The history of ECMWF radiation schemes

Cycle	Implementation	Description		
	date			
SPM 32	02/05/1989	RT schemes from Univ.Lille		
SPM 46	01/02/1993	Optical properties for ice and mixed phase clouds		
IFS 14R3	13/02/1996	Revised LW and SW absorption coefficients from HITRAN'92		
IFS 16R2	15/05/1997	Voigt profile in long-wave RT scheme		
IFS $16R4$	27/08/1997	Revised ocean albedo from ERBE		
IFS 18R3	16/12/1997	Revised LW and SW absorption coefficients from HITRAN'96		
IFS $18R5$	01/04/1998	Seasonal land albedo from ERBE		
IFS 22R3	27/06/2000	RRTM _{LW} as long-wave RT scheme		
		short-wave RT scheme with 4 spectral intervals		
IFS $23R4$	12/06/2001	Hourly, instead of 3-hourly, calls to RT code		
		during data assimilation cycle		
IFS $25R1$	09/04/2002	Short-wave RT scheme with 6 spectral intervals		
IFS 26R3	07/10/2003	New aerosol climatology adapted from Tegen et al. (1997),		
		new radiation grid		
IFS 28R3	28/09/2004	Radiation called hourly in high resolution forecasts		
IFS 32R2	05/06/2007	McICA approach to RT with $RRTM_{LW}$ and $RRTM_{SW}$		
		revised cloud optical properties, MODIS-derived land albedo		

The ECMWF radiation schemes

- A number of radiation schemes are in use at ECMWF. Since January 2011, have been active
 - McRad including RRTM_LW and RRTM_SW is used in the forward model for operational 10-day forecasts at T_L1279L137, EPS 15-day forecasts at T_L639 L91, and seasonal forecasts at T_L159 L62.
 - The tangent linear and adjoint of the "old" SW radiation scheme in a 2-spectral interval version
 - The tangent linear and adjoint of the "old" LW radiation scheme with 6 spectral intervals,
 - These last two schemes are used in the assimilation (cf. P.Lopez's presentation in TC PA module)
 - ... and all the dedicated RT scheme used to simulate radiances (RTTOV-based) in the analysis of satellite data (cf. TC DA module)
 - A dedicate RT code to compute spectral irradiance in the UV spectrum (a modified version of RRTM-SW)

The ECMWF Radiation Transfer schemes 2

McRad, a new radiation package for the ECMWF IFS

- McRad (operational with CY32R2, 5 June 2007)
- Includes MODIS land surface albedo
- A new SW radiation transfer scheme (RRTMG_SW) consistent with RRTMG_LW introduced in June 2000
- McICA: Monte-Carlo Independent Column Approximation: a new treatment of clouds in RT schemes
- Revised cloud optical properties
- More extensive use of the flexible radiation grid

31R1: "old" surface albedo:

one component only (0.3-5.0 microns)

32R2: equivalent surface albedo from F_{up}/F_{down}

2 components (0.3-0.7 and 0.7-5.0 microns), diffuse and direct

Impact: it depends on which SW RT scheme is used: Slightly negative with SW6, slightly positive with RRTM_SW

The use of the correlated-k method (mapping k(v) ->g(k)) allows radiative transfer to be performed as a monochromatic process

The ECMWF Radiation Transfer schemes 5

RRTMG-LW configuration

-			Gases in	cluded
	Spectral intervals $\rm cm^{-1}$	Number of g-points	Troposphere	Stratosphere
-	10–250 ~100 microns 8		$_{ m H_2O}$ ~100 hPa $_{ m H_2O}$	
	250 - 500	14	H_2O	H_2O
	500-630	16	H_2O, CO_2	H_2O, CO_2
	630 - 700	14	H_2O, CO_2	O_3, CO_2
	700-820	16	H_2O, CO_2, CCl_4	O_3 , CO_2 , CCl_4
16	820-980	8	H_2O , CFC11, CFC12	CFC11, CFC12
B	980 - 1080	12	H_2O, O_3	O_3
	1080 - 1180	8	H_2O , CFC12, CFC22	O_3 , CFC12, CFC22
A -	1180 - 1390	12	H_2O, CH_4	CH_4
N	1390 - 1480	6	H_2O	H_2O
D	1480 - 1800	8	H_2O	H_2O
S	1800 - 2080	8	H_2O	
	2080 - 2250	4	H_2O, N_2O	
	2250 - 2380	2	$\rm CO_2$	$\rm CO_2$
	2380 - 2600	2	N_2O, CO_2	
	2600–3000 ~3 micr	ons 2	H_2O, CH_4	

