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1. Introduction

Passive microwave remote sensing at L-band (1-2 GHz) at the
global scale with frequent revisit times is one of the most promising
approaches to monitor soil moisture (SM) (Entekhabi et al., 2010;
Jackson et al., 2010; Kerr et al., 2010). Three recent space missions
use this technology: SMOS (launched in November 2009), Aquarius
(launched in June 2011) and SMAP (launched in January 2015). The
Soil Moisture and Ocean Salinity (SMOS) mission was the first
space-borne mission dedicated to soil moisture mapping (Kerr et al.,
2001; Kerr et al., 2010). Aquarius employed a set of three L-band ra-
diometers and scatterometers, operating in a push-broom mode and
covering a swath of about 300 km (Le Vine et al., 2010). Even though
the primary mission objective of Aquarius was to provide global ob-
servations of sea surface salinity, it was also used for global SM
(Bindlish et al., 2015). The Aquarius/SAC-D observatory was lost on
June 7, 2015 due to a failure in the electronics supplying power to the
observatory attitude control system. The most recent space-borne
mission at L-band, the Soil Moisture Active Passive (SMAP) mission
(Entekhabi et al., 2010), incorporated a radar and radiometer, both
operating at the same incidence (observation) angle 6 of 40°. The
mission concept was to combine the complementary attributes of the
radar observations (high spatial resolution but lower soil moisture
sensitivity) and radiometer observations (higher soil moisture sensi-
tivity but coarse spatial resolution), to retrieve SM at a spatial resolu-
tion of 9 km. Unfortunately, after successfully starting radar data ac-
quisition in mid-April, the SMAP radar system stopped transmitting
on July 7, 2015. The radiometer continues to operate as planned.

Several SM retrieval approaches have been developed in the con-
text of these L-band space missions. The operational SMOS retrieval
algorithm is based on the multi-angular and dual-polarization observ-
ing capabilities of the SMOS interferometric sensor: SM and vegeta-
tion optical depth tau at nadir (ty,p) (used to parameterize vegetation
attenuation and emission) are retrieved simultaneously based on the
SMOS multi-angular and dual-polarization observations of brightness
temperatures TB (Wigneron et al., 2000). Specifically, the 2-Parame,
ter (2-P) simultaneous retrievals of SM and optical depth at nad
(tnyap) are obtained from inversion of the L-MEB (L-band g
crowave Emission of the Biosphere) model (Kerr et al., 2012; K
al., 2016; Wigneron et al., 2007).

TB emitted from land surfaces.

The general retrieval approach proposed
active-channel (radar) for disaggregating
L-band TB to produce higher resolution

single-channel algorithm (SCA) (J:
on the —® model. Unlike the alggri
ization and one incidence angle o
SM, while optical depth at ngdir (tyap
estimated from the linear rela b - VWC where values of
the b-parameter are obtained from cover look up table and the
vegetation water content (VWC) is estimated from a function which
utilizes 13-year climatological values of the Normalized Difference
Vegetation Index (NDVI) (O'Neill et al., 2015).

TB is used to retrieve
not retrieved. Instead it is

Both the SMOS and SMAP missions benefit from recent findings
in microwave modelling. The SMOS mission relies on the L-MEB
model (Wigneron et al., 2007) to produce time series of the Level 2
and Level 3 SM products since the beginning of 2010 Bitar et al.,
2016; Kerr et al., 2012; Kerr et al., 2016). These S} progficts have
been evaluated agamst numerical modelhng products
from large SM networks included in the SMOS
initiative (Al-Yaari et al., 2014; Kerr et al.,
L-MEB model was evaluated in a series of eX

Bircher et al.,
2015; Merlin et al., 2009; Mialon et al.,
Pardé et al., 2011; Peischl et al., 2012;
al., 2009; Schlenz et al., 2012; Yan ¢jas

e o ctation effects. Based
Nements of the L-MEB model

Wc of this paper presents a review of the
odelling results obtained in the framework
L-band missions. Some recent and signifi-

vide very useful insights for further development of the
MAP algorithms. A discussion on the impact of recent
ing results on the SM retrieval accuracy and present per-
ctiyes is also provided.

Before we go into the details of the radiative transfer equations
used in the SMAP and SMOS operational algorithms, we present in
this section a brief overview of the main inversion algorithms used
and/or evaluated in the framework of these two space-borne missions.
One of the major differences in these different algorithms is the ap-
proach used to account for vegetation effects, through the parameteri-
zation or retrieval of vegetation optical depth (7).

2.1. SMOS Level 2 and Level 3 operational algorithms

As presented in the introduction, in the SMOS operational algo-
rithm, a 2-Parameter (2-P) retrieval of SM and optical depth ay nadir
(tnap) 1s performed based on the inversion of L-MEB, the forward
model of the Level 2 and Level 3 operational algorithms. The L-MEB
inversion is based on the minimization of a cost function using a gen-
eralized least-squares iterative algorithm which account for a priori
information available for the retrieved parameters (Kerr et al., 2012).
The inversion is carried out using multi-angular and dual polarization
observations of brightness temperatures (TB). As the satellite moves
along its track, a series of brightness temperatures emitted by the
same location on earth is thus obtained for a range of distinct inci-
dence angles (0), which are available for the inversion. This range de-
pends on the position of the pixel relative to the sub-satellite track.
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The retrieval accuracy is best for “optimal” dates when the pixel is in
the very central part of the Field of View (FOV) so that the range of
incidence angles available for the inversion is maximum; typically
~ 0-55° (Wigneron et al., 2000).

If we assume that the optical depth (ty,p) Vvaries relatively slowly
over time, the value of T retrieved on that “optimal” date can be used
as the starting t value for the SM and T retrieval for the days before
and the days after (days for which there is a reduced range of avail-
able incidence angle). This result is currently exploited to optimize
SM retrievals in the L2 algorithm using so-called “current files”
(Wigneron et al., 2000; Kerr et al., 2012). The Level 3 (L3) algorithm
is very similar to the Level 2 (L2) algorithm except that it exploits the
concept of “slowly varying optical depth” through a multi-orbit ap-
proach over a 7-day period. Over that period the retrieved values of
optical depth are constrained using a temporal autocorrelation func-
tion (Al Bitar et al., 2016; Kerr et al., 2016). Note that there is a time
sub-cycle of 18 days in the SMOS viewing configuration, meaning
that the viewing geometry over a given pixel is almost the same at the
time t and at the time t + 18 days. It is important to have in mind this
specificity when analyzing the SMOS L2 and L3 products.

The large interest in the 2-P approach used in both the L2 and L3
SMOS algorithms is that no estimates of optical depth (t) are re-
quired in the inversion process of SM. But, as noted above, if a priori
estimates of T are available, there is the option of using them as start-
ing values and to constrain the inversion process (as done for the
“current files” used in the SMOS L2 algorithm). The retrieved SMOS
T product is a “side-product” of SM and can be potentially very inter-
esting to monitor vegetation, as it was demonstrated in studies based
on the T product computed from observations made at higher frequen-
cies (Liu et al., 2013, 2015; Tian et al., 2016; Konings and Gentine,
2016b).

2.2. SMAP Level 2 operational algorithm

Currently, the Single Channel Algorithm (SCA), based on V-po-
larized TB data (SCA-V), is used as the SMAP baseline algorith:
but the same algorithm can also be applied to H-polarized TB da
(SCA-H).

The Single Channel Algorithm (SCA) is based on TB ob
tions made at the one incidence angle of SMAP (6 = 40°) and@t og
given polarization. In SCA-V, TB,, data are converted to emis
using a surrogate for the effective temperature of the emjfiny
The derived emissivity is corrected for vegetation and @ g
ness to obtain the soil emissivity. Finally, a dielectric m g
used to obtain soil moisture SM from the soil dielg,

(=]

ing the Fresnel equations. The nadir optical depth timated
from the vegetation water content (VWC) as,
TNAD = bVWC (1)
where b is a proportionality factor ndygal g on the vege-

. The b values are ob-
nd the baseline ap-
quations to estimate VWC

tation structure (Jackson and Schmugge,
tained by means of a land cover |
proach utilizes a set of land cove,
from values of NDVI (O'Neill et al¥

A total of four methods (SCA-H,
considered in the SMAP AlZSgghm T
(ATBD, O'Neill et al., 2015) and
lowing.

-V, DCA and LPRM) was
retical Baseline Document
briefly presented in the fol-

2.3. The dual channel algorithm (DCA)

The Dual Channel Algorithm (DCA) is an extension of the SCA
and uses both H-polarized and V-polarized TB observ:
taneously retrieve SM and (0 = 40°) (O'Neill et al.,
SMOS algorithm, SM and (0 = 40°) are retrieved th
mization of the root mean square difference be
and observed TB data. The main difference bg
DCA algorithms is that TB data at 6 = 40° ard

N Mproach. First, the vegetation
’ g SR solution based on the
Microwave Polarization DifferenCSQldex (MPDI) and the observed
surface emissivity (e;; and cgf o hat the values of the vege-
tation optical depth are the, @ both polarizations. The MPDI in-
dex is calculated from the Digifness temperature at H and V polar-
005):

2

¥ using an optimization routine that mini-

mizes the n the modelled (using the 1-© emission
model) a -polarized brightness temperatures. As for
SMOS g#d DC vegetation optical depth is an additional re-
trieva

The LPR s implemented on multi-frequency satellites such as

2Q46). Thegffective temperature can be obtained from observations
in and V-polarized channel, as it is done for the AMSR-E
ducts or from re-analysis or near real time data from weather pre-
centres (Parinussa et al., 2011). All detailed equations of the
approach are given in (Owe et al., 2001; Meesters et al., 2005;
deYeu et al., 2009).

2.5. Multi-orbit retrievals of soil moisture and optical depth
(MT-DCA)

As done in the SMOS L3 algorithm, a method based on multi-or-
bit retrievals of (SM, t) that takes advantage of the relatively slow
temporal dynamics of early morning vegetation water content and
combines a number of consecutive observations was proposed re-
cently by Konings et al. (2016). Additionally, the algorithm retrieves
a constant albedo. The algorithm was termed the multi-temporal dual
channel algorithm (MT-DCA). MT-DCA has not yet been tested us-
ing SMOS or SMAP observations, but it has been evaluated using
three years of L-band passive observations from the NASA Aquarius
sensor. MT-DCA is mentioned here, to complete this brief overview
of the main SM retrievals algorithms developed at L-band. A sum-
mary of the current modelling of the soil and vegetation effects
within the SMOS and SMAP SM retrieval algorithms is given in
Table 1. The different terms of the equations used in Table 1 are de-
tailed in the following two sections for soil (Section 3) and vegetation
(Section 4).
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Table 1

Main components of the current version of the SMOS and SMAP L2 operational algo-
rithms. Details on equations for soil and vegetation modelling are given in Sections 3
& 4.

