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Abstract: This study aims to assess the potential of the LDAS-Monde platform, a land data 10 

assimilation system developed by Météo-France, to monitor the impact on vegetation state of the 11 
2018 summer heatwave over western Europe. The LDAS-Monde is forced by the ECMWF’s (i) 12 
ERA5 reanalysis, and (ii) the Integrated Forecasting System High Resolution operational analysis 13 
(IFS-HRES), used in conjunction with the assimilation of Copernicus Global Land Service (CGLS) 14 
satellite-derived products, namely the Surface Soil Moisture (SSM) and the Leaf Area Index (LAI). 15 
Analysis of long time series of satellite derived CGLS LAI (2000-2018) and SSM (2008-2018) 16 
highlights marked negative anomalies for July 2018 affecting large areas of northwestern Europe 17 
and reflects the impact of the heatwave. Such large anomalies spreading over a large part of the 18 
considered domain have never been observed in the LAI product over this 18-yr period. The 19 
LDAS-Monde land surface reanalyses were produced at spatial resolutions of 0.25°x0.25° (January 20 
2008 to October 2018) and 0.10°x0.10° (April 2016 to December 2018). Both configurations of the 21 
LDAS-Monde forced by either ERA5 or HRES capture well the vegetation state in general and for 22 
this specific event, with HRES configuration exhibiting better monitoring skills than ERA5 23 
configuration. The consistency of ERA5 and IFS HRES driven simulations over the common period 24 
(April 2016 to October 2018) allowed to disentangle and appreciate the origin of improvements 25 
observed between the ERA5 and HRES. Another experiment, down-scaling ERA5 to HRES spatial 26 
resolutions, was performed. Results suggest that land surface spatial resolution is key (e.g. 27 
associated to a better representation of the land cover, topography) and using HRES forcing still 28 
enhance the skill. While there are advantages in using HRES, there is added value in down-scaling 29 
ERA5, which can provide consistent, long term, high resolution land reanalysis. If the 30 
improvement from LDAS-Monde analysis on control variables (soil moisture from layers 2 to 8 of 31 
the model representing the first meter of soil and LAI) from the assimilation of SSM and LAI was 32 
expected, other model variables benefit from the assimilation through biophysical processes and 33 
feedbacks in the model. Finally, we also found added value of initializing 8-day land surface HRES 34 
driven forecasts from LDAS-Monde analysis when compared with model-only initial conditions. 35 
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1. Introduction 39 

Land surface conditions are critical in the global weather and climate system. Accurate 40 
characterization and simulation of hydrological and biophysical variables at the land surface 41 
represent a significant challenge given large spatial heterogeneity and human modifications of the 42 
land surface. In particular, observing and simulating the response and feedbacks of land surface 43 



Remote Sens. 2018, 10, x FOR PEER REVIEW  2 of 24 

 

