
C O M P U T E | S T O R E | A N A L Y Z E

Introduction to Application
Performance Analysis with CrayPAT

Cray Inc.
1

C O M P U T E | S T O R E | A N A L Y Z E

Performance Optimization

We want to get the most
science through a
supercomputing system as
possible

The more efficient codes are
the more productive scientists
and engineers can be

/
pi
1 9

e

3
9

C O M P U T E | S T O R E | A N A L Y Z E

Performance Optimization

● Adapting the problem to the underlying hardware

● Combination of many aspects

● Effective algorithms

● Implementation: Processor utilization & efficient memory use

● Parallel scalability

● Important to understand interactions

● Algorithm – code – compiler – libraries – hardware

● Performance is not portable!

C O M P U T E | S T O R E | A N A L Y Z E

Performance analysis

To optimise code we must know what is taking the time

Application Inputs Output

Profile Data

Top time consuming routines

Load balance across processes and

threads

Parallel overhead

Communication patterns

Hardware utilization details

C O M P U T E | S T O R E | A N A L Y Z E

Not going to touch the source code?

● Find the compiler and its compiler flags that yield the best
performance

● Employ tuned libraries wherever possible

● Find suitable settings for environment parameters

● Mind the I/O
● Do not checkpoint too often

● Do not ask for the output you do not need

C O M P U T E | S T O R E | A N A L Y Z E

Why does scaling end?

● Amount of data per process small - computation takes
little time compared to communication

● Amdahl’s law in general

● E.g., single-writer or stderr I/O

● Load imbalance

● Communication that scales badly with Nproc

● E.g., all-to-all collectives

● Congestion on network – too
many messages or lots of data

C O M P U T E | S T O R E | A N A L Y Z E

Application timing

● Most basic information: total wall clock time

● Built-in timers in the program (e.g. MPI_Wtime)

● System commands (e.g. time) or batch system statistics

● Built-in timers can provide also more fine-grained
information

● Have to be inserted by hand

● Typically, no information about hardware related issues e.g. cache
utilization

● Information about load imbalance and communication statistics of
parallel program is difficult to obtain

C O M P U T E | S T O R E | A N A L Y Z E

Performance analysis tools

● Instrumentation of code

● Adding special measurement code to binary

● Special commands, compiler/linker wrappers

● Automatic or manual

● Normally all routines do not need to be measured

● Measurement: running the instrumented binary

● Profile: sum of events over time

● Trace: sequence of events over time

● Analysis

● Text based analysis reports

● Visualization

C O M P U T E | S T O R E | A N A L Y Z E

Sampling

Advantages

• Only need to instrument

main routine

• Low Overhead – depends

only on sampling frequency

• Smaller volumes of data

produced

Disadvantages

• Only statistical averages

available

• Limited information from

performance counters

Event Tracing

Advantages

• More accurate and more detailed

information

• Data collected from every traced

function call not statistical averages

Disadvantages

• Increased overheads as number of

function calls increases

• Huge volumes of data generated

Guided tracing = trace only program parts that consume a significant

portion of the total time

In Cray Performance Analysis Toolkit this is referred to as

”automatic profiling analysis ”(APA)

C O M P U T E | S T O R E | A N A L Y Z E

Step 1: Choose a test problem

● The dataset used in the analysis should

● Make scientific sense, i.e. resemble the intended use of the code

● Be large enough for getting a good view on scalability

● Be runable in a reasonable time

● For instance, with simulation codes almost a full-blown model but run
only for a few time steps

● Should be run long enough that initialization/finalization
stages are not exaggerated

● Alternatively, we can exclude them during the analysis

C O M P U T E | S T O R E | A N A L Y Z E

1

1.2

1.4

1.6

1.8

2

64 128 256 512 1024 2048

Speedup

0

100

200

300

400

500

600

64 128 256 512 1024 2048

Walltime

Step 2: Measure Scalability

● Run the uninstrumented
code with different core
counts and see where the
parallel scaling stops

● Usually we look at strong
scaling
● Also weak scaling is definitely

of interest

What is happening in
here?