Forward
model/modelling L2 L3 SMOS
component mission (L-MEB) L2 SMAP mission

Soil roughness H-Q-N modelling (Eq. (5))  H-Q-N modelling (Eq. (5))

modelling Hg = 0.1 for low Hy = f(IGBP)
vegetation Qr=0;Ng =2
Hy = 0.3 for forests
Qg =0; Ngy =0, Ngyy =2
Modelling of the soil Dobson before L2 V5.5 Mironov

Mironov since L2 V5.5
(April 2012)

&g = f(SM, Tg, % clay)
T = f(Tsoit_surt, Tsoit_depth)
Tsmlisurf’ Tsoilideplh from
Layer | & 3 of ECMWF

Cr=(SM/ Wy*

W, by = f(soil type);

default: Wy = 0.3 m*/m?;

by, =0.3
Skin temperature (ECMWF) T =Tg, at 6:00 am LST
- model (Mo et al., 1982)  1-® model (Mo et al., 1982)
presently oy = oy = © presently oy = oy = o

o = 0 for low vegetation o = f(IGBP)

® = 0.06-0.08 for forests
ttp equations (Eq. (16))

dielectric constant (gg) e = f(SM, Tg, % clay)

Effective soil
temperature

T = f(Tgoit surts Tsoil deptn)
Tsoilisurf’ Tsollidepth from
Layer 1 & 2 of GEOS-5
FP-IT
Cr=0.246

Vegetation temperature
Vegetation modelling
Effective albedo

Structural effects on © Presently Ty = 1y, at

default values: tty =tty =1 6 =40°
Optical depth Tnap Tesults from 2-P Tnap = b VWC
retrievals of SM and tyap b = f(IGBP)

Tnap = b’ LAL+b7(*) VWC = f(NDVI, IGBP)

2 Equation mainly used to initialize the inversion process and for specific inversion
configurations (marginal impact on retrieval results but decrease in computation time).

2.6. Other algorithms

Various other L-band retrieval algorithms exist, including metho
that circumvent the use of explicit radiative transfer calculations,
such as those based on neural networks. However, in this pap
focus solely on algorithms that explicitly use radiative
processes to estimate soil moisture.

3. Soil radiometric modelling

This section presents the main principles of radiom
of soil signatures in the passive microwave domaig
els used in the SMOS and SMAP retrieval algog
the main improvements that have been made rece
related to the modelling of soil roughness e , S
perature and soil permittivity.

3.1. Background

3.1.1. General principles

The soil brightness temperature
ization (P =V, Vertical or P = H,
and 0 is the incidence (observation)
written as (Ulaby et al., 1986

, where P represents polar-
170 G represents “Ground”
le relative to nadir, can be

TBgp (0) =egp (0)-Tg €)

where T is the effective soil temperature (assumed generally to
be independent of polarization) and egp is the soil emissivity which

can be computed from the soil reflectivity I';p by (e.g. Peake, 1959):

egp(©®) =1-Tgp (0)

)
In the case of smooth surfaces (no surface roughn e smooth
(specular) soil reflectivity [p”™ can be computed Gagig nel co-
efficients (Ulaby et al., 1986) as a function of§ ive soil di-

, Wang and
empirical model-
dielectric mixing

SM (Dobson et al, 1985; Mironov 4
Schmugge, 1980), using physically-basgq

ling approaches. The main input parame
models are soil moisture (SM, m>/m’
(T, K), and information on the sog
sand and clay), density, etc.

inputs SM, T and clay con
To account for surface

(i) Physical modelg

and then use
Kurface structure. Currently, the most
ethods for studying rough-surface scat-

ing wave scattering to be modelled from random rough sur-

faces agd relying on simplifying assumptions have also been de-

veloped The Small Slope Approximation (SSA; Broschat, 1993)

Integral Equation Model (IEM; Fung, 1994; Shi et al.,

were successful in broadening the range of validity of
thése analytical approximations. In both the numerical and ana-

tical approaches the values of the bistatic scattering coefficient
are first computed from the scattered electric field by averaging
over the ensemble of rough surfaces. Then the effective soil re-
flectivity needed in Eq. (4) is computed by integrating the bistatic
scattering coefficients over the upper half-space (e.g. Peake,
1959). The roughness effects are usually characterized by a few
geophysical parameters under the assumptions that the surface is
isotropic (i.e. the roughness parameters are the same in every di-
rection). These include the standard deviation of surface-heights
(Sp), the autocorrelation function of surface heights (e.g. Gauss-
ian, Exponential, etc.), and the associated values of the auto-cor-
relation length (L.).

(i1) Semi-empirical models relying on simple parametric equations
derived from physical approaches. In this case, the values of the
model parameters are calibrated (best-fit values) from data ob-
tained from physical modelling (Lawrence et al., 2013; Schwank
and Mitzler, 2006; Shi et al., 2002) or experiments (Métzler et
al., 2006; Montpetit et al., 2015; Wang et al., 1983; Wegmiiller
and Matzler, 1999; Wigneron et al., 2001; Wigneron et al., 2011).
Empirical equations are generally used to make a link between
the model ‘best-fit” parameters and the classical geophysical pa-
rameters characterizing surface roughness (Sp, L, etc.). These
model ‘best-fit’ parameters have to be considered as effective pa-
rameters as many assumptions have to be made to develop sim-
plified analytical equations. For example, 3-Dimensional (3-D)
spatial heterogeneities of soil moisture, structure and density are
neglected; the roughness parameters are assumed to be the same
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in every direction (isotropic assumption), etc. In particular, spa-
tial heterogeneities in SM at the soil surface may lead to
so-called dielectric “roughness” effects that combine with ‘geo-
metric’ roughness effects (Mo and Schmugge, 1987; Panciera et
al., 2009b; Schwank et al., 2010; Wigneron et al., 2001).

In summary, physical models allow the simulation of the soil
emission for a large range of soil moisture and roughness conditions.
However, considering the simplifications made in the representation
of the soil medium, these methods can only be applied to ‘ideal” sur-
faces with ‘limited’ imperfections in terms of heterogeneity and
anisotropy. So, the applicability of these methods to simulate the
emission from typically large footprints of radiometric observations
from space is critical.

The weakness of semi-empirical approaches is that they are cali-
brated using limited data sets (most often from field observations)
making them potentially site dependent. However, the parameters can
be considered as effective parameters, accounting for many complex
effects commonly found in natural environments (3-D soil spatial
heterogeneities, volume scattering under dry soil conditions, effects
of soil anisotropy) making these approaches more tractable for soil
moisture retrievals. Currently, these methods are used in most of the
algorithms developed for soil moisture retrievals from passive mi-
crowave observations.

3.1.2. Roughness modelling

To account for soil roughness effects, L-MEB has been based on
the semi-empirical approach (referred here to as the HQN model),
initially developed by Wang and Choudhury (1981) and utilizing two
main parameters (Hgp and Q). The additional Ny, parameter was in-
troduced in subsequent investigations (Escorihuela et al., 2007;
Wigneron et al., 2001). The rough-surface reflectivity (I'gp) can be
written as:

Lep (0)
= [(1-Qe@®) T, ®)

+Qr (O Tisq ©)] exp (~Hyp (0) cos™®r (@)

where I'p" and I'gy", (withP=Hand Q=VorP=V a
the specular reflectivity of a smooth surface and the rog

often accounted for using the Ny, param
to as Hy in the following. More generall
dence on polarization of the roughnes
counted only through the Ny, parame
Qg is a polarization mixing parameter
values of emissivity at horizon
creases as Qg increases).

Several studies have investiga e link between these three
roughness parameters and the geophysical parameters characterizing
the surface roughness, in terms of standard deviation (Sp), auto-cor-
relation length (L), autocorrelation function (Gaussian, exponential,

...), etc. These surface roughness characteristics are measured for ex-
ample with an automated laser profilometer or a needle board, with a
sampling interval varying between 0.2 cm and 1 cm alopg a 1-, 2- or
3-m transect over each field (usually, ten measuremeyS at least are
made in two directions, i.e., parallel and perpendi
rows).

However, it remains difficult to draw geneg
these initial studies, for several reasons. The mg

(i) The four parameters (Hg, Qg, Npy and
dent. Decoupling their effects requirg
tained for a large range of config
conditions (soil moisture, roughnel
observation systems (polarizatign,
...), which are very rarely avy

(i) There is a large uncertainty,
parameters characterizing su

#®data sets, ob-
terms of surface
. temperfiture, etc.) and of
idengdl angle, frequency,

ion of the geophysical
oughness from field measure-
which is made in terms of

glzc features of surface roughness in
ironments considering, 2-Dimen-

consideration
(Gao et al.,
(iii) The conclygi Epending on whether the focus is on the

simulations or in the SM retrievals

In su ve comments, a brief review of these studies
is provi tly. Most of the published studies specify or as-
sume value of Qp increases with frequency, from a value

e 983). Note that non-zero values of Qy should be used to simu-
18e specififeffects (emissivity may decrease as roughness increases)
a; y Shi et al. (2002) at V polarization for large incidence
ang terms of SM retrievals, the Qg parameter is generally as-

edto be zero at L-band (Wang et al., 1983). In the latter case, Eq.
S) cg#l be simplified to:

Gp (0) =T () - exp (—Hg (6) - cos"®? () ) ©

In the literature, contrary to Qg, the Hy parameter is found to be a
key parameter to account for roughness effects. Choudhury et al.
(1979) developed the formulation Hy = (2'k'SD)2, where k = 2n/A is
the wavenumber at wavelength A, which has been widely used in the
literature over a large frequency range (Kerr and Njoku, 1990) espe-
cially to model the coherent component of the soil reflectivity (Mo
and Schmugge, 1987; Shi et al., 2002). However, several studies
(Choudhury et al., 1979; Mo and Schmugge, 1987; Wigneron et al.,
2001) found that this latter formulation may lead to an overestimation
of the roughness effects for medium and very rough soil conditions.
Both Mo and Schmugge (1987) and Wigneron et al. (2001) found the
best estimates of the value of H, were made with the slope parameter
m = Sp/L. through a power-law relationship. Several studies
(Escorihuela et al., 2007; Mo and Schmugge, 1987; Schneeberger et
al., 2004; Wigneron et al., 2001) also noted a sensitivity of H, to SM
with Hy increasing for dry soil conditions. This sensitivity was inter-
preted as an effect of the “dielectric roughness” which increases as
the soil gets drier due to SM spatial heterogeneities as opposed to
“geometric roughness”, parameterized by S, and L. Wigneron et al.
(2001) noted that these “dielectric roughness” effects could be en-
hanced by the larger thermal sampling depth over dry soils. Early
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work noted that the frequency dependence of Hy is generally consid-
ered as low (Wang et al., 1983).

As for the Ny, parameter, initial studies considered a cos?(0) de-
pendence in Eq. (5) (Choudhury et al., 1979; Wang and Choudhury,
1981). However, Wang et al. (1983) found this dependence was
“much too strong” and proposed to set N = 0. Since then, the values
Ny =— 1, 0 or 1 have been widely used in the literature (Bircher et
al., 2012; de Jeu et al., 2009; Njoku and Chan, 2006; Peischl et al.,
2012; Schlenz et al., 2012; Wigneron et al., 2001). The study by
Escorihuela et al. (2007) was one of the first studies showing that the
values of Ny for both H and V polarizations should not necessarily be
the same. Based on long term measurements over a relatively smooth
field (Sp ~ 1 cm, SMOSREX experiment, de Rosnay et al., 2006),
Escorihuela et al. (2007) proposed to use Ny = 1 and Ny = — 1, in
agreement with Wigneron et al. (2007) who found values of N,
varying between ~— 1 and + 1 over crop fields. Similarly, Bircher et
al. (2012, 2013) found that best TB simulations and SM retrievals
were obtained using Ny = — 1 and Ny = 0 over a variety of crops
fields in Denmark. Default values Ngy, = 0 and Ny = 2 are used in
the SMOS algorithm. Note that there is a limited interest in using the
Ngp parameter for sensors with mono-angular observations (such as
AMSR-E and SMAP), as the term cos™ " (0) in Eq. (5) will only be a
scaling factor modulating the value of Hy.

