary layer;
  - perturbations in the stratosphere due to well-constrained clear-skies radiation

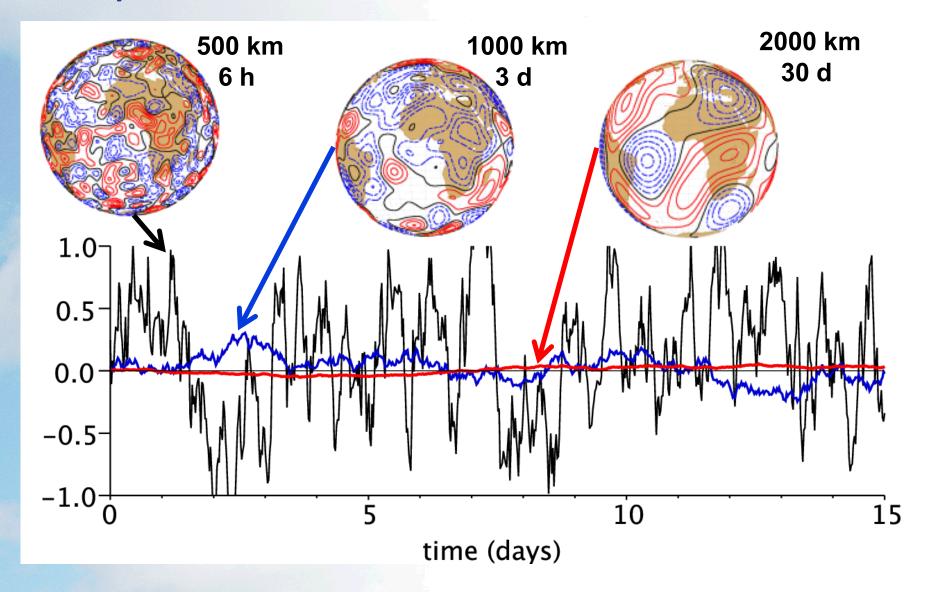



- 2D random pattern of spectral coefficients, r:
- Time-correlations: AR(1)
- Space-correlations: Gaussian
- Clipped such that  $r \in [-1, +1]$
- Applied at all model levels to preserve vertical structures\*\*
- \*\*Except: tapered to zero at model top/bottom




#### 3 correlation scales:

- i) 6 hours, 500 km,  $\sigma = 0.52$
- i) 3 days, 1 000 km,  $\sigma = 0.18$
- iii) 30 days, 2 000 km,  $\sigma = 0.06$








#### 3 correlation scales:

- i) 6 hours, 500 km,  $\sigma = 0.52$
- i) 3 days, 1 000 km,  $\sigma = 0.18$
- iii) 30 days, 2 000 km,  $\sigma = 0.06$





#### SKEB scheme

- Introduced into IFS, 2010:
- Attempting to simulate a process otherwise absent from the model –
   upscale transfer of energy from sub-grid scales
- ullet Represents backscatter of Kinetic Energy (KE) by adding perturbations to U and V via a forcing term to the streamfunction:

$$F_{\varphi} = \left(\frac{b_R D_{\text{tot}}}{B_{\text{tot}}}\right)^{1/2} F^*$$

where  $F^*$  is a 3D random pattern field,

 $B_{\rm tot}$  is the mean KE input by  $F^*$  alone,

 $D_{\text{tot}}$  is an estimate of the total dissipation rate due to the model,

 $b_{\rm R}$  is the backscatter ratio – a scaling factor.