conditions to extreme events is crucial in our ability to manage adaptation to climate change 44 
impacts. Land Surface Model (LSM)’s role has evolved over the years, from the primary goal of 45 
providing boundary conditions to atmospheric models to being used as monitoring and forecasting 46 
tools for estimating land surface conditions [1-4]. Modelling of terrestrial variables can be improved 47 
through the dynamical integration of observations [5-7] and there is a growing emphasis on 48 
constraining the LSM estimates with observational inputs as well as coupling them with other 49 
models of the Earth system [8-9, 10, 1]. Enhanced estimates of land surface conditions are also 50 
recognized to lead towards improved forecasts of weather patterns, sub-seasonal temperatures and 51 
precipitations, agricultural productivity, seasonal streamflow, floods and droughts as well as carbon 52 
cycle [11-16]. Remote sensing observations are particularly useful in this context as they are now 53 
unrestrictedly available at a global scale with high spatial resolution and with long-term records. 54 
Many satellite-derived products relevant to the hydrological (e.g. soil moisture, snow depth/cover, 55 
terrestrial water storage), vegetation (e.g. leaf area index, biomass) and energy (e.g. land surface 56 
temperature, albedo) cycles are readily available [17]. Data assimilation techniques allow to spatially 57 
and temporally integrate the observed information into LSMs in a consistent way [5, 18]. We refer to 58 
Land Data Assimilation Systems (LDASs) as the framework where LSMs are driven by and/or ingest 59 
such observations generating enhanced estimates of the land surface variables (LSVs) [10]. Several 60 
LDASs now exist from point to regional scale, amongst them are the Global Land Data Assimilation 61 
System (GLDAS, [19]), the Carbon Cycle Data Assimilation System (CCDAS, [20]), the Coupled 62 
Land Vegetation LDAS (CLVLDAS, [21-22] and more recently the U.S. National Climate Assessment 63 
LDAS (NCA-LDAS, [10]) as well as LDAS-Monde [7, 18] to name a few. These LDASs either 64 
optimize process parameters (e.g. CCDAS), state variables (e.g. GLDAS, NCA-LDAS, LDAS-Monde) 65 
or both (e.g., CLVLDAS). Assimilated Earth Observations (EOs) generally include satellite retrieval 66 
of surface soil moisture [5, 8, 23-25], snow depth [26-29] and snow cover [30-31, 9, 27], vegetation 67 
[32-35, 7, 18], as well as terrestrial water storage [36-38]. Few studies have included multiple remote 68 
sensing measurements. For instance, [10] assimilates various remote sensing measurements of the 69 
terrestrial water cycle within the NCA-LDAS over the USA while LDAS-Monde [7, 18] considers the 70 
joint assimilation of vegetation (Leaf Area Index, LAI) and surface soil moisture (SSM) 71 
measurements. LDAS-Monde is a sequential land data assimilation system with global capacity. It 72 
has been evaluated over various domains at various spatial resolutions including France at 8 km 73 
scale [33, 39] forced by the SAFRAN reanalysis of Météo-France (Système d’Analyse Fournissant des 74 
Renseignements Atmosphériques à la Neige, [40-41], Europe at 0.5°x0.5° [18, 35] forced by 75 
ERA-Interim atmospheric reanalysis from the European Center For Medium Range Weather 76 
Forecast (ECMWF) [42], North America [7] and Burkina-Faso in western Africa at 0.25°x0.25° [43] 77 
forced by ERA5 atmospheric reanalysis [44]. In those studies, analysis impact was successfully 78 
evaluated using several datasets such as (i) in situ measurements of soil moisture (ii) agricultural 79 
statistics, (iii) river discharge, (iv) independent flux estimates related to vegetation dynamics 80 
(evapotranspiration, Sun-Induced Fluorescence (SIF) and Gross Primary Productivity (GPP)). 81 
Albergel et al., [7], highlighted LDAS-Monde capacity to better characterize agricultural droughts 82 
(spatial area and intensity) than an open-loop counterpart (i.e. model without any assimilation of 83 
satellite derived measurements) over the continental United States of America. They found that 84 
LDAS-Monde can provide improved initial conditions to initialize forecast and that its impacts 85 
persist through time, also. In the above mentioned study, LDAS-Monde satellite-derived surface soil 86 
moisture dataset (ESA CCI SSM, [45-48]) along with satellite derived LAI (GEOV1, 87 
http://land.copernicus.eu/global/ last access, June 2018), were jointly assimilated leading to a quarter 88 
degree spatial resolution reanalysis of the LSVs over 2010-2016. 89 

Stemming from previous work [7], the present study investigates the capability of 90 
LDAS-Monde to represent the impact of the summer 2018 heatwave in Europe on vegetation. Spring 91 
and summer 2018 in Europe were marked by unusually hot weather that has led to record-breaking 92 
temperatures in many countries across northern and central Europe. According to ECMWF, 93 
near-surface air temperature anomaly in Europe in the period of April to August, calculated with 94 
respect to the 1981–2010 average for those months, was much larger in 2018 than in any previous 95 
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year since 1979 [49]. According to the National Oceanic and Atmospheric Administration -NOAA- 96 
Europe had its second warmest July on record. It follows its second warmest June on record (behind 97 
2003), its warmest May since continental records began in 1910, surpassing the previous record set in 98 
2003: the whole summer 2018 was Europe's warmest since continental records began in 1910 at 99 
+2.16°C (Global Climate Report, https://www.ncdc.noaa.gov/sotc/global/, last access October 2018). 100 
Northern Hemisphere summer precipitation was generally weaker than normal across central 101 
Europe. 102 