C O M P U T E | S T O R E | A N A L Y Z E

Step 3: Instrument the application

● Obtain first a sampling profile to find which user functions
should be traced

● With a large/complex software, one should not trace them all: it
causes excessive overhead

● Make an instrumented exe with tracing time-consuming
user functions plus e.g. MPI, I/O and library (BLAS, FFT,...)
calls

● Execute and record the first analysis with

● The core count where the scalability is still ok

● The core count where the scalability has ended

 and identify the largest differences between these profiles

● CrayPAT tools have an Automatic Profile Analysis (APA)
mode to handle this process:

C O M P U T E | S T O R E | A N A L Y Z E

Steps to Collect Performance Data

.
13

● Access performance tools software
● module load perftools

● Build application keeping .o files (CCE: -h keepfiles)
● make clean
● make

● Instrument application for automatic profiling analysis
● pat_build -O apa a.out
● You should get an instrumented program a.out+pat
● This has been instrumented for sampling

● Run application to get top time consuming routines
● aprun … a.out+pat (or qsub <pat script>)
● You should get one or more *.xf performance files

C O M P U T E | S T O R E | A N A L Y Z E

Steps to Collecting Performance Data (2)

.
14

● Run pat_report, on the .xf file or the directory
● pat_report -o <report> <xf file>
● pat_report -o <report> <xf directory>
● Generates text report and an .apa instrumentation file

● We'll discuss pat_report in more detail later

● At this stage the report gives us useful information and
we should get sample hits in time-consuming code
sections

● We can go further on to tracing

● We use the .apa file to re-instrument binary for tracing
● the most important functions have been identified for tracing

● We can inspect and edit the .apa file at this point
● if we want to tweak the choice of routines to be traced

C O M P U T E | S T O R E | A N A L Y Z E

APA File Example

.
15

31.29% 38517 bytes
 -T prim_advance_mod_preq_advance_exp_

15.07% 14158 bytes
 -T prim_si_mod_prim_diffusion_

9.76% 5474 bytes
 -T derivative_mod_gradient_str_nonstag_

. . .

2.95% 3067 bytes
 -T forcing_mod_apply_forcing_

2.93% 118585 bytes
 -T column_model_mod_applycolumnmodel_

Functions below this point account for less than 10% of samples.

0.66% 4575 bytes
-T bndry_mod_bndry_exchangev_thsave_time_

0.10% 46797 bytes
-T baroclinic_inst_mod_binst_init_state_

0.04% 62214 bytes
-T prim_state_mod_prim_printstate_

. . .
0.00% 118 bytes
-T time_mod_timelevel_update_

--

 -o preqx.cray-xt.PE-2.1.56HD.pgi-8.0.amd64.pat-5.0.0.2.x+apa
New instrumented program.

/.AUTO/cray/css.pe_tools/malice/craypat/build/pat/2009Apr03/2.1.56HD/amd64
/homme/pgi/pat-5.0.0.2/homme/2005Dec08/build.Linux/preqx.cray-xt.PE-
2.1.56HD.pgi-8.0.amd64.pat-5.0.0.2.x # Original program.

You can edit this file, if desired, and use it
to reinstrument the program for tracing like this:

pat_build -O standard.cray-xt.PE-2.1.56HD.pgi-8.0.amd64.pat-
5.0.0.2-
Oapa.512.quad.cores.seal.090405.1154.mpi.pat_rt_exp=default.pat_rt_hwpc=no
ne.14999.xf.xf.apa

These suggested trace options are based on data from:

/home/users/malice/pat/Runs/Runs.seal.pat5001.2009Apr04/./pat.quad/homme/s
tandard.cray-xt.PE-2.1.56HD.pgi-8.0.amd64.pat-5.0.0.2-
Oapa.512.quad.cores.seal.090405.1154.mpi.pat_rt_exp=default.pat_rt_hwpc=no
ne.14999.xf.xf.cdb
--

HWPC group to collect by default.

 -Drtenv=PAT_RT_HWPC=1 # Summary with TLB metrics.

--

Libraries to trace.

 -g mpi

--

User-defined functions to trace, sorted by % of samples.

The way these functions are filtered can be controlled with
pat_report options (values used for this file are shown):

-s apa_max_count=200 No more than 200 functions are listed.
-s apa_min_size=800 Commented out if text size < 800 bytes.
-s apa_min_pct=1 Commented out if it had < 1% of samples.
-s apa_max_cum_pct=90 Commented out after cumulative 90%.

Local functions are listed for completeness, but cannot be traced.

 -w # Enable tracing of user-defined functions.
 # Note: -u should NOT be specified as an additional option.

Effectively a series of command line arguments to pat_build

C O M P U T E | S T O R E | A N A L Y Z E

Generating Event Traced Profile from APA

.
16

● Re-instrument application for further analysis
● pat_build -O <apa file>
● creates new binary: <exe>+apa

● Re-run application
● aprun … a.out+apa (or qsub <apa script>)
● This generates a new set of .xf data files

● Generate new text report and visualization file (.ap2)
● pat_report -o <report> <xf file>
● pat_report -o <report> <xf directory>

● View report in text and/or with Cray Apprentice2
● app2 <ap2 file>
● We'll cover this in more detail later

C O M P U T E | S T O R E | A N A L Y Z E

Analysing Data with pat_report

C O M P U T E | S T O R E | A N A L Y Z E

Using pat_report

.
18

● pat_report converts raw profiling data into a profile
● Combines .xf data with binary

● Instrumented binary must still exist when data is converted!

