The Global Observing System

Tony McNally

DA Training Course 2015

- Which observations do we have and what do they measure ?
- What are observations used for ?
- Assessing the impact of observations
- Which observations are most important ?
- Summary

Operational Global Observing Network

Operational Global Observing Network

Conventional / in-situ observations

and

Satellite Observations

Conventional / in-situ observations

In situ Observations

Instrument	Parameters	Level				
SYNOP SHIP METAR	temperature, dew-point temperature, wind	Land: 2m, ships: 25m				
BUOYS	temperature, pressure, wind	2m				
TEMP TEMPSHIP DROPSONDES	temperature, humidity, pressure, wind	Profiles				
PROFILERS	wind	Profiles				
Aircraft	temperature, pressure wind	Profiles Flight level data				

Snap-shot Example of 6hrs data coverage : 28 Jan 2015

4

C.FC

Surface (synop) + ship

Radiosondes

CECM

Issues related to in situ observations

- Temporal and Spatial data voids
- If we measure temperature at a point location is it representative of model grid resolution?
- Non homogeneous data quality some radiosondes are good quality, others less so; absolute calibration can vary with age
- But, they are a direct, in situ measurement
- Interpretation is usually more straightforward than for satellite observations

Satellite Observations

Geostationary and Low-Earth-Orbit Satellites

Sun-Synchronous Polar Satellites

Instrument	Early morning orbit	Mid Morning orbit	Afternoon orbit
High spectral resolution IR sounder		Metop-A+B IASI	Aqua AIRS NPP CrIS
Microwave T sounder	F17 SSMIS	Metop-A+B AMSU-A FY3C MWTS2 DMSP F18 SSMIS Meteor-M N1 MTVZA	NOAA-15, 18, 19 AMSU-A Aqua AMSU-A NPP ATMS
Microwave Q sounder + imagers	F17 SSMIS	Metop-A+B MHS DMSP F18 SSMIS FY3A MWHS2+MWRI	NOAA-18, 19 MHS FY3B MWHS+MWRI NPP ATMS GCOM-W/AMSR-2
Broadband IR sounder		Metop-A+B HIRS FY3C IRAS	FY3B IRAS
IR Imagers		Metop-A+B AVHRR Meteor-M N1 MSU-MR	Aqua+Terra MODIS NOAA-15, 16, 18, 19 AVHRR
Composition (ozone etc).			NOAA-19 SBUV AURA OMI, MLS GOSAT

Sun-Synchronous Polar Satellites (2)

Instrument	Early morning orbit	Morning orbit	Afternoon orbit
Scatterometer		Metop-A+B ASCAT (Coriolis Windsat)	
Radar			CloudSat
Lidar			Calipso
L-band imagery	SMOS SAC-D/Aquarius		

Non Sun-Synchronous Observations

Instrument	High inclination (> 60°)	Low inclination (<60°)				
Radio occultation	GRAS, GRACE-A, COSMIC					
MW Imagers		TRMM/TMI, GPM/GMI Meghatropics SAPHIR MADRAS				
Radar Altimeter	JASON-2 RA + SAR Cryosat					

Example of 6hr satellite data coverage: 28 Jan 2015

Issues related to satellite observations

- An indirect and potentially complex measurement that may be difficult to interpret (see lecture later this week)
- Nadir Sounders have degraded vertical resolution, limb sounders have degraded horizontal resolution
- No spatial or temporal data voids, but some conditions make observations difficult to use (e.g. clouds)
- Vast volumes of data must be handled
- Globally available measurements, often with good temporal repeat cycle.
- Satellite pixel footprints generally more representative of NWP model scales