3.2. Recent advances in roughness modelling

3.2.1. Results from observations made at field scale

The L-MEB soil roughness parameters were first established in
the late 2000s (Table 1). Since then, several studies have been pub-
lished providing new insights into modelling of the roughness effects.
The most significant results are presented in the following.

It is known that microwave emission depth decreases with in-
creasing SM. For instance, Escorihuela et al. (2010) showed that the
soil moisture sampling depth specified in TB simulations has a strong
impact on the calibrated values of soil roughness parameters. They
found that the best correlation was obtained between TB and S
when measured over the 0—2 cm surface layer; for wet soils, the be
correlation was between TB and SM measured over the 0—1 cm g
face layer. Accounting for these effects, a low dependency 4
roughness parameter Hy on SM was found. These results weg

2011).

Based on the experimental PORTOS-1993 data set
al. (2011) developed an empirical relationship betwee
(Fig. 1), showing a saturation of Hy (towards valuesgjs
when Sp exceed ~ 50-60 mm (corresponding to
ness conditions of freshly plowed soils):

0.9437 S, >6

HR =
0.8865 Sp, +2.2913 (7)

n validated over a
ontpetit et al. (2015), con-
of Hy on the frequency
st noted by Wang et al.
ta, Lawrence et al. (2013)

As presented later, this relation
large frequency range (1.4-90 GH.
firming the rather low sensitivity
band of the radiometric observation
(1983). Based on simulated
found that best results for TB ned using a linear relation-
ship between Hy and the parameter 2 (cm) defined as Zg = Sp? / L.
as shown in Fig. 2 (top left panel). This relationship is in good agree-
ment with Eq. (7), showing saturation of Hy close to values of ~ 1.2
for rough soil conditions (Zg > 1.2 cm). Zribi and Dechambre (2003)
were the first to explore the parameterization of soil roughness effects

1.5 T T T T T T
PORTOS-1993 EXPERIMENT

RMS=0.108 R2=095 , +

05F

SOIL ROUGHMESS PARAMETER HR

I 1 1

0 10 20 30 40 50 60 70
STD of HEIGHT (SD, MM)

Fig. 1. Retrieved values of the roughn rameter HR as a function of the standard
deviation of the surface height (Sp, mm) at C-band. Best fit relation given by Wigneron
etal. (2011) (——) and ation of Choudhury et al. (1979) (- - -) are included
(adapted from Wignerofe

using the Zg
there is a ¢

in the Goulburn River catchment, Australia (Saleh et al., 2009);
~ 0.35 over natural shrubs in the Mediterranean region (Cano et
7, 2010), etc.

There is a good general agreement between calibrated values of
Hjy based on experimental data and modelled values of Hy using Eq.
(7). For instance, the retrieved values of Hy obtained over bare soils
during the third Soil Moisture Active Passive Experiment
(SMAPEX-3; Panciera et al., 2014) airborne campaign, in south-east-
ern Australia match very well the model in Eq. (7), especially for
Sp > 40 mm (Gao et al., 2013). Good results were obtained too using
the modelling Eq. (7) by Bircher et al. (2012, 2013) based on data
from the HOBE airborne campaign in Western Denmark. However,
without clear explanations higher values of Hy have been obtained
from some experimental observations, especially from airborne cam-
paigns (Panciera et al., 2009a; Pardé et al., 2011; Peischl et al., 2012).
In addition, the use of a SM dependent parameter Hy(SM) has been
tested in the above-mentioned studies, but no clear general conclu-
sion could be drawn on the impact of SM retrieval performance:
Sometimes improvements are found considering Hg(SM), sometimes
not. For instance, based on data from the SMAP Validation Experi-
ment 2012 conducted in Canada, Martens et al. (2015) found that the
linear dependence of Hy on SM cannot be generalized and that it is
mainly valid for sandy soils.

As for the Ny and Ngy parameters, Lawrence et al. (2013) ob-
tained results over a large range of roughness conditions. They ex-
tended the results obtained by Escorihuela et al. (2007) for rather
smooth soil conditions, showing the difference ANy = Ny — Niy de-
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creased from a value ~ 2 for smooth surfaces to ~ 1-1.5 for rough
soils, in agreement with experimental results by Mialon et al. (2012).
For TB simulations, Lawrence et al. (2013) proposed a model where
Hy, is computed from Zg, while Qg, Ny and Ngy; are computed from
Hy (Fig. 2). The values of Ny and Ny increase with increasing val-
ues of Hy. their values varying between — 0.5 and 1. However, they
found that setting Npy = Npy led to a simplified model with good
performance in terms of both TB modelling and SM retrievals
Lawrence et al. (2013) also found that the values of Qg increase fi
increasing soil roughness (up to ~ 0.2-0.4) but its value can be s¢

be very low (Fig. 2, top left panel).
At the scale of satellite passive microwave ok

Putions (un-
, 2015) or sur-
s and forests
topographic ef-
. Talone et al., 2007;
d that they are cur-
1., 2008) in the SMOS SM

dulating, gently rolling to strongly rolling)
face effects related to litter especially o
(Grant et al., 2008; Saleh et al., 2006).
fects have been analyzed in several studie
Monerris et al., 2008; Utku and Le
rently flagged as described in (Mgalo
products.

However, a better understanding oM@he relationship between the
roughness model parameters the gedbhysical parameters charac-
terizing the “geometric roughnes: as Sp and L) could be use-
ful in the interpretation of the radiometric signatures over agricultural
areas from space-borne sensors as found by Patton and Hornbuckle
(2013).

0.3

0 02 04 06 08 10
w

0 0.2 0.4 0.6 0.8 1

It values: Hy = 0.1 over low vegetation and Hy = 0.3
forest@and Qg = 0, Ny = 0, Ny, = 2 over both low vegetation
” In the current SMAP SM algorithm, the soil reflectivity

considering N = 2 (as mentioned previously the cos™*P()
n Eq. (5) is only a scaling factor of Hy for a mono-angular sen-
such as SMAP and it is dropped to avoid overcorrecting for
Bughness). Hy, is tabulated as a function of land cover types for the
current SMAP Level 2 algorithms using the International Geosphere-
Biosphere Programme (IGBP) classification scheme (Channan et al.,
2014) (Table 2). Spatially and temporally variable estimates of global
Hy have been estimated and may be used in future SMAP Level 2
and 3 products (personal communication Steven Chan). The SMAP
Level 4 soil moisture product (L4 SM) already uses spatially and
temporally variable Hp values, which are estimated along with other
key radiative transfer parameters using Bayesian inference and histor-
ical SMOS time series (De Lannoy et al., 2013; De Lannoy et al.,
2014). These parameter inputs are provided as part of the L4 SM
data product (Entekhabi et al., 2014).

Parrens et al. (2016) also estimated maps of Hy using SMOS data,
assuming that Npy = Npy = — 1 and Qi = 0.0. They obtained values
(Table 2, Fig. 3) in good agreement with the literature: lower values
(~0.15) of Hy were found over shrubs, bare ground, and desert; inter-
mediate values (~ 0.2-0.25) over cultivation, tundra and wooded
grassland, and higher values (0.30-0.40) over forests. Currently, the
Hy values used in the SMAP Level 2 algorithm (they range between
~ 0.11 for croplands to 0.16 for forests) have a narrower range than
the ones used by the SMOS algorithm (ranging currently from 0.1 to
0.3) and the ones found in the global studies by De Lannoy et al.
(2013, 2014) and Parrens et al. (2016).
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Table 2

Roughness parameter Hy by IGBP class considered in the SMOS Level 2 algorithm,
(Kerr et al., 2014; Kerr et al., 2012), SMAP Level 2 algorithm (O'Neill et al., 2015)
and computed from the SMOS observations at global scale over 2011 (Parrens et al.,
2016).

SMOS* Parrens et al.
Land cover type (default) SMAP? (2016)b
Evergreen needleleaf forests 0.30 0.160  0.35
Evergreen broadleaf forests 0.30 0.160  0.46
Deciduous needleleaf forests 0.30 0.160  0.43
Deciduous broadleaf forests 0.30 0.160  0.45
Mixed forests 0.30 0.160  0.41
Closed shrublands 0.10 0.110  0.26
Open shrublands 0.10 0.110  0.17
Woody savannas 0.10 0.125 035
Savannas 0.10 0.156  0.23
Grasslands 0.10 0.156  0.13
Permanent wetlands 0.10 - 0.20
Croplands 0.10 0.108  0.17
Urban and built-up lands 0.10 0.000  0.19
Crop-land/natural vegetation 0.10 0.130  0.22
mosaics
Barren or sparsely vegetated 0.10 0.150  0.02

* Ny = 0 and Ngy = 2 in the SMAP
algorithm.

b Npy=Ngg=-1.

2 in the SMOS algorithm; Ngy = Ngy =

3.2.3. Results obtained over a wide frequency range

Two main studies considered a large range of system configura-
tions in terms of frequency (including the L-band and the frequency
range of AMSRE, i.e. 6.9-89 GHz), incidence angle and polarization
for the simulation of soil roughness effects. First, the model of
Wegmiiller and Matzler (1999) is widely used in that field. It is based
on the results of Mo and Schmugge (1987) and considers four main
parameters to model soil reflectivity at H-polarization (I'y), and then
derive soil reflectivity at V-polarization from I'gy.

Second, Montpetit et al. (2015) evaluated the HQN model. They
computed Hy using an equation similar to Eq. (7) as a function of}
three parameters a,, a,, and a;:

Based on the PORTOS-93 data set, Montpetit et al. (2015) found
the HQN model to be very accurate for simulating the soil roughness
effects, using the same values of Hy (computed from Eq. (8) using
a; = 0.887, a, = 0.796 and a; = 3.517), Qg = 0.075,
Nzy = 0.13, over the whole 1.4-90 GHz frequency T
by Wegmiiller and Matzler (1999) was also found to
simulating the rough surface emission prov1ded

creasing sensitivity of TB to roughness
larization only).
Two further findings are more

p results, they are in good
by Wang et al. (1983) at 1.4, 5

h Leaf Area Index (LAI) values, im-
retrievals were obtained from L-band

ling depths (~ 0-3 cm at L-band, and
nds; Raju et al., 1995); and (iii) the lower at-

temperature

soil temperature (T;) is used to simulate upwelling
mperature TBgp (Eq. (3)) of a soil considering vertical
re and moisture gradients. An incongruity can be noted
iginally Eq. (3) was written for a homogeneous soil medium

fective temperature was developed to account for temperature
moisture gradients. So the use of an effective temperature con-
cept in Eq. (3) leads necessarily to consider egp as the effective emis-
sivity of the ground.