● Produces a text report and an .ap2 file

● .ap2 file can be used for further pat_report calls or display in GUI

● Generates a text report of performance results
● Data laid out in tables

● Many options for sorting, slicing or dicing data in the tables.
● pat_report –O <table option> *.ap2
● pat_report –O help (list of available profiles)

● Volume and type of information depends upon sampling vs tracing.

C O M P U T E | S T O R E | A N A L Y Z E

Advantages of the .ap2 file

.
19

● .ap2 file is a self contained compressed performance file

● Normally it is about 5 times smaller than the .xf file

● Contains the information needed from the application binary

● Can be reused

● Independent of the perftools version used to generate it

● The xf files are very version-dependent

● It is the only input format accepted by Cray Apprentice2

● Once you have the .ap2 file, you can delete:

● the .xf files

● the instrumented binary

C O M P U T E | S T O R E | A N A L Y Z E

Files Generated and the Naming Convention

.
20

File Suffix Description

a.out+pat Program instrumented for data collection

a.out…s.xf

Raw data from sampling experiment

available after application execution

a.out…t.xf Raw data from trace (summarized or full) experiment

available after application execution

a.out….ap2 Processed data, generated by pat_report, contains

application symbol information

a.out…s.apa Automatic profiling analysis template, generated by

pat_report (based on pat_build -O apa experiment)

a.out+apa Program instrumented using .apa file

MPICH_RANK_ORDER.Custom Rank reorder file generated by pat_report from

automatic grid detection an reorder suggestions

C O M P U T E | S T O R E | A N A L Y Z E

Job Execution Information

.
21

CrayPat/X: Version 5.2.3.8078 Revision 8078 (xf 8063) 08/25/11 …

Number of PEs (MPI ranks): 16

Numbers of PEs per Node: 16

Numbers of Threads per PE: 1

Number of Cores per Socket: 12

Execution start time: Thu Aug 25 14:16:51 201

System type and speed: x86_64 2000 MHz

Current path to data file:
 /lus/scratch/heidi/ted_swim/mpi-openmp/run/swim+pat+27472-34t.ap2

Notes for table 1:
…

C O M P U T E | S T O R E | A N A L Y Z E

Sampling Output (Table 1)

.
22

Notes for table 1:

...

Table 1: Profile by Function

 Samp % | Samp | Imb. | Imb. |Group
 | | Samp | Samp % | Function
 | | | | PE='HIDE'

 100.0% | 775 | -- | -- |Total
|---
| 94.2% | 730 | -- | -- |USER
||--
|| 43.4% | 336 | 8.75 | 2.6% |mlwxyz_
|| 16.1% | 125 | 6.28 | 4.9% |half_
|| 8.0% | 62 | 6.25 | 9.5% |full_
|| 6.8% | 53 | 1.88 | 3.5% |artv_
|| 4.9% | 38 | 1.34 | 3.6% |bnd_
|| 3.6% | 28 | 2.00 | 6.9% |currenf_
|| 2.2% | 17 | 1.50 | 8.6% |bndsf_
|| 1.7% | 13 | 1.97 | 13.5% |model_
|| 1.4% | 11 | 1.53 | 12.2% |cfl_
|| 1.3% | 10 | 0.75 | 7.0% |currenh_
|| 1.0% | 8 | 5.28 | 41.9% |bndbo_
|| 1.0% | 8 | 8.28 | 53.4% |bndto_
||==
| 5.4% | 42 | -- | -- |MPI
||--
|| 1.9% | 15 | 4.62 | 23.9% |mpi_sendrecv_
|| 1.8% | 14 | 16.53 | 55.0% |mpi_bcast_
|| 1.7% | 13 | 5.66 | 30.7% |mpi_barrier_
|===

C O M P U T E | S T O R E | A N A L Y Z E

pat_report: Flat Profile

.
23

Table 1: Profile by Function Group and Function

 Time % | Time |Imb. Time | Imb. | Calls |Group
 | | | Time % | | Function
 | | | | | PE='HIDE'

