Influence matrix diagnostic to monitor the assimilation system

Carla Cardinali

Office N 1140

Monitoring the Assimilation System

•ECMWF 4D-Var system handles a large variety of space and surfacebased observations. It combines observations and atmospheric state a priori information by using a linearized and non-linear forecast model

•Effective monitoring of a such complex system with 10⁸ degree of freedom and 10⁷ observations is a necessity. No just few indicators but a more complex set of measures to answer questions like

How much influent are the observations in the analysis?
How much influence is given to the a priori information?
How much does the estimate depend on one single influential obs?

Influence Matrix: Introduction

• Diagnostic methods are available for monitoring multiple regression analysis to provide protection against distortion by anomalous data

 Unusual or influential data points are not necessarily bad observations but they may contain some of most interesting sample information

In Ordinary Least-Square the information is quantitatively available in the Influence Matrix

$$\hat{\mathbf{y}} = \mathbf{S}\mathbf{y}$$

Tuckey 63, Hoaglin and Welsch 78, Velleman and Welsch 81

Influence Matrix in OLS

The OLS regression model is

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$$

Y (mx1) observation vector

X (mxq) predictors matrix, full rank q

β (qx1) unknown parameters

 ϵ (mx1) error $E(\epsilon) = 0, Var(\epsilon) = \sigma^2 \mathbf{I}$

m>q

•OLS provide the solution

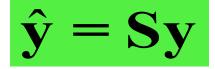
ion
$$\boldsymbol{\beta} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}$$

The fitted response is

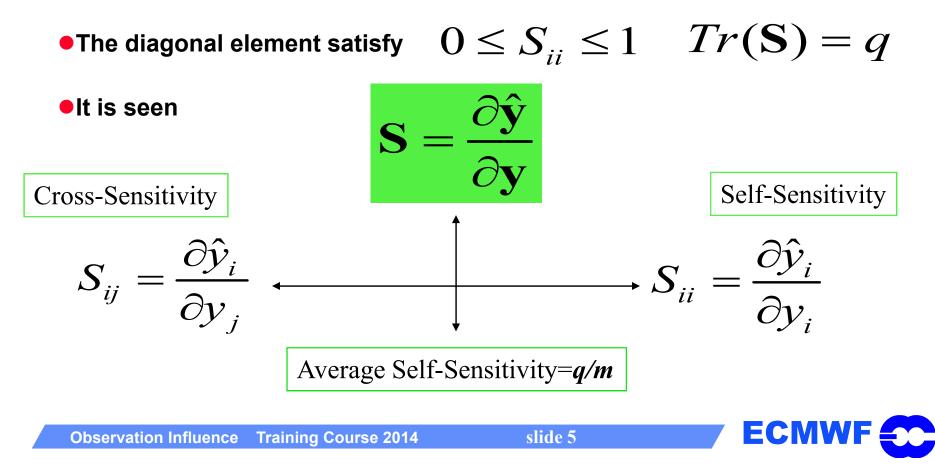


$$\mathbf{S} = \mathbf{X} (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T$$

Influence Matrix Properties



S (*m*×*m*) symmetric, idempotent and positive definite matrix



Influence Matrix Related Findings

$$\hat{\mathbf{y}} = \mathbf{S}\mathbf{y}$$

The change in the estimate that occur when the i-th is deleted

$$\hat{y}_i - \hat{y}_i^{(-i)} = \frac{S_{ii}}{1 - S_{ii}} r_i$$
$$r_i = y_i - \hat{y}_i$$

•CV score can be computed by relying on the all data estimate ŷ and S_{ii}

$$\sum_{i=1}^{m} (\hat{y}_i - \hat{y}_i^{(-i)})^2 = \sum_{i=1}^{m} \frac{(\hat{y}_i - \hat{y}_i)^2}{(1 - S_{ii})^2}$$

Outline

Generalized Least Square method

Observation and background Influence

Findings related to data influence and information content

• Toy model: 2 observations

Conclusion

Solution in the Observation Space

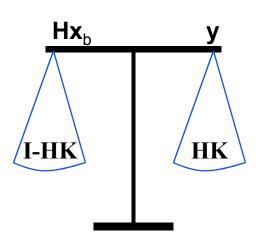
$$\mathbf{x}_a = \mathbf{K}\mathbf{y} + (\mathbf{I}_q - \mathbf{K}\mathbf{H})\mathbf{x}_b$$

The analysis projected at the observation location

$$\hat{\mathbf{y}} = \mathbf{H}\mathbf{x}_a = \mathbf{H}\mathbf{K}\mathbf{y} + (\mathbf{I} - \mathbf{H}\mathbf{K})\mathbf{H}\mathbf{x}_b$$

$$\mathbf{K} = (\mathbf{B}^{-1} + \mathbf{H}^T \mathbf{R}^{-1} \mathbf{H})^{-1} \mathbf{H}^T \mathbf{R}^{-1}$$