60°N+
30°N+H
0° 4

30°S o

0.4

0.2

0.1

60°S T T
120°W 60°W

T I
60°E 120°E 0

Fig. 3. Global map of the roughness parameter Hy, retrieved from the SMOS observations at L-band (Parrens et al., 2016).
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T is generally considered to be expressed as (Ulaby et al. 1986):
(o8] V4
Tg = / TS (z) a(z)exp [—/ a() dz’] dz
0 0

where Tg(z) is the soil temperature at depth z, and the power at-
tenuation coefficient o(z) is related to the complex soil dielectric con-
stant ; = &' + 15" and the observation wavelength A as (Schwank
et al., 2005):

«(2) = (4n/A)-Im (\/gG (z))

©

where Im() represents the imaginary part.

Based on this formulation and experimental data, Chq
(1982) developed a simple parameterization of the effcd
perature T (Choudhury scheme):

TG = Tsoil_depth + CT (Tsoil_surf - Tsoil_depth (]1)

where Ty gepn 18 the deep soil tem to 100 cm);
Tsoit_surr 18 the surface temperature (0 to 5 C parameter
was computed as a function of the fre r=0246 at L

band).

This equation was refined by W4
ing for the dependence of the
(Cr = (SM/W)™, with C; < 1 a
meters, Wigneron scheme) and then
tion of the soil dielectric co
b, are fitting parameters; eme). In a second step,
Wigneron et al. (2008) improved the Wigneron scheme
Cr=(SM/ Wo)bo by accounting for the dependence of the W, and b,
parameters on soil texture. This parameterization is currently imple-
mented in the SMOS algorithm using the L-MEB default parameters

b0
£5"/eg")/ey)”, where g, and

SM = 0.05 m3/m3) or (d) high soil moisture value
cgend, the reader is referred to the web version of

W, =03 by = 0.3. T gur and Typy gepn are estimated
from, resp WF (European Centre for Medium-Range
Weather el 1 (1-7 cm) and Level 3 (28-100 cm) soil

e SMAP algorithm is based on Eq. (11) using

udhury et al., 1982) and Ty g and Ty gepen are €s-
FC GMAO GEOSS forecasted soil temperatures in
r (0—10 cm) and second layer (10-20 cm), respectively
cently, a new approach to compute C; was derived from
two layer soil system by Lv et al. (2014) (Lv scheme). It
or the sampling depth (Ax) of the microwave radiation:

= l-exp <—Ax 4w/ <eg,/2 \/%>>

An evaluation made over the Maqu site (Tibetan Plateau) of the
four schemes (Choudhury, Lv, Holmes, and Wigneron) by Lv et al.
(2014) found both the Lv and Wigneron schemes performed similarly
(RMSE ~ 1.8-2.5 K) and better than both the Holmes scheme
(RMSE ~ 3.5 K) and the Choudhury scheme (RMSE ~ 4.0 K). Note
that, presently, most of the studies investigating the computation of
Tg have been based on in-situ experimental data and a long term
analysis based on satellite observations has still to be made to evalu-
ate more extensively the different modelling schemes described
above.

(12)

3.4. Dielectric models of moist soils

The microwave dielectric modelling of moist soils is an essential
part of the retrieval algorithms in radar and radiometry remote sens-
ing (Mitzler et al., 2006). Simple soil dielectric models can be ap-
plied in iterative retrieval algorithms to account for the dependence of
the relative permittivity on solid soil phases, liquid soil water content,
soil temperature and wave frequency. The most popular models used
in the microwave remote sensing community are the ones developed
by Wang and Schmugge (1980), Dobson et al. (1985), and Mironov
et al. (2004). As compared with the model of Dobson et al. (1985),
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the basic feature of the dielectric model of Mironov et al. (2004) con-
sists of the fact that the latter distinguishes between bound and free
soil water by considering the dielectric relaxation spectrum parame-
ters for each type of soil water (bound and free), using the measured
dielectric spectra of moist soil samples at fixed texture and tempera-
ture. This model is known in the literature as the Generalized Refrac-
tive Mixing Dielectric Model (GRMDM). On the basis of GRMDM,
the dependence of the soil permittivity spectra on soil texture at a
fixed temperature (Mironov et al., 2009) and on soil temperature at a
given soil texture (Mironov & Fomin, 2009b), were established. The
approaches of (Mironov & Fomin, 2009b; Mironov et al., 2009) were
combined to compute the temperature and moisture dependent GR-
MDM in the case of mineral thawed soils (Mironov & Fomin,
2009a). Later, an engineering GRMDM dielectric model designed for
the SMOS retrieval algorithm was developed (Mironov et al., 2013a):
simplified and specific equations were developed at L-band and a
larger validation data set was used. The methodology of GRMDM
was also extended to take into consideration frozen soils and the
thawed/frozen transitions of moist soils in the cases of both an or-
ganic-rich soil (Mironov et al., 2010) and a mineral soil (Mironov &
Lukin, 2011). Later on, in the frame of the GRMDM methodology, an
approach allowing different types of dielectric relaxations (dipole and
ionic) in different soil water components to be distinguished was de-
veloped (Mironov et al., 2013b; Mironov et al., 2013c), leading to the
development of dielectric models predicting the soil permittivity of
thawed and frozen organic rich soils in both the MHz and GHz
ranges (Mironov & Savin, 2015).

Distinguishing between mineral and organic-rich soils as well as
between frozen and thawed conditions is important due to distinct di-
electric behavior in all these cases. Organic material differs from
mineral by its complex structure and small bulk density, high porosity
and large specific surface area. These properties lead to extreme wa-
ter holding capacities up to 0.8-0.9 m*/m’ compared to around
0.4-0.6 m*/m’® in the case of mineral soils (e.g. Kellner & Lundin,
2001; Li et al., 2004), as well as a higher fraction of bound water. The
ability to align with an applied electric field (referred to as polariz
ability) is considerably reduced in the case of water molecules clo
to solid surfaces (Jones et al., 2002). Consequently, the relative g
mittivity of bound water is significantly smaller than that of frg
ter, approaching that of ice. This implies that the bulk relative
tivity of organic substrates with large specific surface areas_is 18
than in the case of mineral soils (apart from very claye
the same accounts for frozen versus thawed conditions. 4
ganic and frozen soil characteristics are spec1ﬁcally
Northern enVlronments in these reglons spemal atios

in the SMOS
) study the ap-
ional processor to re-
ils over areas with

Soil Moisture L2 Prototype Processor,
proach's potential to be integrated in the o
place the applied dielectric model
distinct organic soil surface layer;

In L-MEB, the model of Dobso
et al. (1995), was used in cgmbinatio
proposed by Matzler (1998) s since the beginning of the
SMOS mission. The main input mi arameters were SM, soil tem-
perature, soil salinity, bulk density, and % of sand and clay. Since
April 2012 (i.e. since version 5.5 of the Level 2 algorithm), the Dob-

5) revised by Peplinski
ith a simplified approach

son model was replaced by the Mironov model (Mironov et al.,
2012), where the input parameters are limited to SM, soil temperature
and % clay. The analysis by Mialon et al. (2015) using datasets from

(1) it requires fewer input parameters making it less s
curacies in global soil property maps (soil densityg

tended to sand fraction larger than 50%
use of the Mironov model instead of the e, was that higher

ng to higher re-

(Mialon et al., 2015).

The better performance of odel compared to the
everal recent studies at local
al., 2011, Montpetit et al.,
brticular, better performances were
er et al., 2012, 2017) and for or-

ent (Bircher et al., 2015). Note

constant as a fun
model (Bircher
tained too at
Dobson one
These diffe
the soil nyi

was clearly detected for the Dobson
Improved simulations of TB were ob-
ng the Mironov model rather than the

al algorithms of both SMOS and SMAP; this
model in its baseline Level 2 & 3 algorithms.

, 2016) and it is considered as an option at ECMWF
EM (Community Microwave Emission Model) model-
(de Rosnay et al., 2009; Muiioz-Sabater et al., 2011).

Vegetation radiometric modelling

this section a review of the models used to account for the ra-
didtive effects of vegetation at L-band is presented. Firstly some
Packground is presented including the models used in the SMOS and
SMAP retrieval algorithms, and secondly recent findings in this do-
main are presented and analyzed.

4.1. Background

To account for vegetation effects, both the SMOS and SMAP mis-
sion use a simple Radiative Transfer (RT) model, hereafter referred to
as the t-® model. In this model, optical depth 1, and effective scatter-
ing albedo @, (p = H, V) are used to parameterize extinction and scat-
tering caused by the canopy layer above the soil (Mo et al., 1982).
This model is a zero-order solution of the RT equations, where the
phase matrix term accounting for multiple scattering effects, is ne-
glected (Tsang et al., 1985; Ulaby et al., 1986). The rationale for the
selection of the latter model is discussed in detail by Wigneron et al.
(2007).

In the t-® model, the thermal emission TB, from a scene consist-
ing of a vegetation layer above an infinite half space representing the
subjacent soil medium can be written as the sum of three terms: (1)
the direct upwelling vegetation emission, (2) the downwelling vege-
tation emission reflected by the soil and attenuated by the canopy
layer, and (3) upwelling soil emission attenuated by the canopy:
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TBp = (1 _mp) (l_yp) (1+Yprgp) Tec

+(1-Tg) 7Ty (13)

where Ty and T are the effective soil and vegetation temperatures,
I'gp is the soil reflectivity and vy, is the vegetation transmissivity,
computed from the optical depth 1, using Beer's law:

Yp = exp (—TP/COS 9) (14)

If it is assumed further that the effective scattering albedo ® is
equal to zero and that T is equal to T (Tg = T = T, where Tg is
the effective ground-canopy temperature), Eq. (13) can be rewritten
in a very simple form as:

TBP = (1 - y;TGP) TGC

(15)

In the RT model used for the Level 2 and 3 SMAP products, tp
equals the optical depth at nadir and it is assumed to be polarization
independent for now, whereas it is made polarization dependent in
the SMAP Level 4 product. In L-MEB, used by the SMOS mission,
Tp is expressed as a function of the optical depth at nadir Ty, (at
0=0°) by:

Tp (0) = Tyap (sin* (0) - ttp + cos? (0)) (P =H, V) (16)

where the tty, and tt;; parameters allow for the dependence of 1, on
incidence angle 0 to be accounted for, which can be different accord-
ing to polarization, particularly for vegetation with specific
anisotropic structures. This formulation was based on the modelling
of the vertical stalk layer as a uniaxial crystal (Allen & Ulaby, 1984
Ulaby & Wilson, 1985). A value of tt, > 1 or tt, < 1 will correspond;
respectively, to an increasing or decreasing trend of 1, as a fun
of 0. The “isotropic” case, where 1, is assumed to be indepeng
polarization and incidence angle corresponds to tty = tty, = 1.
ter case is currently used in the SMOS algorithm (Table 1).