 100.0% | 104.593634 | -- | -- | 22649 |Total
|--
| 71.0% | 74.230520 | -- | -- | 10473 |MPI
||---
|| 69.7% | 72.905208 | 0.508369 | 0.7% | 125 |mpi_allreduce_
|| 1.0% | 1.050931 | 0.030042 | 2.8% | 94 |mpi_alltoall_
||===
| 25.3% | 26.514029 | -- | -- | 73 |USER
||---
|| 16.7% | 17.461110 | 0.329532 | 1.9% | 23 |selfgravity_
|| 7.7% | 8.078474 | 0.114913 | 1.4% | 48 |ffte4_
||===
| 2.5% | 2.659429 | -- | -- | 435 |MPI_SYNC
||---
|| 2.1% | 2.207467 | 0.768347 | 26.2% | 172 |mpi_barrier_(sync)
||===
| 1.1% | 1.188998 | -- | -- | 11608 |HEAP
||---
|| 1.1% | 1.166707 | 0.142473 | 11.1% | 5235 |free
|==

C O M P U T E | S T O R E | A N A L Y Z E

pat_report: Message Stats by Caller

.
24

Table 4: MPI Message Stats by Caller

 MPI Msg |MPI Msg | MsgSz | 4KB<= |Function
 Bytes | Count | <16B | MsgSz | Caller
 | | Count | <64KB | PE[mmm]
 | | | Count |

 15138076.0 | 4099.4 | 411.6 | 3687.8 |Total
|--
| 15138028.0 | 4093.4 | 405.6 | 3687.8 |MPI_ISEND
||---
|| 8080500.0 | 2062.5 | 93.8 | 1968.8 |calc2_
3| | | | | MAIN_
||||---
4||| 8216000.0 | 3000.0 | 1000.0 | 2000.0 |pe.0
4||| 8208000.0 | 2000.0 | -- | 2000.0 |pe.9
4||| 6160000.0 | 2000.0 | 500.0 | 1500.0 |pe.15
||||===
|| 6285250.0 | 1656.2 | 125.0 | 1531.2 |calc1_
3| | | | | MAIN_
||||---
4||| 8216000.0 | 3000.0 | 1000.0 | 2000.0 |pe.0
4||| 6156000.0 | 1500.0 | -- | 1500.0 |pe.3
4||| 6156000.0 | 1500.0 | -- | 1500.0 |pe.5
||||===
. . .

C O M P U T E | S T O R E | A N A L Y Z E

Some important options to pat_report -O

Cray Inc.
25

callers Profile by Function and Callers

callers+hwpc Profile by Function and Callers

callers+src Profile by Function and Callers, with Line Numbers

callers+src+hwpc Profile by Function and Callers, with Line Numbers

calltree Function Calltree View

heap_hiwater Heap Stats during Main Program

hwpc Program HW Performance Counter Data

load_balance_program+hwpc Load Balance across PEs

load_balance_sm Load Balance with MPI Sent Message Stats

loop_times Loop Stats by Function (from -hprofile_generate)

loops Loop Stats by Inclusive Time (from -hprofile_generate)

mpi_callers MPI Message Stats by Caller

profile Profile by Function Group and Function

profile+src+hwpc Profile by Group, Function, and Line

samp_profile Profile by Function

samp_profile+hwpc Profile by Function

samp_profile+src Profile by Group, Function, and Line

● For a full list see: pat_report -O help

C O M P U T E | S T O R E | A N A L Y Z E

Loop Statistics

.
26

● Just like adding automatic tracing at the function level, we
can add tracing to individual loops.

● Helps identify candidates for parallelization:
● Loop timings approximate how much work exists within a loop

● Trip counts can be used to understand parallelism potential
● useful if considering porting to manycore

● Only available with CCE:
● Requires compiler add additional features into the code.

● Should be done as separate profiling experiment
● compiler optimizations are restricted with this feature

● Loop statistics reported by default in pat_report table

C O M P U T E | S T O R E | A N A L Y Z E

Collecting Loop Statistics

.
27

● Load PrgEnv-cray module (default on most systems)

● Load perftools module

● Compile AND link with CCE flag: -h profile_generate

● Instrument binary for tracing
● All user functions: pat_build –u my_program

● Or even no user functions: pat_build –w my_program
● This is sufficient for loop-level profiling of all loops!

● Or use an existing apa file.

● Run the application

● Create report with loop statistics
● pat_report <xf file> > <report file>

C O M P U T E | S T O R E | A N A L Y Z E

Default Report Table 2

.
28

Notes for table 2:

 Table option:

 -O loops

 …

 The Function value for each data item is the avg of the PE values.

 (To specify different aggregations, see: pat_help report options s1)

 This table shows only lines with Loop Incl Time / Total > 0.0095.

 (To set thresholds to zero, specify: -T)

Loop instrumentation can interfere with optimizations, so time

 reported here may not reflect time in a fully optimized program.