K(qxp) gain matrix H(pxq) Jacobian matrix



 $B(q_xq)=Var(x_b)$ $R(p_xp)=Var(y)$

The estimation ŷ is a weighted mean

Influence Matrix

$$\hat{\mathbf{y}} = \mathbf{H}\mathbf{x}_a = \mathbf{H}\mathbf{K}\mathbf{y} + (\mathbf{I} - \mathbf{H}\mathbf{K})\mathbf{H}\mathbf{x}_b$$

$$\mathbf{S} = \frac{\partial \hat{\mathbf{y}}}{\partial \mathbf{y}} = (\mathbf{H}\mathbf{K})^T = \mathbf{K}^T \mathbf{H}^T = Observation - Influence$$

$$\mathbf{I} - \mathbf{S} = \frac{\partial \hat{\mathbf{y}}}{\partial \mathbf{H} \mathbf{x}_b} = Background - Influence$$

Observation Influence is complementary to Background Influence

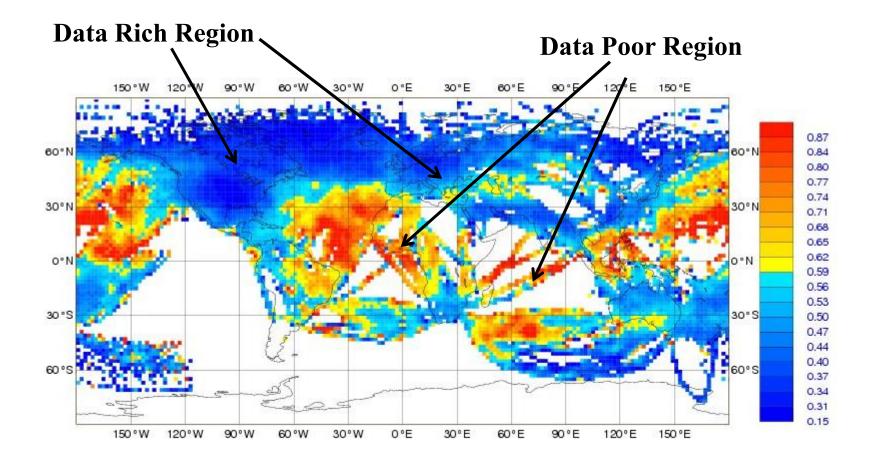
$$\hat{\mathbf{y}} = \mathbf{S}\mathbf{y} + (\mathbf{I} - \mathbf{S})\mathbf{H}\mathbf{x}_b$$

Influence Matrix Properties

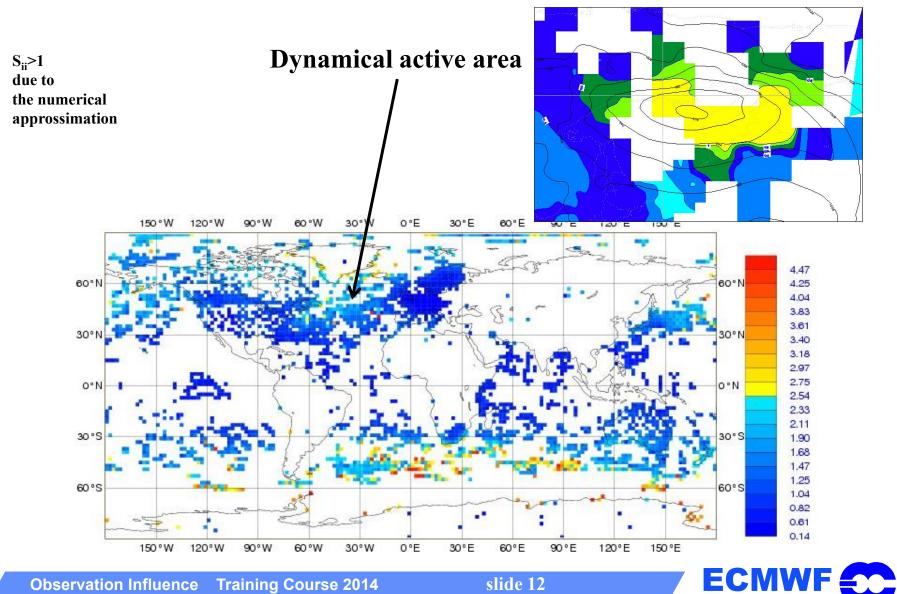
$$\sum_{i=1}^{N} S_{ii} = Total _Information_Content$$