Shutts et al. (2011, ECMWF Newsletter); Palmer et al., (2009, ECMWF Tech. Memo.);
Shutts (2005, QJRMS); Berner et al. (2009, JAS)

Slide 15

© ECMWF

## **SKEB** pattern

$$F_{\varphi} = \left(\frac{b_R D_{\text{tot}}}{B_{\text{tot}}}\right)^{1/2} F^*$$

- 3D random pattern field  $F^*$ :
- First-order auto-regressive [AR(1)] process for evolving  $F^*$

$$F^*(t + \Delta t) = \phi F^*(t) + \rho \eta(t)$$

where  $\phi=\exp(-\Delta t/\tau)$  controls the correlation over timestep  $\Delta t$ ; and spatial correlations (power law) for wavenumbers define  $\rho$  for random numbers,  $\eta$ 

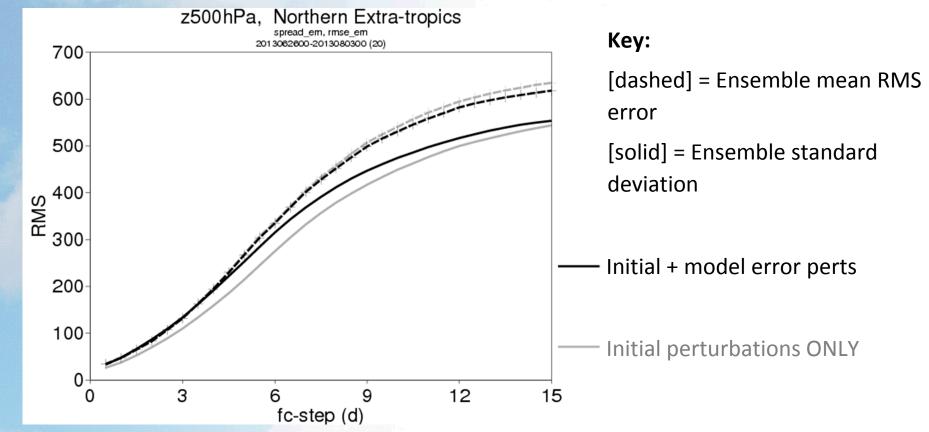
- vertical space-(de)correlations: random phase shift of  $\eta$  between levels

# **SKEB** perturbations

$$F_{\varphi} = \left(\frac{b_R D_{\text{tot}}}{B_{\text{tot}}}\right)^{1/2} F^*$$

- ullet  $D_{\mathrm{tot}}$  is an estimate of sub-grid scale production of KE, and includes:
- $-D_{\text{num}}$  = numerical dissipation from
  - explicit horizontal diffusion (bi-harmonic,  $\nabla^2$ ); and
  - estimate due to semi-Lagrangian interpolation error
- $(-D_{oGWD}) = dissipation due to orographic Gravity Wave Drag parameterisation)$
- $-D_{
  m con}$  = estimated KE generated by updraughts and detrainment within sub-grid deep convection