 Loop stats can safely be used in the compiler directives:

 !PGO$ loop_info est_trips(Avg) min_trips(Min) max_trips(Max)

 #pragma pgo loop_info est_trips(Avg) min_trips(Min) max_trips(Max)

 Explanation of Loop Notes (P=1 is highest priority, P=0 is lowest):

 novec (P=0.5): Loop not vectorized (see compiler messages for reason).

 sunwind (P=1): Loop could be vectorized and unwound.

 vector (P=0.1): Already a vector loop.

Profile guided

optimization

feedback for

compiler:

see man pgo

C O M P U T E | S T O R E | A N A L Y Z E

Default Report Table 2

.
29

Table 2: Loop Stats from -hprofile_generate

 Loop |Loop Incl |Loop Incl | Loop | Loop | Loop |Function=/.LOOP\.
 Incl | Time | Time / | Hit | Trips | Notes | PE='HIDE'
 Time / | | Hit | | Avg | |
 Total | | | | | |

|---
| 24.6% | 0.057045 | 0.000570 | 100 | 64.1 | novec |calc2_.LOOP.0.li.614
| 24.0% | 0.055725 | 0.000009 | 6413 | 512.0 | vector |calc2_.LOOP.1.li.615
| 18.9% | 0.043875 | 0.000439 | 100 | 64.1 | novec |calc1_.LOOP.0.li.442
| 18.3% | 0.042549 | 0.000007 | 6413 | 512.0 | vector |calc1_.LOOP.1.li.443
| 17.1% | 0.039822 | 0.000406 | 98 | 64.1 | novec |calc3_.LOOP.0.li.787
| 16.7% | 0.038883 | 0.000006 | 6284 | 512.0 | vector |calc3_.LOOP.1.li.788
| 9.7% | 0.022493 | 0.000230 | 98 | 512.0 | vector |calc3_.LOOP.2.li.805
| 4.2% | 0.009837 | 0.000098 | 100 | 512.0 | vector |calc2_.LOOP.2.li.640
|===

C O M P U T E | S T O R E | A N A L Y Z E

Step 4: Assessing the big picture

● Profile = Where the most of the time is really being spent?

● See also the call-tree view

● Ignore (from the optimization point-of-view) user routines with less
than 5% of the execution time

● Why does the scaling end: the major differences in these
two profiles?

● Has the MPI fraction ’blown up’ in the larger run?

● Have the load imbalances increased dramatically?

● Has something else emerged to the profile?

● Has the time spent for user routines decreased as it should (i.e. do
they scale independently)?

C O M P U T E | S T O R E | A N A L Y Z E

Example with CrayPAT

.
31

Load balance overview:

Height  Max time

Middle bar  Average time

Lower bar  Min time

Yellow represents imbalance

time

Height  exclusive

time

Width  inclusive

time

C O M P U T E | S T O R E | A N A L Y Z E

Step 5: Analyze load imbalance

● What is causing the imbalance?

● Computation

● Tasks call for computational kernels (user functions, BLAS routines,...)
for varying times and/or the execution time varies depending on the
input/caller

● Communication

● Large MPI_Sync times

● I/O

● One or more tasks are performing I/O and the others are just waiting
for them in order to proceed

C O M P U T E | S T O R E | A N A L Y Z E

Example with CrayPAT
Min, Avg, and Max

Values

C O M P U T E | S T O R E | A N A L Y Z E

Step 6: Analyze communication

● What communication pattern is dominating the true time
spent for MPI (excluding the sync times)

● Refer to the call-tree view on Apprentice2 and the “MPI Message
Stats” tables in the text reports produced by pat_report

● Note that the analysis tools may report load imbalances as
”real” communication

● Put an MPI_Barrier before the suspicious routine - load imbalance will
aggregate into it in when then analysis is rerun

● How does the message-size profile look like?

● Are there a lot of small messages?

C O M P U T E | S T O R E | A N A L Y Z E

Example with CrayPAT report (message stats)

.

Table 4: MPI Message Stats by Caller

 MPI Msg |MPI Msg | MsgSz | 4KB<= |Function
 Bytes | Count | <16B | MsgSz | Caller
 | | Count | <64KB | PE[mmm]
 | | | Count |

 15138076.0 | 4099.4 | 411.6 | 3687.8 |Total
|--
| 15138028.0 | 4093.4 | 405.6 | 3687.8 |MPI_ISEND
||---
|| 8080500.0 | 2062.5 | 93.8 | 1968.8 |calc2_
3| | | | | MAIN_
||||---
4||| 8216000.0 | 3000.0 | 1000.0 | 2000.0 |pe.0
4||| 8208000.0 | 2000.0 | -- | 2000.0 |pe.9
4||| 6160000.0 | 2000.0 | 500.0 | 1500.0 |pe.15
||||===
|| 6285250.0 | 1656.2 | 125.0 | 1531.2 |calc1_
3| | | | | MAIN_
||||---
4||| 8216000.0 | 3000.0 | 1000.0 | 2000.0 |pe.0
4||| 6156000.0 | 1500.0 | -- | 1500.0 |pe.3
4||| 6156000.0 | 1500.0 | -- | 1500.0 |pe.5
||||===
. . .