$$\frac{\sum_{i=1}^{N} S_{ii}}{Tot.Obs.Number} = Average _Influence$$

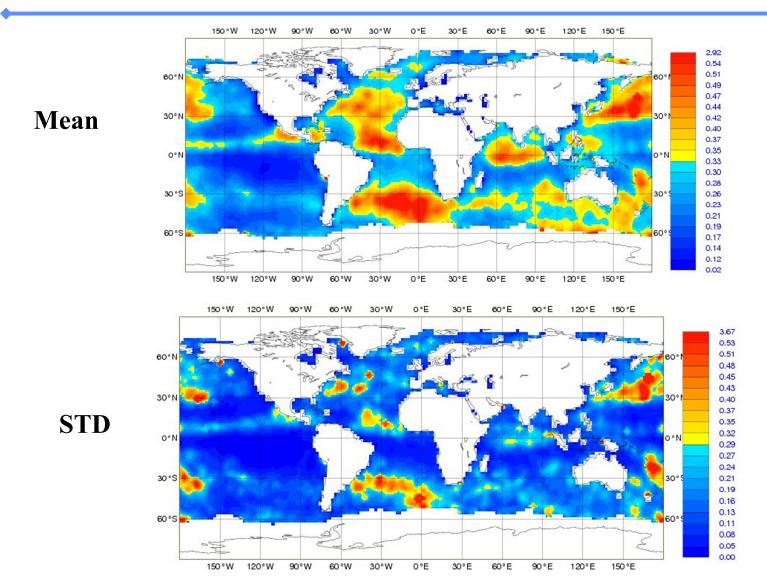
Aircraft above 400 hPa U-Comp Influence



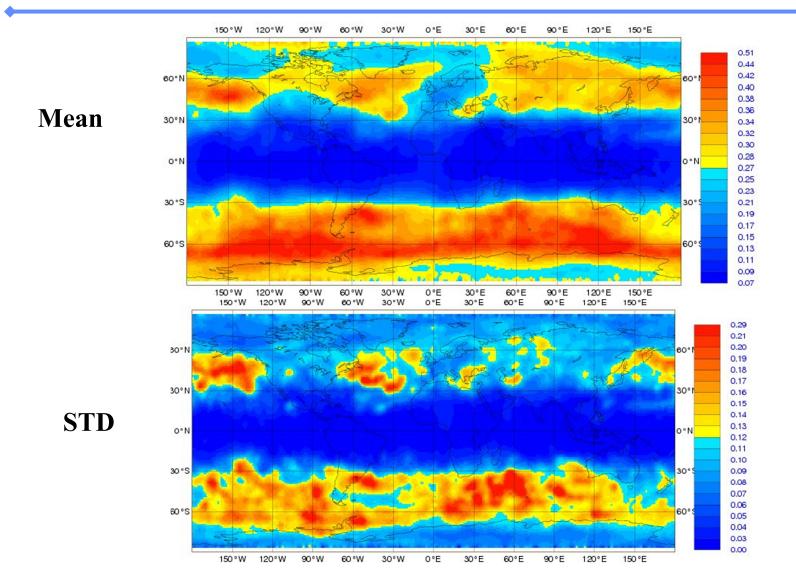
Synop&DRIBU Surface Pressure Influence



ASCAT U-Comp Influence

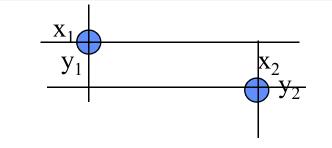


AMSU-A channel 8 Influence



Toy Model: 2 Observations

Find the expression for S as function of r and the expression of \hat{y} for $\alpha=0$ and ~ 1 given the assumptions:



$$\mathbf{H} = \mathbf{I} \qquad \mathbf{R} = \sigma_o^2 \mathbf{I} \qquad \mathbf{B} = \sigma_b^2 \begin{pmatrix} 1 & \alpha \\ \alpha & 1 \end{pmatrix} \qquad r = \frac{\sigma_o^2}{\sigma_b^2}$$

$$\mathbf{S} = \mathbf{R}^{-1}\mathbf{H}(\mathbf{B}^{-1} + \mathbf{H}\mathbf{R}^{-1}\mathbf{H}^{T})^{-1}\mathbf{H}^{T}$$
$$\hat{\mathbf{y}} = \mathbf{S}\mathbf{y} + (\mathbf{I} - \mathbf{S})\mathbf{x}_{b}$$

Toy Model: 2 Observations



Consideration (1)

 Where observations are dense S_{ii} tends to be small and the background sensitivities tend to be large and also the surrounding observations have large influence (offdiagonal term)

$$\alpha \cong 1 \rightarrow S_{11} = S_{22} = S_{12} = S_{21} = \frac{1}{r+2}$$

 When observations are sparse S_{ii} and the background sensitivity are determined by their relative accuracies (r) and the surrounding observations have small influence (off-diagonal term)

$$\alpha = 0 \quad \rightarrow \quad S_{11} = S_{22} = \frac{1}{r+1}$$

Toy Model: 2 Observations

$$\hat{\mathbf{y}} = \mathbf{S}\mathbf{y} + (\mathbf{I} - \mathbf{S})\mathbf{x}_{b}$$

$$r = \frac{\sigma_{o}^{2}}{\sigma_{b}^{2}} = 1$$

$$S = \begin{pmatrix} \frac{r+1-\alpha^{2}}{r^{2}+2r+1-\alpha^{2}} & \frac{\alpha r}{r^{2}+2r+1-\alpha^{2}} \\ \frac{\alpha r}{r^{2}+2r+1-\alpha^{2}} & \frac{r+1-\alpha^{2}}{r^{2}+2r+1-\alpha^{2}} \end{pmatrix}$$