# How are the perturbation patterns determined?

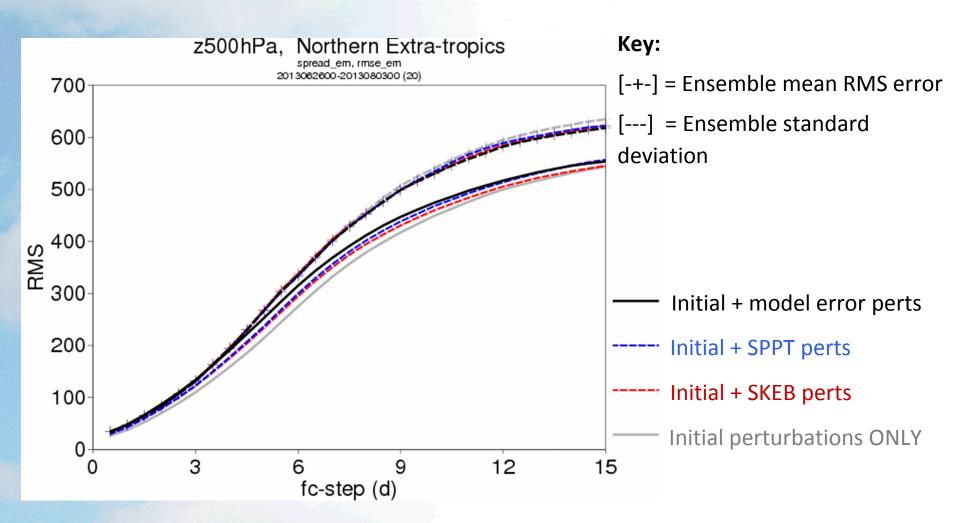

- Characteristics of model errors cannot be determined from observations:
  - uncertain processes small-scale (space and time)
  - lack of observational coverage
- Can attempt to use models: coarse-graining studies (e.g. Shutts and Palmer, 2007)
  - take high-resolution model simulations as "truth"
  - average model fields and tendencies (or streamfunction) to a gridresolution typical of the forecast model
  - compare the contribution of "sub-grid" scales in the coarse-grained simulation with parametrisations in the forecast model
  - coarse-graining studies have been used to justify and inform scales in SPPT and SKEB

# IFS ensembles: ENS and System 4 (S4)

- ENS = ensemble prediction system for
  - medium-range forecasts (up to 15 days) and
  - monthly forecasts (up to 32 days) [Frederic Vitart, Friday 24<sup>th</sup>]
- S4 = seasonal forecasting system [Tim Stockdale, Friday 24<sup>th</sup>]
  - up to 7 months
- Both systems represent model error with SPPT and SKEB
- ENS:
  - 1 control forecast + 50 perturbed members
  - T639 (~32 km) resolution to day 10; T319 (~65 km) days 10-15
  - 91 vertical levels, up to 0.01hPa



#### **Impact of SPPT and SKEB in ENS**




#### For details of skill measures:

Martin Leutbecher's lectures (22<sup>nd</sup>/23<sup>rd</sup> April)



#### **Impact of SPPT and SKEB in ENS**



#### **Impact of SPPT and SKEB in ENS**

- Adding SPPT + SKEB perturbations:
  - increases ensemble "spread" (= ensemble standard deviation), i.e. ensemble members describe greater region of the parameter space
  - some reduced ensemble mean errors
- In the extra-tropics:
  - SPPT and SKEB each have a similar impact, i.e. perturbations are successfully adopted and evolved by the model
  - Experiments: perturbations in days 0-5 contribute most effect
- In the tropics:
  - SPPT has a much greater impact (in terms of both spread and error) than SKEB, i.e. SPPT perturbations more able to excite modes that the model can evolve
  - Experiments: effect of perturbations rapidly lost at all times

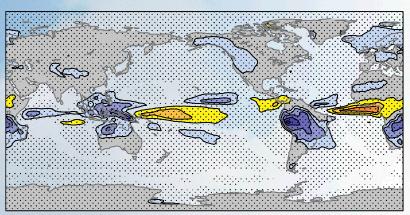


#### **Impact of SPPT and SKEB in S4**

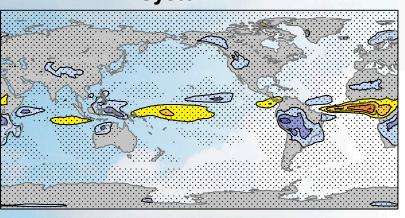
- System 4 (S4), November 2011: introduction of (revised) SPPT and SKEB
- Operational configuration:
  - T255 (~80 km), 91 vertical levels (up to 0.01 hPa)
  - Coupled ocean model: NEMOv3.0, 1 degree (~110 km), 42 vertical levels
  - 51 members
  - Initialised on 1<sup>st</sup> of each month
  - Forecast lead times: to 7 months
- Recent work with S4 to assess impact of stochastic schemes
- For longer time-scales, consider impact in terms of:
  - Noise-induced drift, i.e. change in model mean
  - Noise-activated regime transition, e.g. Pacific-N. American region regimes

## **Impact of SPPT and SKEB in S4**

- Recent work with S4 to assess impact of stochastic schemes:
  - Hindcast period: 1981-2010
  - Start dates: May, Aug & Nov
  - Ensemble size: 51
  - Forecasts to lead times: 4-7 months
- Considers impact of SPPT + SKEB on:
  - Systematic errors
  - Madden-Julian Oscillation (MJO) statistics
  - ENSO forecast quality
  - Circulation regimes over the Pacific-North American region [Franco Molteni, Thurs 23<sup>rd</sup>]