WMO OSCAR website

WMO Observin Database	ving Requirements ase								
<u>Home Consult Tables</u>							9) <u>Help</u> Quick Search	Q
Details for Atmospheric temperatur			Classificat	lion					
Full name	Atmospheric temperature			Domain: <u>Atmosphere</u> Theme: <u>Basic atmospheric</u>		- u	- Used in Application Areas:		
Definition	3D field of the atmospheric temperature						- Aeronautical Meteorology		
Measuring Units	к	Uncertainty Units 😡	к		Measured in Layers:		 <u>Agricultural Meteorology</u> <u>Climate-AOPC</u> 		
Horizontal Res Units	km	Vertical Res Units	km		-HS&M		- Global Modelling		
				– LS – HT		– <u>Global NWP</u> – <u>High Res NWP</u>			
Comment:	Comment: Includes atmospheric stability index (LT)						- Nowcasting		
Last modified:							- Synoptic Meteorology		

REQUIREMENTS DEFINED FOR ATMOSPHERIC TEMPERATURE (28)

ld	▲ Layer	Application Area	≎ Uncert. Goal	≎ Uncert. Thresh	≎ HR Goal	≎ <u>HR</u> Thresh	≎ VR Goal	≎ <u>VR</u> Thresh	OC Goal	≎ OC Thresh	Avail Goal	Avail Thresh	¢
<u>15</u>	LT	Aeronautical Meteorology	2 K	5 K	50 km	100 km	0.15 km	0.6 km	60 min	3 h	60 min	2 h	
226	HS&M	Global Modelling	1 K	3 K	50 km	500 km	km	km	3 h	12 h	30 d	60 d	
227	HT	Global Modelling	0.5 K	3 К	50 km	500 km	km	km	3 h	12 h	30 d	60 d	
228	LS	Global Modelling	0.5 K	3 K	50 km	500 km	km	km	3 h	12 h	30 d	60 d	
229	LT	Global Modelling	0.5 K	3 К	50 km	500 km	km	km	3 h	12 h	30 d	60 d	
254	HS&M	Global NWP	0.5 K	5 K	50 km	500 km	0.3 km	3 km	60 min	24 h	6 min	6 h	
255	HT	Global NWP	0.5 K	3 К	15 km	500 km	0.3 km	3 km	60 min	24 h	6 min	6 h	
256	LS	Global NWP	0.5 K	3 K	15 km	500 km	0.3 km	3 km	60 min	24 h	6 min	6 h	
257	LT	Global NWP	0.5 K	3 К	15 km	500 km	0.3 km	3 km	60 min	24 h	6 min	6 h	
339	HT	High Res NWP	0.5 K	3 K	2 km	50 km	0.3 km	1 km	15 min	6 h	15 min	2 h	
34	LT	Agricultural Meteorology	ок	0 К	1 km	200 km	km	km	60 min	60 min	0 у	Оу	
340	LS	High Res NWP	0.5 K	3 K	10 km	100 km	1 km	3 km	15 min	6 h	15 min	2 h	

Show/Hide Details

http://www.wmo-sat.info/oscar/

What are observations used for ?

- Constraining model error growth for data assimilation and NWP
- Providing ground truth for improving model parameterisations

What are observations used for ?

- Constraining model error growth in data assimilation and NWP
- Providing ground truth for improving model parameterisations

What is Data Assimilation ?

- Models give a complete description of the atmospheric, but errors grow rapidly in time
- Observations provide an incomplete description of the atmospheric state, but bring up to date information
- Data assimilation combines these two sources of information to produce an optimal (best) estimate of the atmospheric state
- This state (the *analysis*) is used as initial conditions for extended forecasts.

Data Assimilation (single window)

Data Assimilation (quasi-continuous)

What are observations used for ?

- Constraining model error growth for data assimilation and NWP
- Providing ground truth for improving model parameterisations

Using SSMIS to improve cloud physics

Model (40R1) liquid water path (Kgm-2) 0.02 0.5 0.05 01 0.2 30° 9 45°S 60°S 120°W 90°W 60°W 150°W 30S 45S 60S

90W

60W

120W

150W

MODIS visible image of front / cold sector

Comparing SSM/IS 37V observations with values simulated from the model fields suggest an excess of liquid water in the front and a deficiency of liquid water in the cold air outbreak behind

Using SSMIS to improve cloud physics

Model (NEW) liquid water path (Kgm-2)

Changes to the modelling of super-cooled liquid water reduce values of LWP in frontal zones and increase LWP in the cold air convection regions

Model (40R1) liquid water path (Kgm-2)

Using SSMIS to improve cloud physics

Assessing the impact of Observations on NWP systems

How do we measure observation impact ?