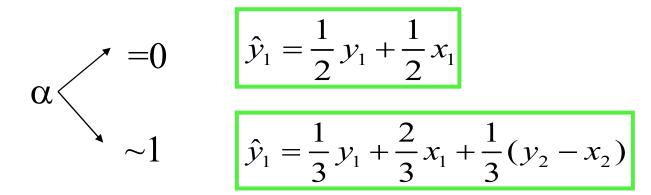
$$\hat{y}_{1} = \frac{2-\alpha^{2}}{4-\alpha^{2}}y_{1} + \frac{2}{4-\alpha^{2}}x_{1} + \frac{\alpha}{4-\alpha^{2}}(y_{2}-x_{2})$$

$$\hat{y}_{1} = \frac{1}{2}y_{1} + \frac{1}{2}x_{1}$$

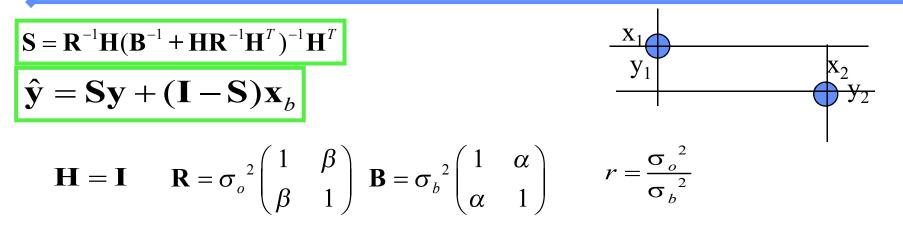
$$\hat{y}_{1} = \frac{1}{3}y_{1} + \frac{2}{3}x_{1} + \frac{1}{3}(y_{2}-x_{2})$$

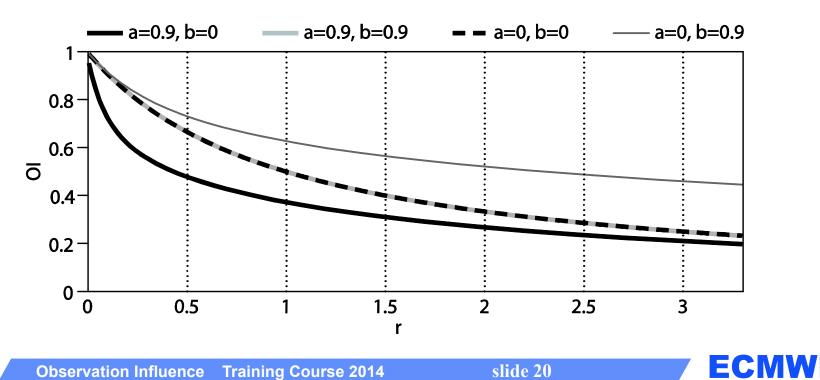
Consideration (2)

• When observation and background have similar accuracies (r), the estimate \hat{y}_1 depends on y_1 and x_1 and an additional term due to the second observation. We see that if R is diagonal the observational contribution is devaluated with respect to the background because a group of correlated background values count more than the single observation ($2-\alpha^2 \rightarrow 2$). Also by increasing background correlation, the nearby observation and background have a larger contribution