Weisheimer et al., (2014)




#### **Impact of SPPT and SKEB in S4: biases**

#### **Outgoing Longwave Radiation** (DJF 1981-2010)

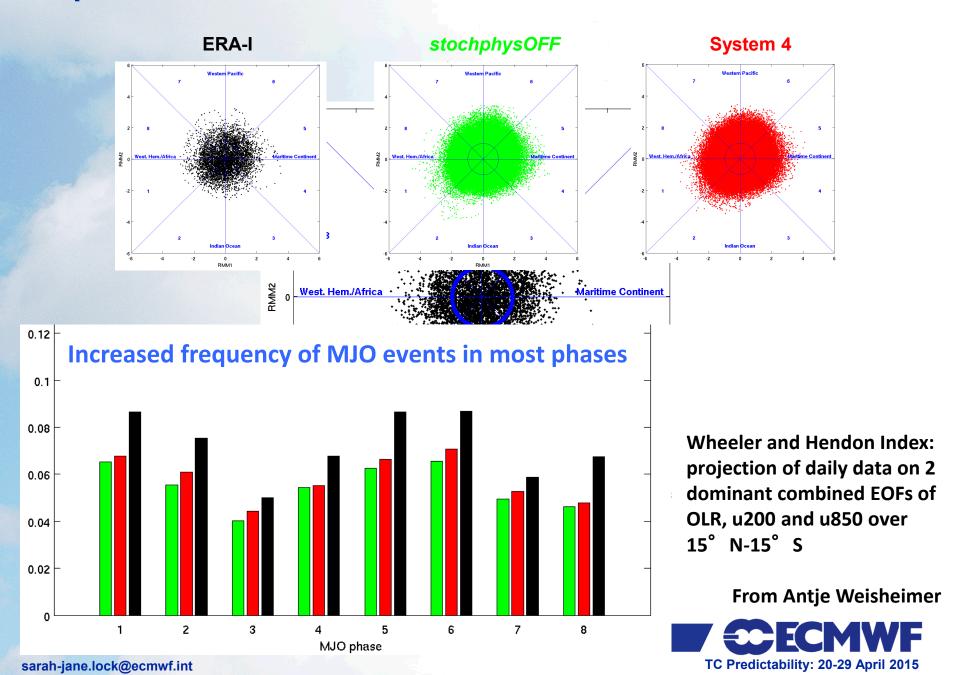
stochphysOFF - ERA-I



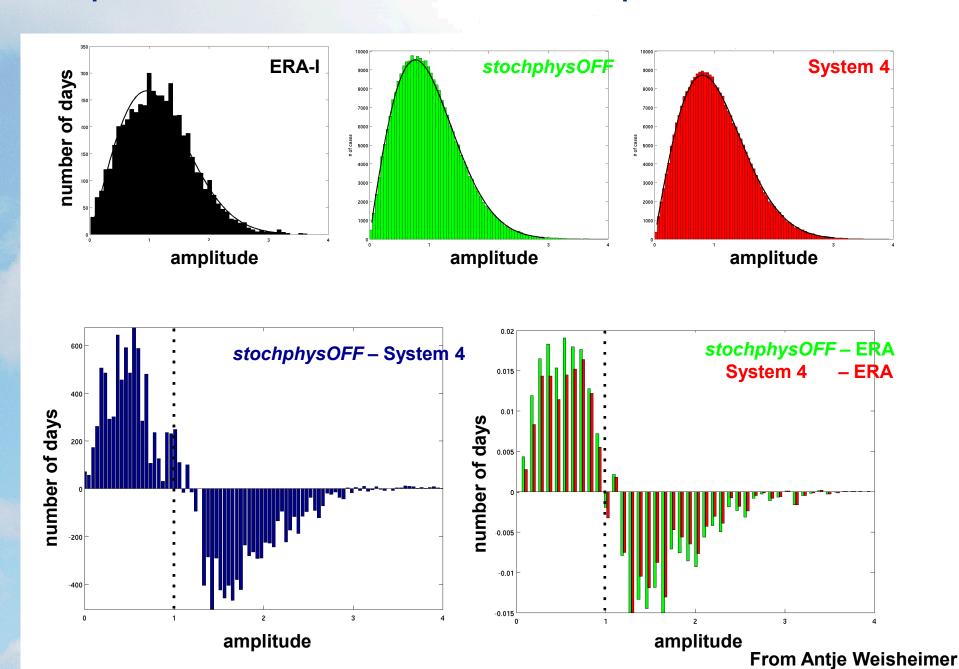
System4 - ERA-I



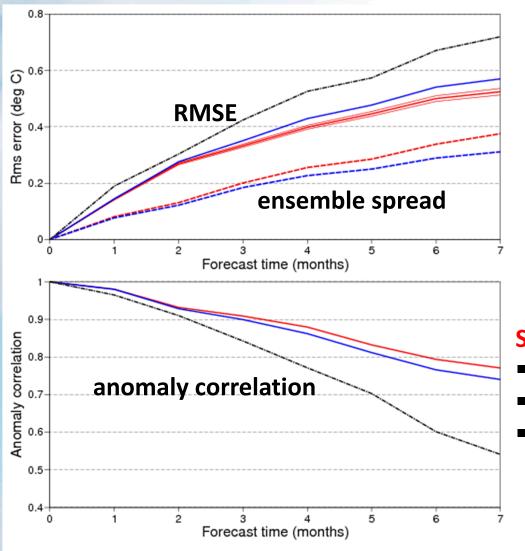
- SPPT+SKEB: reduction of overly active tropical convection
- Similar reductions in excessive:
  - Total cloud cover
  - Total precip
  - Zonal winds (850 hPa)
- SPPT is responsible for most of the difference; SKEB has little impact


From Antje Weisheimer




8 16 24 32 40 48 56

-56 -48 -40 -32 -24 -16 -8


# Impact of SPPT and SKEB in S4: Madden Julian Oscillation



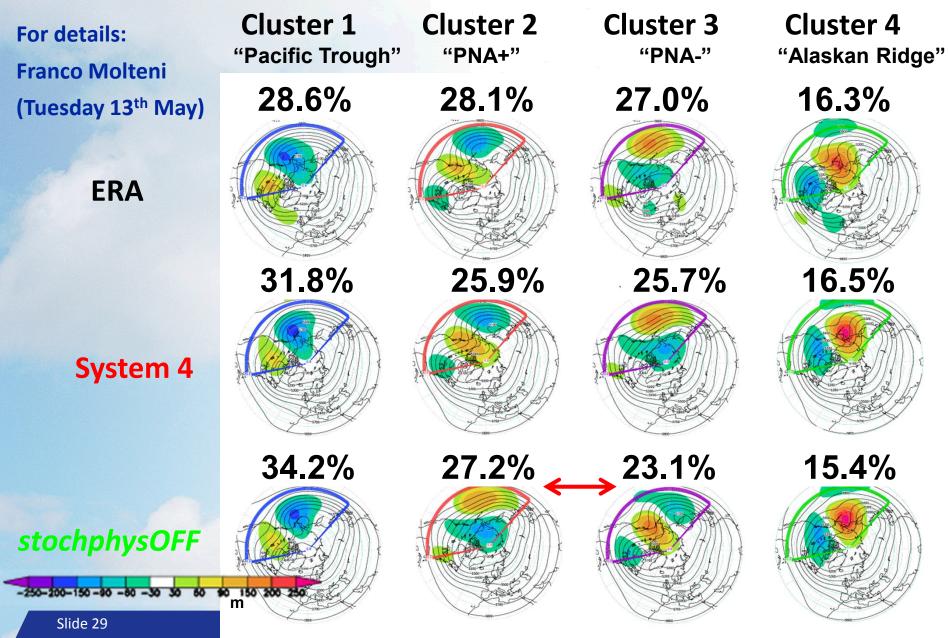
#### Impact of SPPT & SKEB in S4: Increased amplitude of MJO events