- Observing System Experiments (OSE)
 - Denial or addition experiments
 - Periodic statistical evaluations
 - Case studies
- Adjoint Sensitivity Diagnostics (ASD)
 - Impact assessed without denial
 - Periodic statistical evaluations

Measuring Observation Impact

- Observing System Experiments (OSE)
 - Denial or addition experiments
 - Periodic statistical evaluations
 - Case studies
- Adjoint sensitivity Diagnostics (ASD)
 - Impact assessed without denial
 - Periodic statistical evaluations
 - Case studies ?

See lecture by Carla Cardinali later this week

Observing System Experiments (we run a CONTROL system A)

Observing System Experiments (we run a reduced system B)

Observing System Experiments (we launch extended forecasts from both)

Observing System Experiments (we verify forecasts from A)

Observing System Experiments (we verify forecasts from B)

Then....

We can compare <u>statistics</u> of forecast scores from system **A** versus system **B** over a long period

Or...

We compare the performance of forecasts from system **A** versus system **B** in specific <u>case studies</u>

Statistics of Observation Impact

Statistics of Observation Impact

Or (increasingly) we can compare normalised score differences as a function of forecast range

B > A

A > B

Observation impact determined from individual case studies for important events

Case Study Observation Impact

Results from the most recent statistical evaluation of Observation Impact in the ECMWF NWP system

Observations considered in the study

All conventional (in situ) data	CONV	TEMP/AIRCRAFT/SYNOP/SHIP/ BOUY/PROFILERS
All Satellite Data	SAT	
Microwave sounding radiances	MWS	7 x AMSUA, 1 x ATMS, 4 x MHS
Infrared sounding radiances	IRS	2 x IASI, 1 x AIRS, 1 x HIRS
All GEO data (AMVs and radiances)	GEO	2 x GOES, 2 x METEOSAT, 1 x MTSAT, polar AMVs
GPS-RO bending angle data	GPS	COSMIC, 2 x METOP-GRAS
Microwave imager radiances	MWI	1 x TMI, 1 x SSM/IS
Scatterometer surface wind data	SCAT	2 x ASCAT

Experimental Setup

- Period covered (March 1st to June 30th 2014)
- Version 40R1 of the ECMWF analysis / forecasting system
- T511 Horizontal resolution (~40km) with 137 vertical levels (surface to 0.01hPa)
- For OSEs the various data types are denied from the system
- Verification is with the ECMWF operational analyses and in-situ observations

Satellites observations v Conventional (in situ) data

Importance of Satellites versus Conventional (in situ) data <u>N.Hemis</u>

Importance of Satellites versus Conventional (in situ) data <u>N.Hemis</u>

Importance of Satellites versus Conventional (in situ) data <u>S.Hemis</u>

Importance of Satellites versus Conventional (in situ) data <u>S.Hemis</u>

Which individual satellite observation types are most important ?

Observations considered in the study

All conventional (in situ) data	CONV	TEMP/AIRCRAFT/SYNOP/SHIP/ BOUY/PROFILERS
All Satellite Data	SAT	
Microwave sounding radiances	MWS	7 x AMSUA, 1 x ATMS, 4 x MHS
Infrared sounding radiances	IRS	2 x IASI, 1 x AIRS, 1 x HIRS
All GEO data (AMVs and radiances)	GEO	2 x GOES, 2 x METEOSAT, 1 x MTSAT, polar AMVs
GPS-RO bending angle data	GPS	COSMIC, 2 x METOP-GRAS
Microwave imager radiances	MWI	1 x TMI, 1 x SSM/IS
Scatterometer surface wind data	SCAT	2 x ASCAT