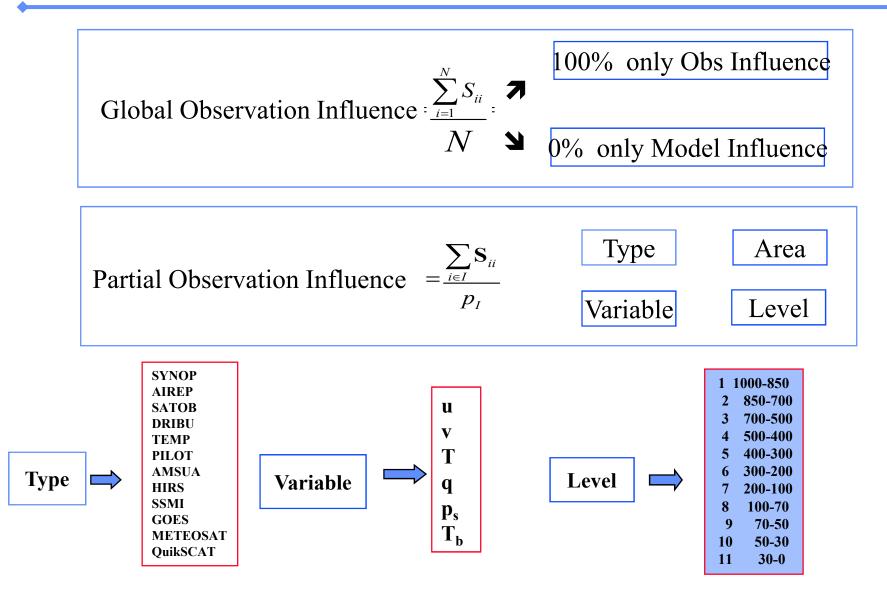


Toy Model: Correlated R

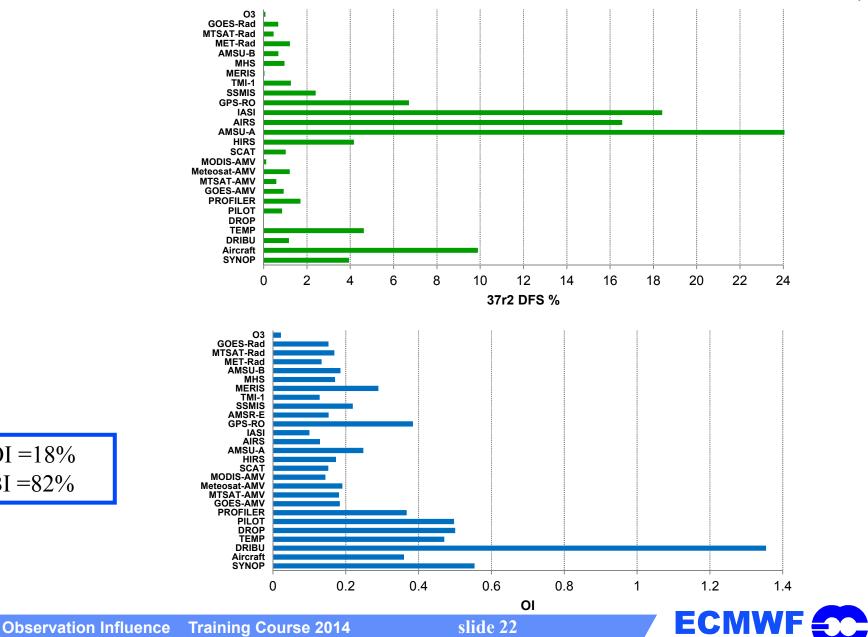


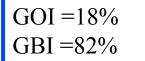


Global and Partial Influence

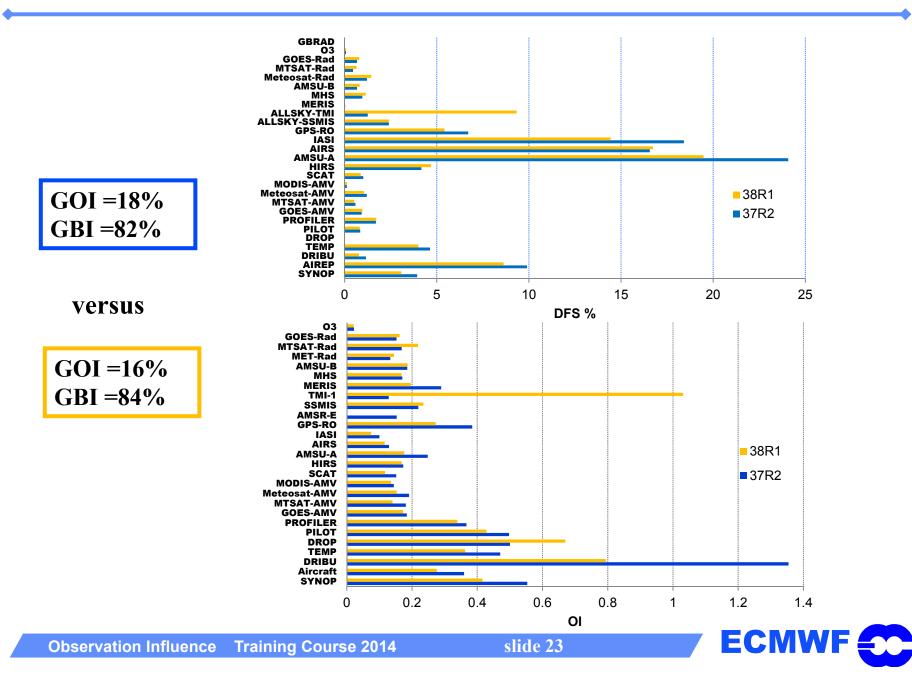


DFS and **O**

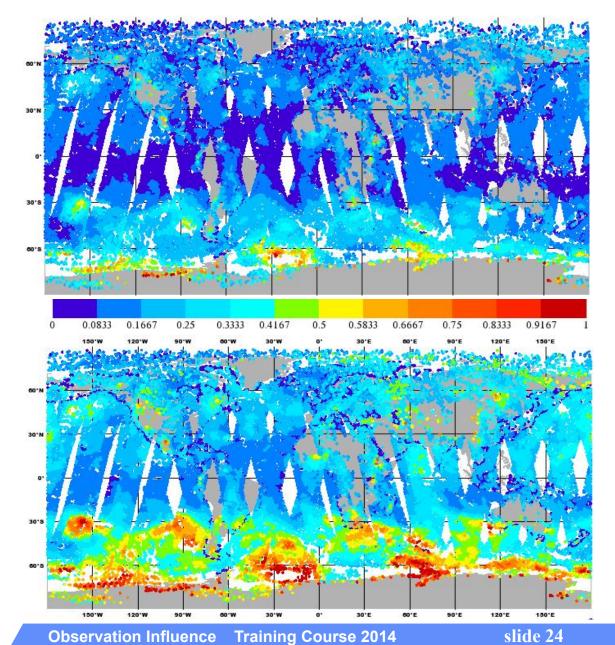




DFS and OI: 2012 Operational versus Next Oper Cycle

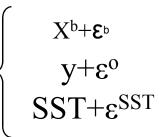