#### Impact of SPPT & SKEB in S4: ENSO forecast quality - Niño4 SSTs



stochphysOFF
System 4


#### System 4 has:

- Reduced forecast errors
- Increased ensemble spread
- Improved correlation

From Antje Weisheimer



#### **Impact of SPPT & SKEB in S4: Pacific North America (PNA) circulation regimes**



From Antie Weisheimer TC Predictability: 20-29 April 2015

## Stochastic physics: summary

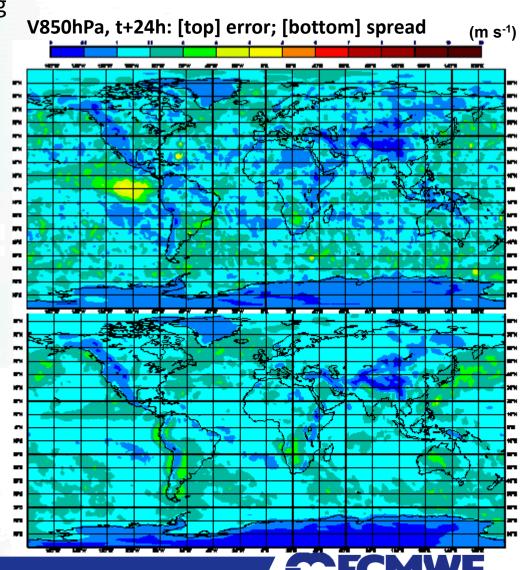
- Model error occurs due to unresolved and misrepresented processes
  - finite-resolution of a discrete numerical model
  - parametrisations must describe multi-scale sub-grid processes in bulk
- Difficult to characterise sources of model errors due to lack of observations
- Without representing model error, ensemble forecasts are under-dispersive
- Stochastic methods for representing model error improve ensemble reliability
- ECMWF ensembles include 2 stochastic physics schemes:
  - SPPT: representing uncertainty due to sub-grid physics parameterisations
  - SKEB: simulating upscale transfer of kinetic energy from unresolved scales
- Medium-range: increased ensemble spread, greater probabilistic skill
- Seasonal: reduction in biases; better representation of MJO, ENSO, PNA regimes

# Stochastic physics: brief outlook for IFS

Upcoming change to SKEB: removing orographic gravity wave drag contribution to dissipation rate estimate – reduces excessive spread in low-level winds near orography

Exploring alternative perturbations for radiation tendencies:

In SPPT, we perturb:


$$X = X_{RAD} + X_{GWD} + X_{MIX} + X_{CON} + X_{CLD}$$

But,

$$X_{RAD} = X_{clr} + X_{cld}$$

and  $X_{clr}$  has little uncertainty.

Need a way to perturb relative to  $X_{cld}$ .



## **References & reading**

- Berner et al., 2009: A Spectral Stochastic Kinetic Energy Backscatter Scheme and Its Impact on Flow-Dependent Predictability in the ECMWF Ensemble Prediction System, JAS, **66**, 603-626
- Buizza et al., 1999: Stochastic representation of model uncertainties in the ECMWF Ensemble
   Prediction System, QJRMS, 134, 2041-2066
- Palmer et al., 2009: Stochastic parametrization and Model Uncertainty, ECMWF Tech. Mem.,
   598, pp. 42
- Shutts and Palmer, 2007: Convective forcing fluctuations in a cloud-resolving model: Relevance to the stochastic parameterization problem, J. Clim., **20**, 187-202
- Shutts et al., 2005: A kinetic energy backscatter algorithm for use in ensemble prediction systems, QJRMS, **131**, 3079-3102
- Shutts et al., 2011: Representing model uncertainty: stochastic parameterizations at ECMWF,
   ECMWF Newsletter, 129, 19-24
- Weisheimer et al., 2014: Addressing model error through atmospheric stochastic physical parametrisations: Impact on the coupled ECMWF seasonal forecasting system, Phil. Trans. A., in press.