C O M P U T E | S T O R E | A N A L Y Z E

Step 7: Analyze I/O

● Trace POSIX I/O calls (fwrite, fread, write, read,...)

● How much I/O?

● Do the I/O operations take a significant amount of time?

● Are some of the load imbalances or communication
bottlenecks in fact due to I/O?

● Synchronous single writer

● Insert MPI_Barriers to investigate this

C O M P U T E | S T O R E | A N A L Y Z E

Step 8: Find single-core hotspots

● Remember: pay attention only to user routines that
consume significant portion of the total time

● View the key hardware counters, for example

● L1 and L2 cache metrics

● use of vector (SSE/AVX) instructions

● Computational intensity (= ratio of floating point ops / memory
accesses)

● CrayPAT has mechanisms for finding “the” hotspot in a
routine (e.g. in case the routine contains several and/or
long loops)
● CrayPAT API

● Possibility to give labels to “PAT regions”

● Loop statistics (works only with Cray compiler)

● Compile & link with CCE using -h profile_generate

● pat_report will generate loop statistics if the flag is being enabled

C O M P U T E | S T O R E | A N A L Y Z E

===
USER / conj_grad_.LOOPS

 Time% 59.5%
 Time 73.010370 secs
 Imb. Time 3.563452 secs
 Imb. Time% 4.7%
 Calls 1.383 /sec 101.0 calls
 PERF_COUNT_HW_CACHE_L1D:ACCESS 183909710385
 PERF_COUNT_HW_CACHE_L1D:
 PREFETCH 7706793512
 PERF_COUNT_HW_CACHE_L1D:MISS 21336476999
 ...
 SIMD_FP_256:PACKED_DOUBLE 1961227352
 User time (approx) 73.042 secs 189983282830 cycles 100.0% Time
 CPU_CLK 3.454GHz
 HW FP Ops / User time 969.844M/sec 70839736685 ops 9.3%peak(DP)
 Total DP ops 969.844M/sec 70839736685 ops
 Computational intensity 0.37 ops/cycle 0.33 ops/ref
 MFLOPS (aggregate) 124140.04M/sec
 TLB utilization 1058.97 refs/miss 2.068 avg uses
 D1 cache hit,miss ratios 90.0% hits 10.0% misses
 D1 cache utilization (misses) 9.98 refs/miss 1.248 avg hits
 D2 cache hit,miss ratio 17.5% hits 82.5% misses
 D1+D2 cache hit,miss ratio 91.7% hits 8.3% misses
 D1+D2 cache utilization 12.10 refs/miss 1.512 avg hits
 D2 to D1 bandwidth 18350.176MB/sec 1405449334558 bytes
 Average Time per Call 0.722875 secs

Example with CrayPAT

.

Flat profile data

HW counter values

Derived

metrics

C O M P U T E | S T O R E | A N A L Y Z E

Example with CrayPAT

.

Table 2: Loop Stats from -hprofile_generate

 Loop |Loop Incl |Loop Incl | Loop | Loop | Loop |Function=/.LOOP\.
 Incl | Time | Time / | Hit | Trips | Notes | PE='HIDE'
 Time / | | Hit | | Avg | |
 Total | | | | | |

|---
| 24.6% | 0.057045 | 0.000570 | 100 | 64.1 | novec |calc2_.LOOP.0.li.614
| 24.0% | 0.055725 | 0.000009 | 6413 | 512.0 | vector |calc2_.LOOP.1.li.615
| 18.9% | 0.043875 | 0.000439 | 100 | 64.1 | novec |calc1_.LOOP.0.li.442
| 18.3% | 0.042549 | 0.000007 | 6413 | 512.0 | vector |calc1_.LOOP.1.li.443
| 17.1% | 0.039822 | 0.000406 | 98 | 64.1 | novec |calc3_.LOOP.0.li.787
| 16.7% | 0.038883 | 0.000006 | 6284 | 512.0 | vector |calc3_.LOOP.1.li.788
| 9.7% | 0.022493 | 0.000230 | 98 | 512.0 | vector |calc3_.LOOP.2.li.805
| 4.2% | 0.009837 | 0.000098 | 100 | 512.0 | vector |calc2_.LOOP.2.li.640
|===

C O M P U T E | S T O R E | A N A L Y Z E

The Golden Rules of profiling:

● Profile your code

● The compiler/runtime will not do all the optimisation for you.