Evolution of the B matrix: σ_b computed from EnDA



 $X^t\!\!+\!\!\boldsymbol{\epsilon}^{\text{Stochastics}}$ $y + \varepsilon_0$ $SST + \epsilon^{SST}$

AMSU-A ch 6

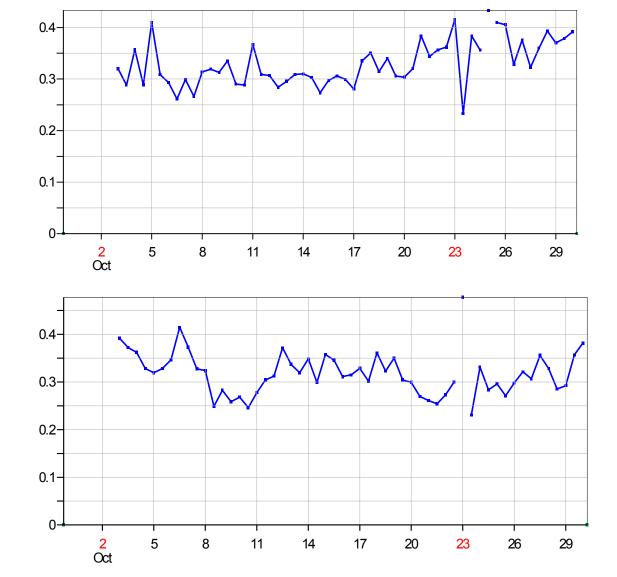


Evolution of the B matrix: σ^b from EnDA

N. Atlantic

N. Pacific

OI



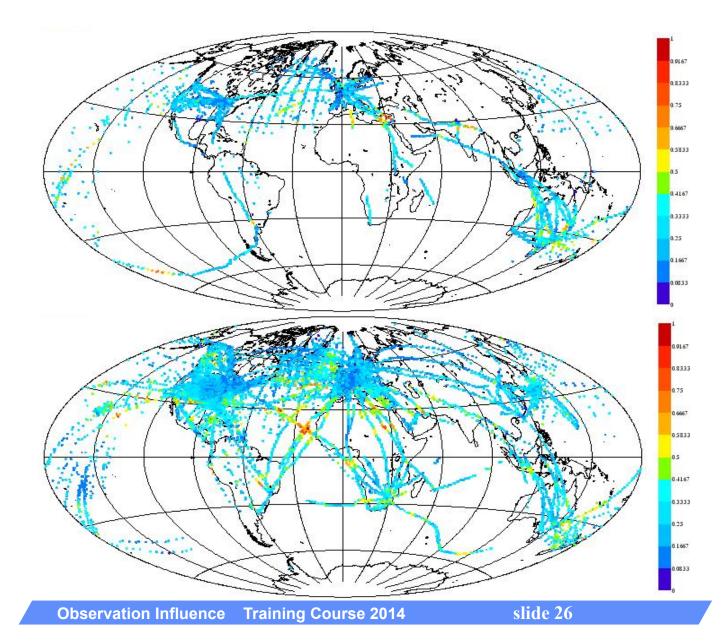
Observation Influence Training Course 2014