The use of the polarization dependent tt, (P = H, V
was developed to account for the effects of vegetation
optical depth with respect to incidence angle and polariZ$
were found to be very signiﬁcant for crop types wit}

¥ First, in theory,
r multiple scattering
oh the delta Edding-
T-0 model are valid with
n elements is primarily
o that, in this case, the 1
ters that can be estimated
from the fractional scattering along orward direction. In addition,
the t-@ model inherently assumes small dielectric gradients between
the air and the vegetation layer, implying that both reflection and re-
fraction at the air-to-vegetation interface are neglected. While this

effects. However, Mo et al. (1982)
ton approximation, that the equaty
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Dependence of the b parameter on (a) incidence angle and polarization and (b)
of Year (well-developped wheat canopy, PORTOS-93 experiment; adapted from
igneron et al., 2004).

so-called ‘soft-layer’ assumption is valid for L-band observations of a
vegetation layer, with mostly very low vegetation volume fraction
(Wigneron et al., 1993), the ‘soft-layer’ assumption is not adequate in
the presence of a litter or a snow cover. To simulate upwelling TB,
(P =H, V) of a ground covered with such a dense and/or possibly
scattering layer, a higher-order solution of the RT equations should be
used. The so-called ‘two-stream’ (2S) RT model (Wiesmann &
Mitzler, 1999) originally developed as a part of the Microwave Emis-
sion Model for Layered Snowpack (MEMLS), poses an option and
the use of the 2S RT model in substitution of the 1-® model in
L-MEB is currently being tested. This substitution would allow using
a consistent RT model to simulate the emission from grounds covered
with vegetation, litter, or dry snow (Lemmetyinen et al., 2016), lead-
ing to a unification of the retrieval scheme applied to a variety of
land-cover types.

4.2. Effective scattering albedo

Note that, following Kurum (Kurum, 2013), the term ‘effective
scattering albedo’ for ®, is used rather than the term ‘single scatter-
ing albedo’ which can be often found in the literature. The difference
in meaning of the two is important as follows: the term ‘effective
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scattering albedo’ means the value of o, that best represents scatter-
ing effects in TBy (0) simulated with the t-o RT model in comparison
with either experimental brightness temperatures, or corresponding
numerical simulations. Accordingly, ‘effective scattering albedo’ ®,
can be computed, through calibration using experimental (Wigneron
et al., 2004) or numerical (Ferrazzoli et al., 2002) data, or based on
physical considerations (Kurum, 2013). Conversely, the ‘single scat-
tering albedo’ is defined as the ratio between the scattering coeffi-
cient and the extinction coefficient (including both scattering and ab-
sorption) and is used in multiple scattering RT models (Wigneron et
al., 1993). Values of ‘single scattering albedo’ (~ 0.20—0.50) are gen-
erally larger than values of ‘effective scattering albedo’ for most veg-
etation canopies (Ferrazzoli et al., 2002; Kurum et al., 2011).

Recently, Kurum (2013) removed the restrictions that were posed
by the original model of Mo et al. (1982) that assumes scattering by
the vegetation is primarily in the forward direction (Joseph et al.,
1976). He showed that the t-® model equations are correct in their
analytical form without making assumptions on the scattering pattern,
as done by Mo et al. (1982), provided w, is considered as the ‘effec-
tive scattering albedo’ as defined above. So, even if values of @, are
generally calibrated from best-fit approaches, they have a clear physi-
cal meaning. Note that over forests, this result was numerically
demonstrated by Ferrazzoli et al. (2002), who successfully calibrated
‘effective vegetation parameters’ (tp and ®p) of the -0 RT model us-
ing a discrete RT model applied to simulate TBy(0) of forested
scenes. The calibration of the effective scattering albedo is analyzed
in the two following sections from, respectively, tower-based and
space-borne observations

4.2.1. Tower-based calibration of w

Based on measurements performed with tower based L-band ra-
diometers, the values of the effective scattering albedo ®, at L-band
have generally been found to be low, except for corn (®p ~ 0.05-0.10;
Wigneron et al., 2004; Wigneron et al., 2007; Yan et al., 2015) and
for grass (mp ~ 0.10; Saleh et al., 2007) at V polarization. These val-
ues are in good agreement with the values of the ‘effective scatterin
albedo’ ®p computed by Kurum (2013) at L-band for a corn (Cf Fig¥
6) and a soybean canopy from discrete RT simulations. For instag
Kurum (2013) found that the values of o, for corn are slightly
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Fig. 6. Single-scattering (solid symbols) and effective single-scattering albedo (open
symbols) values (calculated at SM = 0.20 m3/m3) as a function of incidence angle for
both polarizations (P = H, V), for a well-developed corn canopy (Kurum, 2013).

dent on incidence angle and soil moisture and vary between
0.05 and 0.10 at H polarization and between 0.10 and 0.15 at V polar-
ization. He found lower values of @, for a soybean cagopy, being a
leaf-dominated vegetation (op < 0.02 at H polarizatio
at V polarization).

The dependence of wp on polarization P =H, V ha
glected in the literature (in the following the subgggs
ally be left out). However, when these effects
low vegetation covers, results generally go in

rithm, values of
(Table 3).

Wlibrated values is not easy, as few studies
ure at global scale, with very recent results

014; Kerr et al., 2012) and SMAP Level 2 & 3 retrieval algorithms (O'Neill et al.,
5) and retrieved in the recent studies of Konings et al. (2016) and for the SMAP
Level 4 product (following De Lannoy et al., 2014).

Land cover type ‘Effective scattering albedo’ (w)

SMOS SMAP L4
algorithm SMAP Konings etal.  algorithm
(current, L2&3 (2016) (from (from SMOS
default) algorithm Aquarius data) data)
Evergreen 0.06-0.08" 0.050 0.05 0.12
needleleaf forest
Evergreen 0.06-0.08" 0.050 0.05 0.08
broadleaf forest
Deciduous 0.06-0.08" 0.050 0.06 0.12
needleleaf forest
Deciduous 0.06-0.08* 0.050 0.03 0.10
broadleaf forest
Mixed forest 0.06-0.08" 0.050 0.05 0.12
Closed shrublands  0.00 0.050 0.03 0.14
Open shrublands 0.00 0.050 0.05 0.11
Woody savannas 0.00 0.050 0.04 0.13
Savannas 0.00 0.080 0.02 0.12
Grasslands 0.00 0.050 0.03 0.07
Croplands 0.00 0.050 0.04 0.12
Cropland/natural 0.00 0.065 0.02 0.15
veg. mosaic
Barren or sparsely  0.00 0.000 - -

vegetated

2 = 0.08 over boreal forests, ® = 0.06 over the other forest types.
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Fig. 7. Global map of effective scattering albedo at L-band retU (a) SMOS TB
2016) observations.

in the values of ®
4 over low vegeta-

information. The authors found a high v
per land use class: values are in the

e ancillary information
spatial resolutions of the
SMAP and Aquarius instrumen results are summarized in
Table 3.

Recently, van der Schalie et al. (2016) optimized the values of ®
globally in the LPRM algorithm based on SMOS observations and

did not see the benefit of spatially varying values: they found an opti-

0.12 0.14 0.16 0.18 0.2

I
1
data (SMAP L4_SM product; De Lannoy et al., 2014) and (b) Aquarius (Konings et al.,

mized global value ® = 0.12. Current studies are being made too to
update the values of ® in the SMOS algorithm (Fernandez-Moran et
al., 2016). In very good agreement with the results obtained by van
der Schalie et al. (2016), Fernandez-Moran et al. (2016) found a
rather low sensitivity of o to the IGBP vegetation classes, with a
global optimized values ® = 0.10. The values of ® obtained by these
studies from space-borne observations at L-band are in the higher end
of the range of values (~ 0.00-0.012) obtained from tower-based ex-
periments over both low vegetation and forest canopies. An explana-
tion of this could be that, in the RT modelling, the relatively high val-
ues of ® could be an “effective” way to account for the heterogeneity
of the soil and vegetation signatures within the large footprint of
space-borne observations.
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At higher frequencies, values of ®, varying between 0.05 and
0.10 were found by Pellarin et al. (2006) over a large variety of
canopy types (including crops, grasslands and forests) based on
SMMR (Scanning Multichannel Microwave Radiometer) observa-
tions at C- and X-bands. In addition, Du et al. (2016) have computed
values of ® (not polarization dependent) accounting for its seasonal
variations from the AMSR-E observations at X-band. They found a
quadratic relationship between @ and t, with average values of ®
varying between 0.04 and 0.06 at global scale (Fig. 8). Du et al.
(2016) considered that multiple scattering effects lead to increasing
vegetation emission, leading in turn to lower values of effective .
So, for very dense vegetation, due to overwhelming multiple scatter-
ing effects, @ tends to be saturated and becomes relatively stable at
~ 0.06. These results are consistent with the values of ® found by
Pellarin et al. (2006) (~ 0.06-0.08) and Roy et al. (2012) (~ 0.06)
over boreal forests.

4.3. SMOS and SMAP vegetation optical depth

As already mentioned in Section 2, it is considered in the SMAP
algorithm that Vegetation Water Content (VWC, kg'm™ ?) is a good
proxy to compute the vegetation optical depth. Optical depth at nadir
is computed as ty,p = T (0 = 0°) = b *VWC where the value of the
so-called ‘b-parameter’ is approximately b = 0.12 (= 0.03) kg~ ' m?
for a large variety of vegetation types (Jackson & Schmugge, 1991;
Van de Griend & Wigneron, 2004). However, some studies found that
the value of b may vary during the vegetation cycle. For instance,
Wigneron et al. (2004) found the value of b was lower during the
senescence period over crop fields (Cf Fig. 5) and Schwank et al.
(2005) demonstrated the dependence of b on the growing state of
clover grass.

In the SMOS algorithm, generally a 2 parameter (2-P) inversion
process of soil moisture (SM) and optical depth at nadir (ty,p) is car-
ried out. However, for some specific configurations of the inversion
process it is necessary to compute ty,p (for instance, at the edge of
the Field of View where only a narrow range of viewing incidenc
angles is available for the 2-P inversion process, Kerr et al., 201
Wigneron et al., 2000). In the SCA algorithm used for SMAP, th
tical depth Ty, is not retrieved, but it is estimated from ancill
formation. More specifically,
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Fig. 8. Averaged effective scattering albedo retrieved from AMSR-E observations at
X-band, as a function of the vegetation optical thickness considering five optical thick-
ness subgroup levels. Squares are the median of the range, the line corresponds to a fit
of the averaged albedo values, and error bars denote the standard deviation of the
albedo values within each corresponding optical thickness subgroup (Du et al., 2016).

(1) In the SMAP SCA algorithm, the vegetation water content VWC
is computed from NDVI (Jackson et al., 2004) while the ‘b-para-
meter’ is estimated using a look-up table based on thg IGBP Land
cover classification (O'Neill et al., 2015).

The following equation is used to compute VW /ng) (O'Neill
etal., 2015):
VWC = (1.9134-NDVI* - 0.3215-NDV
+ Stemfactor- (NDVI,; — amn

W here the current NDVI
ear MODIS NDVI climatol-
Wyently to provide NDVI val-
AP operational processor. An as-
MAP team as to whether to use
climatology in the final bulk re-

can be used for NDVI,.
ogy at 1 km spatial resolutig

ues for VWC estimation ig @
sessment will be made b g

real-year NDVI in lieu of the
processing of SMAP data

(ii) In the SMOS
considered acC8

inear relation between Ty, and LA is

(18)

e value b’ = 0.06 is used as a default parameter in
or all vegetation types). As mentioned above, this equation
arginally in the SMOS algorithm for some specific configu-
of the inversion process and should be needless in future ver-
s of the SMOS algorithm.