● Profile your code yourself

● Don't believe what anyone tells you. They're wrong.

● Profile on the hardware you want to run on

● Don't profile on your laptop if you plan to run on a Cray system

● Profile your code running the full-sized problem

● The profile will almost certainly be qualitatively different for a test case.

● Keep profiling your code as you optimize

● Concentrate your efforts on the thing that slows your code down.

● This will change as you optimise.

● So keep on profiling.

40

C O M P U T E | S T O R E | A N A L Y Z E

Performance Optimization:
Improving Parallel Scalability

Cray Inc.
41

C O M P U T E | S T O R E | A N A L Y Z E

Scalability bottlenecks

● Review the performance measurements (between the two
runs)

● Case: user routines scaling but MPI time blowing up

● Issue: Not enough to compute in a domain

● Weak scaling could still continue

● Issue: Expensive (all-to-all) collectives

● Issue: Communication increasing as a function of tasks

● Case: MPI_Sync times increasing

● Issue: Load imbalance

● Tasks not having a balanced role in communication?

● Tasks not having a balanced role in computation?

● Synchronous (single-writer) I/O or stderr I/O?

C O M P U T E | S T O R E | A N A L Y Z E

Issue: Load imbalances

● Identify the cause

● How to fix I/O related imbalance will be addressed later

● Unfortunately algorithmic, decomposition and data
structure revisions are needed to fix load balance issues

● Dynamic load balancing schemas

● MPMD style programming

● There may be still something we can try without code re-design

● Consider hybridization (mixing OpenMP with MPI)

● Reduces the number of MPI tasks - less pressure for load balance

● May be doable with very little effort

● Just plug omp parallel do’s/for’s to the most intensive loops

● However, in many cases large portions of the code has to be
hybridized to outperform flat MPI

C O M P U T E | S T O R E | A N A L Y Z E

Issue: Point-to-point communication
consuming time

● Message transfer time ∝ latency + message size /
bandwidth

● Latency: Startup for message handling

● Bandwidth: Network BW / number of messages using the same link

● Reduce latency by aggregating multiple small messages if
possible

● Do not pack manually but use MPI’s user-defined datatypes

● Always use the least general datatype constructor possible

● Bandwidth and latency depend on the used protocol

● Eager or rendezvous

● Latency and bandwidth higher in rendezvous

● Rendezvous messages usually do not allow for overlap of computation
and communication (see the extra slides for explanation), even when
using non-blocking communication routines

● The platform will select the protocol basing on the message size,
these limits can be adjusted

C O M P U T E | S T O R E | A N A L Y Z E

Rank A

EAGER potentially allows overlapping

Compute

MPI_ISend

Compute T
im

e

MPI_Waitall

MPI_IRecv

Compute

Rank B

Compute

MPI_ISend

Compute

MPI_Waitall

MPI_IRecv

Compute

Data is pushed into an empty

buffer(s) on the remote

processor.

Data is copied from the buffer

into the real receive destination

when the wait or waitall is

called.

Involves an extra memcopy, but

much greater opportunity for

overlap of computation and

communication.

Further info

C O M P U T E | S T O R E | A N A L Y Z E

Rank A

RENDEZVOUS does not usually overlap

Compute

MPI_ISend

Compute T
im

e

MPI_Waitall

MPI_IRecv

Rank B

Compute

MPI_ISend

Compute

MPI_Waitall

MPI_IRecv

With rendezvous data transfer

is often only occurs during the

Wait or Waitall statement.

When the message arrives at

the destination, the host CPU is

busy doing computation, so is

unable to do any message

matching.

Control only returns to the

library when MPI_Waitall occurs

and does not return until all

data is transferred.

There has been no overlap of

computation and

communication.

DATA DATA

DATA DATA
Further info

C O M P U T E | S T O R E | A N A L Y Z E

Issue: Point-to-point communication
consuming time

● One way to improve performance is to send more
messages using the eager protocol

● This can be done by raising the value of the eager threshold, by
setting environment variable:
export MPICH_GNI_MAX_EAGER_MSG_SIZE=X

● Values are in bytes, the default is 8192 bytes. Maximum size is
131072 bytes (128KB)

● Try to post MPI_Irecv calls before the MPI_Isend calls to
avoid unnecessary buffer copies

● On Cray XE & XC: Asynchronous Progress Engine

● Progresses also rendezvous messages on the background by
launching an extra helper thread to each MPI task

● Consult ‘man mpi’ and there the variable
MPICH_NEMESIS_ASYNC_PROGRESS

C O M P U T E | S T O R E | A N A L Y Z E

Issue: Point-to-point communication
consuming time

● Minimize the data to be communicated by carefully
designing the partitioning of data and computation