slide 25

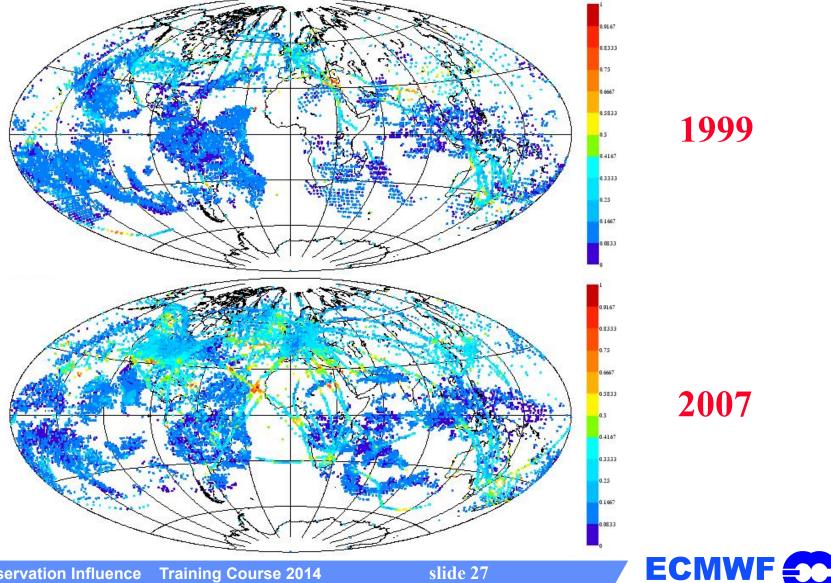
ASCAT

ECMWF

Evolution of the GOS: Interim Reanalysis Aircraft above 400 hPa

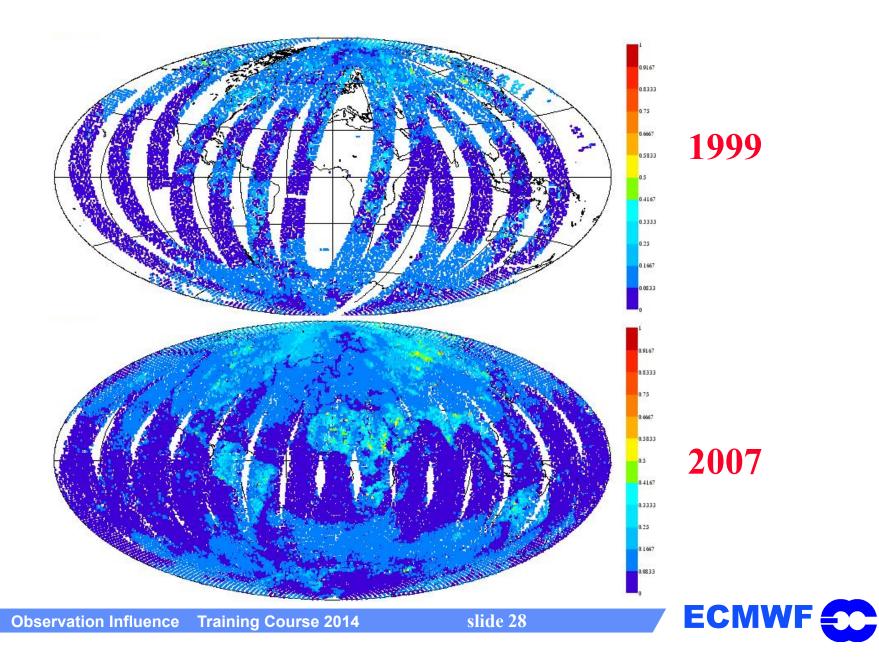


Evolution of the GOS: Interim Reanalysis U-comp Aircraft, Radiosonde, Vertical Profiler, AMV



Observation Influence Training Course 2014

Evolution of the GOS: Interim Reanalysis AMSU-A



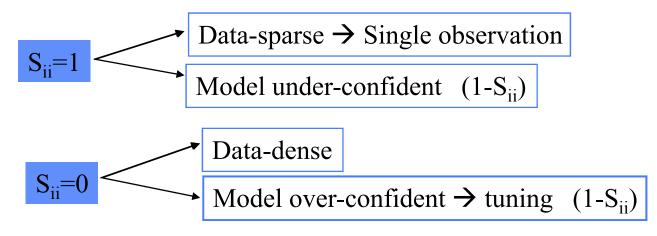
Conclusions

•The Influence Matrix is well-known in multi-variate linear regression. It is used to identify influential data. Influence patterns are not part of the estimates of the model but rather are part of the conditions under which the model is estimated

Disproportionate influence can be due to:

incorrect data (quality control)

- Iegitimately extreme observations occurrence
 - →to which extent the estimate depends on these data



Conclusions

• Diagnose the impact of improved physics representation in the linearized forecast model in terms of observation influence