4.4. Low vegetation optical depth

4.4.1. LAI- and NDVI-based estimation of optical depth at nadir
(tnap)

In the SMOS, DCA and LPRM algorithms, vegetation optical
depth (1) is retrieved concurrently with SM. However, the t parame-
ter is required in the SCA algorithm (as used for SMAP L2&3). So,
parameterizing t as a function of vegetation indices (such as LAI and
NDVI) is a key step for this latter algorithm. Following the study by
Wigneron et al. (2007), the calibration of the b’ and b” parameters in
Eq. (18) has been mainly made from tower-based experiments. For
instance, Schlenz et al. (2012) found that b’ = 0.12 and b” = 0.08 for
winter oilseed rape.

At a larger scale, the values of b’ and b” used in L-MEB have
been analyzed from SMOS observations over crop zones in Central
USA by Lawrence et al. (2014) who estimated an average slope of
b’ = 0.06 and an average intercept of b” = 0.14. Grant et al. (2016)
have recently analyzed the relationship between the SMOS and
AMSR-E vegetation optical depth (respectively tgyios, derived from
L-MEB inversion and T,ysr_g, derived from the LPRM method) and
MODIS-based vegetation indices: LAI, NDVI, Enhanced Vegetation
Index (EVI), and Normalized Difference Water Index (NDWI).
Non-linear relationships were obtained in some cases, which is in
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agreement with (Gao et al., 2015; Jones et al., 2011; Liu et al., 2011):

(1) Tamsr.p, computed from C-band observations, reveals some satu-
ration effects earlier than tgy;og, computed from L-band observa-
tions, as the value of the vegetation index increases.

(i1) The vegetation indexes computed from optical observations satu-
rate at high levels of LAIL

At global scale, over the year 2010, Grant et al. (2016) found that
highest correlations between optical depth and vegetation indexes
(LAIL, NDVI, EVI, NDWI) for both SMOS and AMSR-E sensors
were obtained using the NDVI index (Fig. 9). However, the relation-
ship between tgyng and NDVI (R = 0.69) is nonlinear whereas that
between tg,os and LAI is linear and presents a similar correlation
coefficient (R = 0.68), for which reason Grant et al. (2016) consider
that LAI may be the preferred choice of vegetation index in the case
of SMOS.

4.4.2. Structural parameters tt, and tty

Several recent studies have shown that the vegetation structure ef-
fects may have an impact on the values of optical depth and found
that the dependence of 1, on incidence angle and polarization could

R? (Pearson) LAI-

120 W 60 W

90’ RP.

be well parameterized using different values for tty; and tty in Eq.
(16). Peischl et al. (2012) showed very distinct values of tt, (P = H,
V) in SM retrievals over wheat canopies (tty = 0.2, tt, = 1.4) in New
South Wales, Australia. Similarly, Yan et al. (2015) calg

River Basin in Northern China. Over a vineyard,
(2012) observed large differences between tt
(tty ~ 0.80 and tty ~ 0.11), whereas the tty a
similar and larger values in summer (tty, ~ 1.40

W summer is more
isotropic (tty and tty values are close to f.0). Pardet al. (2004) over
corn and Fernandez-Moran et al. (2015 ard showed that
temporal changes in the tt, paramgjg
3-parameter inversion approach
independently. All the aforepf@ _ dies were based on
and simultaneous in-situ ob-
. FI'ga space-borne instruments,
gdiometers include a variety of veg-
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Fig. 9. Pixel-based Pearson coefficient of determination (R?) for the relationship between LAI and 16-day average values of optical depth in 2010 retrieved from (a) SMOS (as-
cending orbits) and (b) AMSR-E (ascending orbits) observations. White areas indicate “no data”. (details of the computations are given in Grant et al., 2016).
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rithm (tty = tty = 1) and the SMAP retrieval algorithm assuming
isotropic vegetation with Ty = 1.

4.5. Forests: specific modelling aspects

Forests show several specific issues, making the modelling of TB
more challenging than for scarce vegetation. This topic was theoreti-
cally investigated by Ferrazzoli and Guerriero (1996), Karam (1997)
and Kurum et al. (2011, 2012). In forests, both single and multiple
scattering effects are appreciable, and cannot be neglected at any fre-
quency, including L band. Moreover, absorption and scattering ef-
fects are mostly due to branches, which are characterized by a wide
distribution of sizes and orientation, and by permittivity properties
which are different with respect to herbaceous vegetation. Con-
versely, polarization effects are low, so that we can assume:
Oy = Oy = 0; Tg =Ty = T.

In the SMOS algorithm, a compromise between model accuracy
and simplicity was adopted (Kerr et al., 2012; Rahmoune et al.,
2013). On the basis of parametric investigations, it was found that the
-0 RT model (Eq. (13)) can be extended to forests with acceptable
accuracy, provided o and t are defined as “effective” parameters, in
order to include multiple scattering effects (Ferrazzoli et al., 2002;
Kurum et al., 2012). In fact, the average single scattering albedo of
branches is on the order of 0.40-0.60 (Ferrazzoli et al., 2002; Kurum
et al., 2012), values which cannot be directly introduced into the t-®
model (Eq. (13)), since it would lead to unrealistically low TB, val-
ues, far from measured ones. Ferrazzoli et al. (2002) suggested to fit
the vegetation parameters ® and t used in the t-® model to the angu-
lar and polarization dependent TBp(0) simulated with a discrete ra-
diative transfer model. This parameter-calibration was adopted in the
SMOS algorithm (Rahmoune et al., 2013) to provide first guess val-
ues T of optical depth t and the ‘effective scattering albedo’
which is assumed to be constant throughout the retrieval. The first
guess values T were computed as the sum of a dominant static com-
ponent, due to branches, and a minor seasonal component, due to
leaves and understory. The static component was related to LAI i
full development (called LAIL,,,), and the seasonal component was
related to actual LAI. Also litter effects were included in 7 and rg IB .

to LAIL_,, (Rahmoune et al., 2013). For the ‘effective scg
albedo’ at L band, values in the range of 0.08 < ® < 0.10 were
ally found using model simulations and experimental dat

mode to retrieve the ‘effective scattering albedo’ 0§
and t (Rahmoune et al., 2013). The retrieved gty

ell correlated
(Light detec-

tinental scale, the retrieved t value was fi
with forest height data obtained by spa
tion and ranging) measurements (Rahmo
al., 2016). At regional scale, even b

lumbia.

Retrieved values of the ‘effe tering albedo’ turned out to
be slightly lower than values initially estimated in Ferrazzoli et al.
(2002). A value of @ = 0.06 provided best results, particularly in trop-
ical forests (Rahmoune et al., 2013). A parallel investigation based on
radiometric Aquarius signatures (Konings et al., 2016) indicated the
average ‘effective scattering albedo’ of dense forests to be @ = 0.05,

s

13 . v v ’ . 55
L ]
1 50
1.2} . ~d
® ’/’
45
1.4} ] ,f"“ d
® P E a0
N ]
1 e
- las &
k= -9 <
5 - :
a 0.9; /,’ ) 430 =
—_— -~ b=
o -~ (7}
O osr P 1 12 &
= ’ ]
o - E
o L d20 2
0.7 e ]
-
e 4 15
o6} .7~
BF . ®
il ® 10
05f .
5
04 - - : : : 0
0 50 100 150 200 250 300

Biomass [tons/ha]

Fig. 10. Scatterplot of SMOS retrieved forest biomass measured in forest pixels
of Peru and Columbia. Colaggeodes indicate the standard deviation of measured bio-
mass within SMOS pixe, ki) (Vittucci et al., 2016).

while the obtained btical depth 1, showed spatial patterns

global average @ = 0.10 was found over
in the SMAP L4 SM product (Entekhabi et

s will be made in the near future to understand and im-
retrievals over forests with a goal of making the re-

-bgd. It was also found that the leaf contribution increases with fre-
cy more than the trunk and branch contributions (Guglielmetti et
7, 2007; Santi et al., 2009). The emissivity of developed forests in-
creases with frequency (Guglielmetti et al., 2008; Macelloni et al.,
2001; Santi et al., 2009), and this property can be represented by a
decrease of the ‘effective scattering albedo’. A theoretical explana-
tion of this result was given by Della Vecchia et al. (2010). When fre-
quency increases, scattering effects increase too, but in forests they
tend to be in the forward direction. In consequence, this leads to a de-
crease of scattered radiance into the upper half space. The latter, in
turn, decreases the overall canopy reflectivity, and hence explains the
higher forest emission at higher observation frequencies.

4.6. Interception, litter

The vegetation optical depth modelling approach presented in the
previous sections need to be extended, in order to account for some
specific effects linked to water interception by the canopy and litter.
Litter is present in most vegetated ecosystems where the soil is not
worked mechanically. The effect of intercepted water, both by the
standing vegetation and litter, may have an impact on the upwelling
microwave radiation TBp.

Several experimental results found in the literature cannot be ex-
plained without considering interception and/or litter effects. For in-
stance, high values of the ‘b-parameter’ were computed over grass-
land covers (b ~ 0.4, Jackson & Schmugge, 1991; Saleh et al., 2006;
Schwank et al., 2005; Wigneron et al., 2004). De Rosnay et al. (2006)
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found increasing values of L-band brightness temperature TB;, over a
fallow field during rainfall events, while at the same time, decreasing
values of TB, were measured over an adjacent bare soil plot. Over
the same fallow site, Saleh et al. (2006) found that values of ty,p
may be increased by a factor of 2 to 3 during rainfall events. Con-
versely to the above results, Hornbuckle et al. (2006) found that wa-
ter at the plant surfaces of a maize canopy (due to irrigation, rainfall
or dew) has the net effect of decreasing TB, at 1.4 GHz. However,
these effects were found to be relatively moderate (TB, varying by a
few Kelvin).

These litter and interception effects were also evaluated in forests,
where the litter layer can be very thick for coniferous vegetation
types (Grant et al., 2007; Grant et al., 2009; Guglielmetti et al., 2008;
Schwank et al., 2008). From passive L-band observations performed
above a deciduous forest stand in Jiilich (Germany), Guglielmetti et
al. (2008) and Schwank et al. (2008) demonstrated that moist litter is
an important radiation source to be taken into account for quantitative
SM retrievals based on passive L-band data. In the coniferous forest
of Les Landes in Southwestern France, Grant et al. (2009) found that
the presence of the litter layer over a soil surface can lead to a signifi-
cant increase in the value of the surface emissivity (~ 60 K in TB) in
comparison to the emission of the underlying mineral layer, but did
not modify significantly the sensitivity of the TB, observations to
SM. These experimental results are in good agreement with results
obtained by Demontoux et al. (2008) from both coherent and incoher-
ent modelling (Fig. 11) and by Bircher et al. (2015) in the framework
of the SMOSHiLat study. Both Grant et al. (2008) and Saleh et al.
(2006) found that litter effects could be accounted for by considering
the Hy parameter (a dependence of the roughness parameter Hy as a
function of SM was used by Saleh et al. (2006)). In that case, the Hy
parameter becomes an effective parameter accounting for surface ef-
fects, in the broadest sense of the term, and depending on SM which
is closely related to the moisture content of litter (Grant et al., 2007).