Day 3 Forecast Errors when Different Observations are denied 500hPa Z over NH

Day 3 Forecast Errors when Different Observations are denied 500hPa Z over NH

Observations ranked by impact upon day-3 NH forecasts of Z500

Ranked percentage loss of skill in day-3 Forecasts of 500hPa Z over NH

Ranked percentage loss of skill in day-3 Forecasts of 500hPa Z over NH

Summary of overall ranking of Observations

- 1. All satellite observations
- 2. All conventional observations
- 3. Microwave Sounding Radiances
- 4. Infrared Sounding Radiances
- 5. GPS RO data
- 6. GEO/SCAT/MWI (niche impacts on other parameters)

Observation impact determined from individual case studies for important events

Results from a recent Case Study Hurricane Sandy

Experimental setup

 re-run ECMWF operations from the 20th October at full resolution (T1279)

 The denial experiments are identical to the control - except that different satellite observations are deliberately withheld

• Key day five forecasts launched from the 25th

Hurricane Sandy

Hurricane Sandy

Forecast differences of failed (NO –LEO SAT) forecast

MSLP in Control (red and black solid) NO-LEO SAT (blue and black dash) VT:2012103000z

LEO satellite data coverage (2012102500z)

Satellite impact on Hurricane Sandy

Changes to the initial conditions from removing LEO satellite data were small and located <u>far from the storm</u>

Forecasts with / without LEO data

Day-5

Day-4

Day-3

Are case studies valuable ?

- Yes they are typically the only thing that can actually convince decision makers !
- Yes if the case is representative of a very common meteorological regime
- Yes if the case is an extremely high impact event (e.g. Sandy)
- Yes if we show (and publish) the good <u>and</u> the bad!!

But we need to take great care when making statements about the importance of different observations!

Factors that determine impact ?

- Observation quality
- Observed quantity (important ? already known?)
- Observation usability (ambiguity)
- Observation spatial coverage
- Observation time
- Tuning of the assimilation system (correct specification of B, R, BC, QC)
- Reliability of verification!!

Factors that determine impact ?

- Observation quality
- Observed quantity (important ? already known?)
- Observation usability (ambiguity)
- Observation spatial coverage
- Observation time
- Tuning of the assimilation system (correct specification of B, R, BC, QC)
- Reliability of verification!!

Putting the <u>same</u> satellite in a different orbit (13:30 compared to 07:30 orbit)

In the context of considering which orbit a new Chinese satellite should occupy, OSE studies showed that putting a microwave sounder in a morning orbit (07:30) meant it had a much bigger impact than if exactly the same data were obtained from an afternoon orbit (13:30).

Factors that determine impact ?

- Observation quality
- Observed quantity (important ? already known?)
- Observation usability (ambiguity)
- Observation spatial coverage
- Observation time
- Tuning of the assimilation system (correct specification of B, R, BC, QC)
- Reliability of verification!!

Correct tuning of the assimilation system (e.g. background errors)

Retuning background errors for an extreme OSE

Sensitivity to Background Errors

Factors that determine impact ?

- Observation quality
- Observed quantity (important ? already known?)
- Observation usability (ambiguity)
- Observation spatial coverage
- Observation time
- Tuning of the assimilation system (correct specification of B, R, BC, QC)
- Reliability of verification!!

Verification (what is truth?)

- Conventional (in situ) Observations ?
 - Poor (biased) spatial coverage
 - They have errors (RS z500 ~ 10m)
- NWP analyses
 - They have errors (z500 ~ ??)

How accurate are our analyses ?

UKMO analysis against ECMWF analysis

500hPa geopotential

NHem Extratropics (lat 20.0 to 90.0, lon -180.0 to 180.0)

T+0

oper_an od egrr 0001

00UTC,12UTC Mean error

---- 00UTC,12UTC Standard deviation of forecast error

Analysis uncertainty in verification

Summary

- NWP systems rely completely on observations to make usable weather forecasts (either for DA or model development)
- Collectively satellite data dominate forecast accuracy everywhere, but conventional data are still important (more than any single SAT system).
- Of these, microwave and infrared sounding dominate the medium-range headline scores, but other SAT observations have impact on other parameters (and ranges)
- Case studies are valuable and a very potent tool to convince decision makers

Thank you for your attention (questions ?)

Anomaly correlation of 500hPa height forecasts