140 g-points

RRTMG-SW configuration

			Gases i	ncluded
_	Spectral intervals cm^{-1}	Number of g-points	Troposphere	Stratosphere
	800–2600 ~3 micro	ons ¹²	H_2O	CO_2
	2600-3250	6	H_2O, CH_4	
	3250 - 4000	12	H_2O, CO_2	H_2O, CO_2
	4000 - 4650	8	H_2O, CH_4	CH_4
14	4650 - 5150	8	H_2O, CO_2	CO_2
в	5150 - 6150	10	H_2O, CH_4	H_2O, CH_4
	6150 - 7700	10	H_2O, CO_2	H_2O, CO_2
	7700 - 8050	2	H_2O, O_2	O_2
N	8050 - 12850	10	H_2O	
D	12850 - 16000	8	H_2O, O_2	O_2
S	16000 - 22650	6	H_2O	
	22650 - 29000	6		
	29000-38000	8	O_3	O_3
	38000–50000 0.2 micr	ons 2	O_3, O_2	O_3, O_2

112 g-points

RRTM_LW vs. M91/G00: Impact when operationally introduced in 2000

RRTM_LW vs. M91/G00 - 4

RRTM vs. M91/G00 - 5

M91/G00	RRTM
•••• ECMWF T+ 24	
ECMWF T+ 72	===/====22r3v5 T+ 72
ECMWF T+120	─────────────────────────────────────
ECMWF T+168	==™===22r3v5 T+168

The ECMWF Radiation Transfer schemes 10

McICA in 2 figures

Pressure hPa

0

200

400

Barker et al. (2003), Pincus et al. (2003)

K = number of spectral intervals (g-points)

N = number of independent sub-columns Ntot = total number of transmission function computations

ICA RT scheme: Ntot = N * K ~ O(10^3)

The ECMWF Radiation Transfer schemes 11

McICA in 2 figures

Cloud generator: Raisanen et al. (2004)

ECM

ECMWF+McICA - configuration

- Random errors are a consequence of the incomplete pairing of sub-columns and spectral intervals.
- The errors are unbiased with sufficiently large samples (140+112 for RRTMG)
- No explicit need for cloud fraction: at each level the cloud, if present, fills the whole layer. Cloud overlap assumption in the cloud generator as in Hogan and Illingworth (2000,2003)
- A way to deal with uncertainty in sub-grid cloud distribution

McICA: A state-of-the-art method for representing cloudradiation interactions?

In long seasonal runs and high-resolution 10-day forecasts

- How does the model survive noise in radiative heating rate?
- How does the model survive noise in layer cloud fraction?

Tests with 31x10-day FC at T_L319L60 from 20010401 to 20010501

Tests with 4-month simulations at T_L95 L60 for same period

- control (control)
- random perturbation within Gaussian distribution (the relevant quantity x -> x (1+σ*ran)
 - \rightarrow σ=2 CF (1-CF) applied on x = CF (random1) (cloud fraction)
 - → σ=1.5 CF |HR_{tot}|

applied on x = HR (random2) (heating rate)

 $\rightarrow \sigma = 2 \text{ CF sqrt} (\text{HR}_{LW}^2 + \text{HR}_{SW}^2)$ applied on x = HR (random3) (heating rate)

McICA: Hoes does the model deal with radiative noise?