As for interception effects by the standing vegetation canopy,
these are generally accounted for by the optical depth, which account
for the effects of the water content present within and at the surfac
of the vegetation elements (Saleh et al., 2006; Wigneron et al., 19968
As it is very complex to account for these effects in TB simulatigggs
Saleh et al. (2006) have proposed to use the polarizatio
(MPDI = (TBy — TBy) / (TBy + TBy)) to filter out periods o

(values of MPDI below that threshold value are filtereddp
ternative is to use ancillary land surface model informat™
filter out times and locations with high interceptiogeg
values. Currently, the flagging of the periods of hg
fects is implemented in the SMOS algorithm,
heavy precipitation is included in the SMAP algori

vegetation canopy corresponds to a threshold value of M 0.

5. Combining vegetation and roughness cts

Schmugge et al. (1992) and Jackson et
making some assumptions it is pos;
tical depth (ty,p) and the soil r

002) showed that by
e the vegetation op-

be developed consider-
=0, and that Qy = 0 and
ections applied in Egs. (5)
and (13) to the soil Fresnel reflectt cp (), due to both the veg-
etation and roughness effects can be combined and the brightness
temperature of the vegetation covered surface can be written as
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2 tyyp + Hp .
— eXp <_T@ . FGP (9) . TGC

19)

ie.

TBp (0) = <1 —exp <— 2Tx >-ng (6)) “Tge
cos (0) (20)

where the combined parameter Ty, is defined as ty,p + Hg / 2.

Note that Hg = 0 or Ny = Npy = — 1 leads to the same results in
terms of SM retrievals (mathematically, the equations for Hy = 0 or
Niy = Ngyg = — 1 have the same form, substituting Ty by ty,p in Eq.
(13)).

Recent studies have shown that combining vegetation and rough-
ness effects (using Qg = 0 and Ny = Ny = — 1) led to best results in
SM retrievals over the USA (Parrens et al., 2017) and over a vineyard
field (Fernandez-Moran et al., 2015). More studies of this approach
are needed. However, if these promising results can be confirmed
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there will be clear advantages by using this method. For instance,
with the 2-P inversion approach using multi-angular SMOS observa-
tions, it would no longer be necessary to calibrate the roughness para-
meter Hg, as it is included in the combined parameter Ty, retrieved
simultaneously with SM. The combined method was used by Wang et
al. (2015) and Parrens et al. (2016) to produce global maps of the
roughness parameter Hy at, respectively, C-band from AMSR-E ob-
servations and L-band from SMOS observations.

One disadvantage of the “combined” approach could be that the
retrieved parameter Ty, as it is more sensitive to roughness effects,
could be less interesting for monitoring vegetation as done in ecologi-
cal studies based on the AMSRE vegetation optical depth parameter
(Liu et al., 2013, 2015; Tian et al., 2016). However, first analyses in-
vestigating this question have not confirmed this hypothesis. For in-
stance, over a vineyard field, the retrieved values of optical depth
(tnap) are as sensitive to roughness effects as Ty and present a lower
temporal dynamic than Ty during the vegetation cycle
(Fernandez-Moran et al., 2015). Parrens et al. (2017) found slightly
improved correlation between T and MODIS NDVI than between
Tyap and MODIS NDVI over numerous sites in the USA. Our inter-
pretation is that roughness (Hy) and vegetation (ty,p) model parame-
ters cannot be easily distinguished from multi-angular observations
over a short period of time: they have a similar impact on the TB sig-
natures (exponential form as given in Egs. (5) and (14), Cf Parrens et
al., 2017). So, to monitor vegetation, these results may indicate that it
is preferable to have a good method to retrieve a combined “vegeta-
tion-roughness” parameter, than a less performant method consider-
ing separately vegetation and roughness effects.

Another approach was recently developed using measurements
made during the SMAPVEX12 experiment in Canada, over a variety
of crop fields at a constant incidence angle of ~ 40°. Martens et al.
(2015) proposed to model Hyp as a function of brightness tempera-
ture and LAI as:

HRP = (C]P + C2P TBP + C4P LAI)CSP

perimental data.

The results of this study confirmed those based on the Ty
ter, and showed (i) the need for a dynamic roughness pargas
opposed to the use of a constant roughness parameter ovg
(ii) the difficulty of decoupling roughness and vegeta]
Hy, also partially accounts for the latter.

D

6. Soil and vegetation radiometric modelling foff operatignal data

assimilation

The assimilation of passive microwave oifervatiogs into land sur-
face models has the potential to add value
termittent swaths of microwave space-bo:
s the observation
, soil temperature,
model with TB pre-
dictions. Differences between th jctions and corresponding
observations from either SMOS or

update SM and soil temper.

the entire land surface system to o enhanced and consistent land
surface state and flux estimates, with an increased spatial and tempo-
ral coverage compared to that provided by satellite data alone. In ad-
dition, data assimilation can increase the spatial resolution of the
coarse-scale satellite data through dynamic downscaling to finer reso-

lutions. The objective of cycling SMOS or SMAP data assimilation
in the numerical weather prediction context is to initialize the forecast
model soil moisture conditions to capture as best as posgible the soil
moisture dynamics at each grid point of the model.
Both SMOS and SMAP microwave data have be
operational land data assimilation systems. These larg
leverage off of early conceptual one- dlmensm 2

tions (Carrera et al., 2015; de Rosnay c&§
al., 2012, Mufioz-Sabater, 2015). i
crowave Emission Modelling Pl
ECMWEF as a low frequency pag

. At ECMWF, CMEM is coupled to
IFS) for the purpose of SMOS

study was conduaf§
dertaken in thi

t al. (2013) compared the performances of
city- and soil roughness models against the
perature observations. The study was con-

oth observed and forward TB. They found that the
the Wang and Schmugge dielectric mixing models per-
rly and give better results than the Dobson model. This is
51s ent with results obtained at smaller scales and presented in
3.4. The soil roughness model proposed by Wigneron et al.
) that accounts for the dependence of the C parameter with soil
mdisture, gives the best performances in terms of simulated TB tem-
oral dynamics. It is used together with the Wang and Schmugge di-
electric mixing model and the Wigneron et al. (2007) opacity model
in the ECMWF IFS.

Data assimilation methods rely on the assumption that observa-
tions and model first guesses are unbiased, so a bias correction is ap-
plied before the observations enter the data assimilation. Therefore,
the most useful metrics to assess the first-guess departure are the cor-
relation coefficients and unbiased root-mean-square-error (ubRMSE)
of time series at each grid point. Fig. 12 shows global maps of
ubRMSE between SMOS observations and ECMWF CMEM TB for
both polarizations in the SMOS antenna frame, at a 50° incidence an-
gle, for 2010, 2011, 2012 and 2013. A quality control was conducted
so that model grid points covered by snow, or with frozen soil, orog-
raphy, or water bodies covering > 4% of the grid box area are re-
jected. The SMOS observations flag is also used to reject observa-
tions affected by Radio Frequency Interference (RFI). The figure
shows annual ubRMSE values ranging from 4 K to 8 K in most areas,
indicating a good agreement between the SMOS observations and the
ECMWEF forward brightness temperatures. Some regions in the Mid-
dle East and South-East Asia show larger values of ubRMSE, mostly
associated to residual RFI sources. The figure also shows that the ex-
tent of RFI affected areas decreases from 2010 to 2013, indicating an
improvement in the SMOS data quality between 2010 and 2013
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which is very relevant for data assimilation activities (global multi-
angular statistics are provided in Mecklenburg et al. (2016)).

The SMAP mission includes an operational Level 4 Surface and
Root-Zone Soil Moisture product (L4 SM), which is produced by the
ensemble-based NASA Goddard Earth Observing System version 5
(GEOS-5) land data assimilation system (Reichle et al., 2015). The
L4 _SM product assimilates coarse-scale (~ 40 km) SMAP L1C TB
data and produces global SM data every 3 h, at 9 km resolution and
with a 2-3 day latency. The modelling part of the assimilation system
consists of a Catchment land surface model and the 1-© model. For
each grid cell on Earth, t-0 model parameters (Hgp, ®, by, by) were
carefully calibrated using a historical time series of multi-angular
SMOS TBy(0) observations, along with estimates of modelling and
observation uncertainty to limit over-fitting or parameter compensa-
tion for other modelling errors (De Lannoy et al., 2013; De Lannoy et
al., 2014). The operational SMAP L4 SM system, calibrated with
historical SMOS TBy(0) observations, currently yields SM estimates
with ubRMSE well below the imposed 0.04 m*/m® requirement,
when compared to in-situ measurements. The study of De Lannoy
and Reichle (2015) has confirmed that assimilation of longer time se-
ries of multi-angular SMOS TBp(0) in this system improves both the
surface and root-zone soil moisture in comparison with model simu-
lations only.

The above examples suggest that the assimilation of brightness
temperatures would be the preferred method to update soil moisture
estimates. The alternative would be to assimilate soil moisture re-
trievals, which is generally less complicated to implement. Yet, a key
disadvantage of a system that assimilates SM retrievals is that the SM
retrievals may be produced with inconsistent ancillary data, such as
for example soil temperature simulated by another model than that
used in the assimilation system. While in theory brightness tempera-
ture assimilation should outperform retrieval assimilation, there is no
convincing evidence for it yet for large scale applications (De Lannoy
and Reichle, 2016).

7. Summary and discussion

As presented above, significant progress has been made o
last decade in the modelling of passive microwave emission o

SMAP missions, and the fact that time series of TB o
L-band are now available from space.

The SMOS (end of 2009), Aquarius (mid 20
ginning of 2015) launches have allowed actual

based on synthetic data sets, based on TB sj
servations in an attempt to reproduce what
radiometers from space (Pellarin et al.,
Wu et al., 2015). The above sections have
most significant results obtained 1§ i
summarizes modelling results an
sible application to the SMOS an A
proaches.

ented a review of the
hile the following
a discussion on their pos-
il moisture retrieval ap-

It should be noted that the different studies reviewed here reveal
the difficulty of determining any general rules that could be easily ap-
plied to estimate vegetation and soil model parameter i
the vegetation types and soil features alone. Some
for this difficulty are given in the following:

1) Many significant results were obtained frorg
ments at field scale. Even though these st
terms of RT modelling and to improve ouX
physical processes, their applicatio

many cases. In general, the results
scale cannot well account for the
space-borne observations, in t
tion features (land use, local
ter, interception, etc.), topog™
(urban and open water are,

¢ of soil and vegeta-
itions, soil texture, lit-
specific events or conditions
Ngzen conditions).

and roughness parameters obtained
), airborne or space-borne sensors.

0.08-0.12 in several recent studies (De
n der Schalie, 2006, Fernandez-Moran
alues are in the higher end of the range
Peen estimated from tower-based experi-
ighey be related to the heterogeneity of the land

Lannoy et al., 20
etal, 2016). T

ments. Thi

use cond le of very large L-band footprints. Similarly,
it is not clear link between values of the Hy roughness
para t have been derived from field experiments (Wigneron
et al ence et al., 2011) or mapped from space-borne ob-

S ns (Parrens et al., 2016).