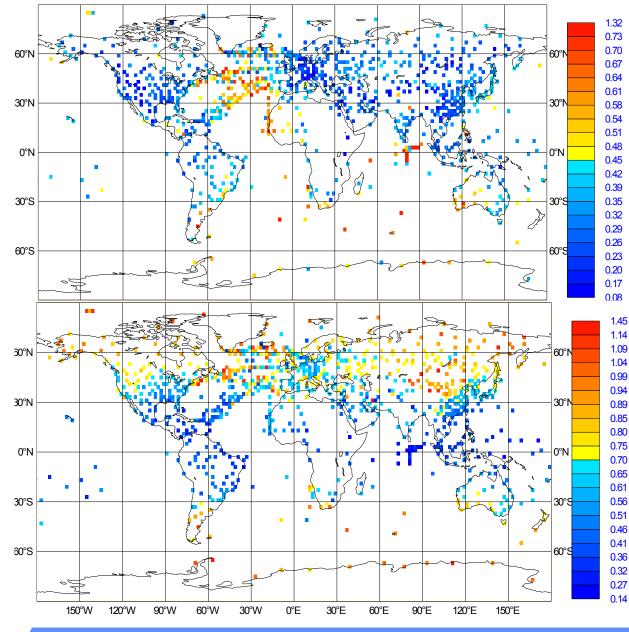
Observational Influence pattern would provide information on different observation system

New observation system
Special observing field campaign

Thinning is mainly performed to reduce the spatial correlation but also to reduce the analysis computational cost

Knowledge of the observations influence helps in selecting appropriate data density

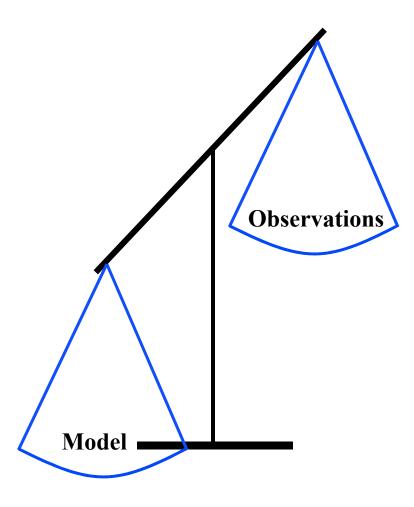
Data density: Radiosonde Observation Influence



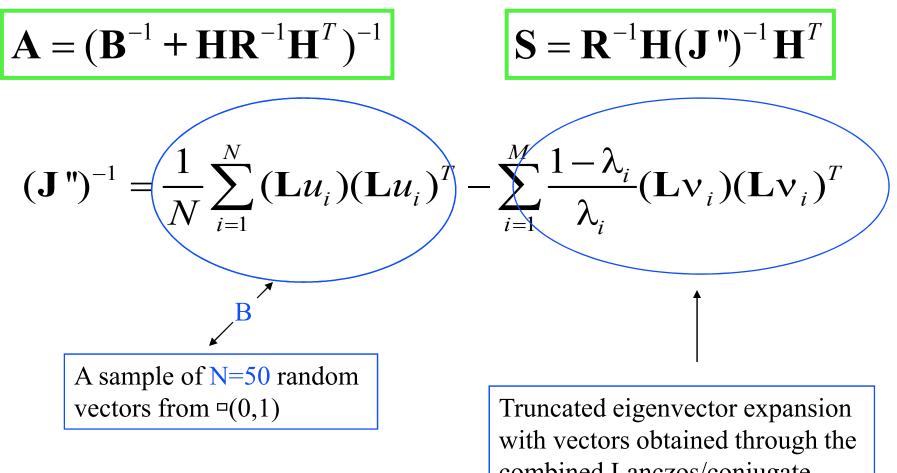
U-Comp Below 700 hPa

Temperature Below 700 hPa

Background and Observation Tuning in ECMWF 4D-Var

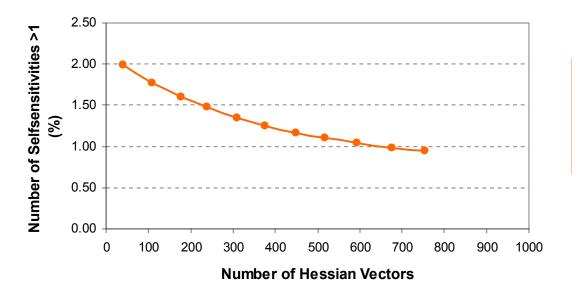


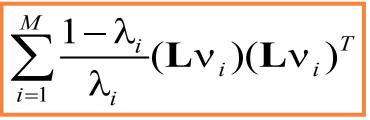
Influence Matrix Computation



combined Lanczos/conjugate algorithm. M=40

Hessian Approximation \rightarrow **B-A**





$$\frac{1}{N}\sum_{i=1}^{N} (\mathbf{L}u_i)(\mathbf{L}u_i)^T$$

500 random vector to represent B

III-Condition Problem

A set of linear equation is said to be *ill-conditioned* if small variations in X=(HK I-HK) have large effect on the exact solution ŷ, e.g matrix close to singularity

A III-conditioning has effects on the stability and solution accuracy . A measure of ill-conditioning is

$$\mathscr{K}(\mathbf{X}) = \frac{\lambda_{\max}}{\lambda_{\min}}$$

●A different form of ill-conditioning can results from collinearity: XX^T close to singularity

Large difference between the background and observation error standard deviation and high dimension matrix

Flow Dependent σ_b: MAM^T+Q