McICA: Hoes does the model deal with radiative noise?

Results

Impact in sets of 13-month runs at T_L159 L91

Impact in 10-day forecasts at T_L799 L91

The problem in ECMWF model "climate" runs? Example from 31R1

Too large OLR over Africa, South America Too

Too much cloudiness over tropical oceans Too much reflection at TOA, too little downward SW radiation at the ocean surface. Little reflection in stratocumulus regions and close to Antarctica

Impact on OLR in ensembles of 1-year simulations

Zonal Mean

- model -- obs

-40 -80

– – obs

180

60°N

30°N

0°

30°S

60°S

-240

-240

135°W

- model

-10

-20

-30

-40

-50

-60

-70

-80

25 20

10

-240

-250

-260

-270

280

180

longitude (deg)

Impact on TOA absorbed SW radiation in ensembles of 1-year simulations

Impact on long-wave cloud forcing in ensembles of 1-year simulations

Impact on short-wave cloud forcing in ensembles of 1-year simulations

a Model Simulations

Impact in T_L799 L91 10-day FCs Dec'06-Apr'07 — 0.02 level

McRAD spatio-temporal resolution

- Even if optimised, McRAD is computationally expensive (mostly due to the SW scheme)
- Operationally, the RT code runs on a spatial grid coarser than the rest of the physics and with a longer time step
 - HiRes 10 day forecasts: model T1279 (~16 km at the equator) McRAD T511 (~40 km). Model time step 10 min, McRAD 1h
 - Ensemble forecasts: model T639 (~30 km), McRAD T255 (~70 km). Model time step 20min, McRAD 3h
- LW flux constant between radiation calls, SW adjusted with the solar zenith angle. Minor impact on diurnal cycle, larger for the 3h

time step The ECMWF Radiation Transfer schemes 24

Impact of reduced radiation grid For 93 FCs at TL399 L62

Reduced radiation grid: 2m temperature

Extreme cases at coastlines

Extreme cases at coastlines

Hogan&Bozzo 2015

- As McRad modifies the cloud-radiation interactions, its impact is felt right from the start of the model integrations.
- Thanks to McICA and the revised cloud optical properties, improvements in TOA radiation is seen both in the tropics and at higher latitudes.
- Whereas McICA does not increase the computational burden, RRTM_SW does. But RRTM_SW and RRTM_LW share the same heritage: based on the same state-ofthe-art line-by-line model (LBLRTM), same database of spectroscopic parameters, and both extensively validated as part of the ARM program.
- Going for a slightly lower resolution for full radiation computations does not affect the quality of the high-resolution 10-day forecasts. A lower resolution radiation grid neither degrades the quality of the EPS. But biases are introduced in surface fields and these can lead to large errors occasionally

Conclusions on McRad (continued)

- The model shows little dependence on the decorrelation length used for cloud fraction and cloud water. But this formulation will allow further developments once information on these quantities becomes available from cloud/cloud water profiles derived from CLOUDSAT/CALIPSO measurements.
- The McICA approach appears particularly adapted to pdf-based cloud schemes.

Ongoing development

- Revision of the current aerosol climatology (Tegen et al. (1997), 5 species sea salt,dust,organic,black carbon and sulphates) -> towards interactive aerosols?
- Interactive radiatively active gases (e.g. Ozone -> Johannes Flemming lecture)?
- Code efficiency improvements. Number of g-points maybe overdimensioned ? Will need to reduce at least 10x to improve the efficiency. Positive tests with stochastic spectral integration (Pincus and Stevens 2009,2013, Bozzo et al. 2014). Other options -> see Robin's lecture on Friday
- 3D radiation, long wave scattering

Climatological aerosol distribution – MACC vs operational

 Large differences in total AOD distribution for Sea salt, Organic, Black Carbon, Dust.

Biases in surface solar radiation (against geostationary sat product CM SAF)

Large bias in the current climatology in dust regions in summer

AOD from MACC reduces the bias

Impact on large scale circulation in coupled climate simulations