Moreovg®, and this is a topic that would require more attention in
alyses, there is often a disagreement between the values
of model parameters (i) calibrated based on TB modelling and (ii)
0 ized in SM retrievals. This point can be related to model in-
uracies/simplifications which can be partially compensated for
y the fact that model parameters are considered as effective. This
point can be explained too by the fact that different assumptions
are generally made in studies based on TB modelling or in SM re-
trievals. For instance, optical depth can be retrieved simultane-
ously to SM, from L-MEB inversion or LPRM, while its simula-
tion in TB forward modelling requires the use of approximate
equations (such as Egs. (17) or (18)).
In relation to the above comment, to compare results obtained
from different studies (and data sets), methods should be based on
similar approaches and hypotheses. In particular, it is not easy to
consider separately soil and vegetation effects (in particular soil
roughness and optical depth). So, hypotheses made in terms of soil
(vegetation) will impact results obtained in terms calibration of
vegetation (soil) parameters. For instance, the retrieved value of
the roughness parameter Hy may vary, depending on the assump-
tions made in the calibration of other soil (such as Qg and Ngp) or
vegetation parameters (such as @) (Lawrence et al., 2013). Simi-
larly, higher values of Hy (i.e. stronger roughness effects) may
produce lower values of vegetation optical depth

3

~

Fig. 12. ECMWF SMOS Brightness temperature monitoring maps at 50° incidence angle, expressed in ubRMSE between SMOS observations and ECMWF CMEM forward simu-
lations, for 2010 (top), 2011 (second panel), 2012 (third panel) and 2013 (bottom panel). The ECMWF CMEM forward computation of brightness temperature accounts for the veg-
etation effects using the t-@ model (Wigneron et al., 2007), the soil roughness model follows the Wigneron et al. (2001) parameterization and the Wang and Schmugge (1980) mix-

ing dielectric model is used.
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(Fernandez-Moran et al., 2015). The fact that many studies are
based on different underlying hypotheses (and calibrated soil/veg-
etation values) makes it difficult to get convergent results.

Finally, with some exceptions (De Lannoy et al., 2014), none of
these studies provide statistically meaningful estimates of the un-
certainty associated with the estimated parameter values, which
prohibits solid general conclusions. Nevertheless, some general
“trends”, which correspond to a convergence in the results of sev-
eral studies, can be noted. This convergence is all the more inter-
esting when it can be obtained from different scientific teams, dif-
ferent data sets and different methods. They are summarized and
discussed in the two following sections in terms of soil and vege-
tation.

4

~

7.1. Soil

At the field scale, the link between the roughness parameter Hy
(the key parameter in the HQN roughness model widely used in mi-
crowave remote sensing applications) and the classical geophysical
parameters characterizing surface roughness (the standard deviation
of heights, Sp, and the auto-correlation length, L) is now relatively
well known from formulations established at L-band from both em-
pirical and physically-based studies (Lawrence et al., 2013; Wigneron
et al., 2010). In addition, the Zg parameter (Zg = Sp” / L) was found
to be the most pertinent geophysical parameter to parameterize
roughness effects in two independent studies in the passive and active
domains (Lawrence et al., 2013; Zribi & Dechambre, 2003). The
modelling equation Hy(Sp) (Eq. (7)) developed at L-band was found
to be valid over a large frequency range (Montpetit et al., 2015), con-
firming the rather low sensitivity of Hy to frequency (Pellarin et al.,
2006; Wang et al., 1983). The values obtained from this formulation
are generally in good agreement with the values generally retrieved
over low vegetation canopy (Cano et al., 2010; Gao et al., 2013;
Saleh et al., 2006; Schlenz et al., 2012).

At the large scale, recent retrieval efforts have used historical time
series of SMOS observations to estimate global maps of Hy (D
Lannoy et al., 2013; Parrens et al., 2016). Such Hy estimates, alon
with other RT parameter estimates, are available, for example, asg
of the current SMAP L4 SM product (Entekhabi et al., 2014

forested areas (Hy ~ 0.3-0.45).
A new modelling approach was developed to

ology was employed to account for thawe
ganic rich soil conditions (Mironov & ; Mironov &
ter-comparison

ontpetit et al., 2015;

nal algorithms (Kerr et
2016). Note that this is the
mplemented to the L-MEB
soil modelling since the SMOS 1a ¥ Note also that, to date, very
few studies have demonstrated the need to account for the depen-
dence of Hy on polarization (through the Ny, parameters) in SM re-
trievals at the scale of space-borne observations. In addition, we

found there is no convergence in studies analyzing the dependence of
Hi on SM in SM retrievals from space-borne observations: this is
still a key topic of research.

Recent studies have investigated the best strategy,

(i) account

effects in SM retrieval studies. Presently, the SMO
trieval algorithms rely on look-up tables providing
Hy for the main land cover types. Recent studiff
consider temporally dynamic values of the ro

(LAI or ty,p), soil moisture and brightngg®
al., 2015; Van der Schalie et al., 2016).

2 ulig?’can be retrieved si-
ti-angular observations (this

Wyions before any clear con-
the current option which is inves-
tigated for the SMOS mul{™Qgffular observations and which led to
promising results is the use of Ny Ny = — 1 (Parrens et al., 2016,
2017; Fernandez-Mozaaeet al., 2015, 2016). For that specific configu-
ration, vegetation d Wil roughness (Hy) effects have a similar
impact on the TB jame exponential form of attenuation in
the RT equatiog).

e results of several studies considering vegeta-

tion S rized and presented for different items in the follow-

jve scattering albedo (o)

ting a first order solution of the radiative transfer equa-
m (2013) demonstrated that the t-o radiative transfer
is valid in its analytical form to account for multiple scattering

s obtained theoretically by Kurum (2013) are in good agreement
pith effective values of o retrieved over crop fields and grasslands
ievens et al., 2015; Saleh et al., 2007; Wigneron et al., 2004;
Wigneron et al., 2007; Yan et al., 2015) and forests (Grant et al.,
2008; Rahmoune et al., 2013). In addition, recent studies found a dif-
ferentiation between the values of  at H- and V-polarization, espe-
cially over low vegetation covers (Kurum, 2013; Lievens et al., 2015;
Saleh et al., 2007).

At large scales and similarly to what was done for the Hy parame-
ter, global maps of the w parameter (not polarization dependent) have
been computed at L-band based on SMOS data (De Lannoy et al.,
2013; Entekhabi et al.,, 2014) and Aquarius data (Konings et al.,
2016). At higher frequencies, results obtained by Pellarin et al.
(2006), Roy et al. (2012) and Du et al. (2016) from AMSR-E obser-
vations seem to indicate a rather low frequency dependence of ®.

The use of these maps in the future SMAP and SMOS Level 2 &
3 products is currently being investigated. Recent studies showed that
better characterizing the ‘effective scattering albedo’ is key in SM re-
trieval studies from space-borne observations (Davenport et al., 2005,
Van der Schalie et al., 2016, Fernandez-Moran et al., 2016). This can
be done by parameterizing time constant values of ® as a function of
the land cover type (De Lannoy et al., 2014; Fernandez-Moran et al.,
2016), or by considering temporally dynamic values of ® using sim-
ple relationships (Du et al., 2016) or using 3-Parameter inversion
(Konings et al., 2016). Considering that SMOS and SMAP observato-
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ries collect microwave data all over the globe, one could expect that a
large fraction of the data over land is acquired over vegetation covers
whose features can vary both in time and space. In particular, agricul-
tural crops change substantially from planting to harvest. Further
studies are therefore needed to establish consistent, physically based
global @ estimates over temporally changing vegetated areas (i.e.,
agricultural crops) for use in the retrievals. Recent studies have opti-
mized o for SM retrievals from SMOS data (van der Schalie et al.,
2016; Fernandez-Moran et al., 2016). They both found high values of
o in the 0.08-0.12 range and a low sensitivity of ® on land use classi-
fication in agreement with results of De Lannoy et al. (2014). These
convergent results which did not account for time changes in ®
should be confirmed in future analyses.

7.2.2. Optical depth

The main difference in the different SM retrieval schemes which
have been developed at L-band generally relies on the approach used
to account for vegetation effects through optical depth (t). In the SM
retrieval algorithms based on L-MEB, DCA or LPRM, optical depth
is retrieved simultaneously with SM, while in the SMAP SCA, opti-
cal depth is estimated from the vegetation index NDVI. The interest
of retrieving simultaneously SM and 7 is three-fold as noted in the
initial SMOS concept study (Wigneron et al., 2000):

(i) there is no need for ancillary data on the VWC and b parameters,
(ii) the retrieved parameter T may turn out to be a very useful prod-
uct by itself for monitoring the vegetation dynamics, and
(iii) there is a reduced risk to compensate for t errors in the SM re-
trievals.

So it is natural to investigate the link between Ty, and vegetation
indices (such as NDVI or LAI) from the SMOS observations for po-
tential application to the SMAP algorithms (for instance to improve
the relationships linking T and NDVI which is used in SCA) and also
to evaluate the potential interest of t in vegetation monitoring. This
interest was already noted in many studies based on observations at
higher frequencies from AMSR-E (Liu et al., 2013, 2015, Tian et a
2016, Konings and Gentine, 2016b).

Within the SMOS scientific team, the focus was initially
SM retrievals, and there is certainly a large margin of impro
with regard to the T product derived from SMOS. Note tha
studies which have investigated SMOS t found that it w:
noisy and Hornbuckle et al. (2016) proposed differe
techniques to extract a smooth temporal variation of t
7 retrievals. ESA is currently funding studies for the d
a robust vegetation optical depth product.

on incidence angle and polarization was confirme
over low vegetation based on tower-based y
(Fernandez-Moran et al., 2015; Peischl et
2005; Schwank et al., 2012; Yan et al.,
studies found a differentiation betwee
V-polarization, especially over low veget:
Lievens et al., 2015; Saleh et al.,

chwank et al.,

d to account for the depen-
ing albedo) on polarization

servations, with these effects generally found to be low over forests
(Grant et al., 2008; Rahmoune et al., 2013). However, specific studies
analyzing in detail this question from L-band satellite data are still re-
quired.

The link between optical depth at nadir (ty,p) and vegetation in-
dices (LAL, NDVI, and VWC) has been investigated over a variety of
low vegetation covers from tower-based and airborne observations at
L-band. Recently, some studies on this topic have begffl made based

seems there was a convergence of results towards va
to 0.06 for low vegetation. The main issue enco

servations are relatively noisy.

7.2.3. Interception & litter effects

Several experimental studies summ
water interception by the vegetation ca
may have a significant effect on TB44
natural and/or forest environment:
organic substrates (especially iy
dant. It is likely that the effect of

higher values of the Hy parggfct®
of Hi on SM, as found b @@ t al. (2007) over grassland and by

Grant et al. (2008) over for¢ om tower-based experiments. How-
ever, there is no consensus on guestion at local scale and more-
over this issue has ely been addressed by studies based on
space-borne obse ke think this is also a key topic of re-
search to impro als derived from passive microwave
satellite data.
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