● Example: domain decomposition of a 3D grid (n x n x n) with halos to
be communicated, cyclic boundaries

1D decomposition (”slabs”):

communication ∝ n2 * w * 2

2D decomposition (”tubes”):

communication ∝ n2 * p-1/2 * w * 4

3D decomposition (”cubes”):

communication ∝ n2 * p-2/3 * w * 6

w = halo width

p = number of MPI tasks

C O M P U T E | S T O R E | A N A L Y Z E

Issue: Expensive collectives

● Reducing MPI tasks by mixing OpenMP is likely to help

● See if every all-to-all collective operation needs to be all-
to-all rather than one-to-all or all-to-one

● Often encountered case: convergence checking

● See if you can live with the basic version of a routine
instead of a vector version (MPI_Alltoallv etc)

● May be faster even if some tasks would be receiving data never
referenced

● The MPI 3.0 introduces non-blocking collectives
(MPI_Ialltoall,...)

● Allow for overlapping collectives with other operations, e.g.
computation, I/O or other communication

● Are faster (at least on Cray) than the blocking corresponds even
without the overlap, and replacement is trivial

C O M P U T E | S T O R E | A N A L Y Z E

Issue: Expensive collectives

● Hand-written RDMA collectives may outperform those of
the MPI library

● Fortran coarrays, Unified Parallel C, MPI one-sided communication

● On Cray XE and XC systems, the sc. DMAPP collectives
will (usually significantly) improve the performance of the
expensive collectives

● Enabled by the variable:
export MPICH_USE_DMAPP_COLL=1

● Can be used selectively, e.g.
export MPICH_USE_DMAPP_COLL=mpi_allreduce

● Features some restrictions and requires explicit linking with the
corresponding library and using the huge pages; consult ’man mpi’

C O M P U T E | S T O R E | A N A L Y Z E

Issue: Performance bottlenecks due to I/O

● Parallelize your I/O !
● MPI I/O, I/O libraries (HDF5, NetCDF), hand-written schmas,...

● Without parallelization, I/O will be a scalability bottleneck in every
application

● Try to hide I/O (asynchronous I/O)

● Available on MPI I/O (MPI_File_iwrite/read(_at))

● One can also add dedicated ”I/O servers” into code: separate MPI
tasks or dedicating one I/O core per node on a hybrid MPI+OpenMP
application

Compute I/O Compute I/O Compute I/O Compute I/O

Compute

I/O

Compute

I/O

Compute

I/O

Compute

I/O

C O M P U T E | S T O R E | A N A L Y Z E

Issue: Performance bottlenecks due to I/O

● Tune filesystem (Lustre) parameters
● Lustre stripe counts & sizes, see ”man lfs”

● Rule of thumb:

● # files > # OSTs => Set stripe_count=1

You will reduce the lustre contention and OST file locking this way and

gain performance

● #files==1 => Set stripe_count=#OSTs

Assuming you have more than 1 I/O client

● #files<#OSTs => Select stripe_count so that you use all OSTs

● Use I/O buffering for all sequential I/O
● IOBUF is a library that intercepts standard I/O (stdio) and enables

asynchronous caching and prefetching of sequential file access

● No need to modify the source code but just

● Load the module iobuf

● Rebuild your application

C O M P U T E | S T O R E | A N A L Y Z E

Issue: Performance bottlenecks due to I/O

● When using MPI-I/O and making non-contiguous
writes/reads (e.g. multi-dimensional arrays), always define
file views with suitable user-defined types and use
collective I/O

● Performance can be 100x compared to individual I/O

Decomposition for a 2D array

File

 call mpi_type_create_subarray(2, sizes, subsizes, starts, mpi_integer, &
 mpi_order_c, filetype, err)
 call mpi_type_commit(filetype)
 disp = 0
 call mpi_file_set_view(file, disp, mpi_integer, filetype, ‘native’, &
 mpi_info_null, err)
 call mpi_file_write_all(file, buf, count, mpi_integer, status, err)

C O M P U T E | S T O R E | A N A L Y Z E

Concluding remarks

● Apply the scientific method to performance engineering:
make hypotheses and measurements!

● Scaling up is the most important consideration in HPC

● Possible approaches for alleviating typical scalability
bottlenecks

● Find the optimal decomposition & rank placement

● Overlap computation & communication - use non-blocking
communication operations for p2p and collective communication both!

● Make more messages ’eager’ and/or employ the Asynchronous
Progress Engine (on Cray)

● Hybridize (=mix MPI+OpenMP) the code to improve load balance and
alleviate bottleneck collectives

● Mind your I/O!

● Use parallel I/O

● Tune filesystem parameters