Such an event is likely to affect land surface conditions. In this study, satellite derived estimates 103 
of LAI and SSM as well as LDAS-Monde are used to monitor the impact of the heatwave on 104 
vegetation, focusing on July 2018. Firstly, we assess the heatwave impact on satellite derived LAI and 105 
SSM, using time-series over 2000 to 2018 and 2008 to 2018, respectively. Secondly, we evaluate the 106 
heatwave impact on the simulated LAI from LDAS-Monde forced by ECMWF ERA-5 reanalysis 107 
from January 2008 to October 2018 at 0.25°x0.25° and by ECMWF Integrated Forecasting System (IFS) 108 
high resolution operational analysis (HRES) from April 2016 to December 2018 at 0.10°x0.10°. The 109 
use of both ERA5 and HRES to force LDAS-Monde enable to assess the impact of resolution versus 110 
system quality over a common one year period (2017) were ERA5 was downscaled to HRES spatial 111 
resolution. Another added value of using HRES consists in its forecast capacity, up to 10 days ahead. 112 
Forecast of LAI initialized by LDAS-Monde analysis with a leading time up to 8-days is then 113 
investigated in order to assess whether or not the heatwave impact on land surface conditions could 114 
have been anticipated. The remainder of this paper is organized as follows: section 2 describes the 115 
LDAS-Monde system, the satellite derived estimates of LAI and SSM and the ECMWF analysis and 116 
reanalysis forcing, results are analyzed and discussed in sections 3 and 4. 117 

2. Material and Methods 118 

This study assesses the ability of LDAS-Monde sequential assimilation of satellite derived 119 
surface SSM and LAI to represent the impact of the summer 2018 heatwave in Europe on vegetation. 120 
The following sections describe LDAS-Monde system as well as 2 other key elements of its setup: 121 
atmospheric forcing (LDAS-Monde being an offline system) and satellite derived observations. 122 

2.1. LDAS-Monde 123 

Within the SURFEX modelling platform of Météo-France (Surface Externalisée, [50], Version 124 
8.1), the LDAS [32-33, 34, 39, 51] developed in the research department of Météo-France, the CNRM 125 
(Centre National de Recherches Météorologiques) permits integrating satellite products into the 126 
ISBA LSM [52-55] using a data assimilation scheme. The LDAS was extended to a global scale 127 
(LDAS-Monde, [18]). At the same time, the coupling to hydrological models (ISBA-CTRIP for 128 
ISBA-CNRM-, Total Runoff Integrating Pathways) was consolidated. A full description of the 129 
ISBA-CTRIP system is presented in [56]. The obtained land surface reanalyses from LDAS-Monde 130 
account for the synergies of the various upstream products (e.g., model and satellite derived 131 
observations) and are able to provide an improved representation of the LSVs, as well as statistics 132 
which can be used to monitor the quality of the assimilated observations (e.g. [7], [18], [35]). 133 
LDAS-Monde can also be used to calibrate model parameters (e.g., [57] for the soil maximum 134 
available water content within ISBA). 135 

LDAS-Monde uses the CO2-responsive [53-55], multi-layer soil [56-59], version of ISBA. The 136 

later allows to solve the energy and water budgets at the surface level and describes the exchanges 137 
between the land surface and the atmosphere. Parameters of the ISBA LSM are defined for 12 138 
generic land surface patches: nine plant functional types (namely: needle leaf trees, evergreen 139 
broadleaf trees, deciduous broadleaf trees, C3 crops, C4 crops, C4 irrigated crops, herbaceous, 140 
tropical herbaceous, and wetlands) as well as bare soil, rocks, and permanent snow and ice surfaces. 141 
They are derived from ECOCLIMAP-II, the land cover map used in SURFEX [60]. Atmospheric and 142 
climate conditions drive the dynamic evolution of the vegetation biomass and LAI through 143 
vegetation growth and mortality processes implemented in the form of a nitrogen dilution process 144 
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-NIT option- [53, 55, 61]. Photosynthesis enables vegetation growth resulting from the CO2 net 145 

assimilation. During the growing phase, enhanced photosynthesis corresponds to a CO2 net 146 

assimilation, which results in vegetation growth from the LAI minimum threshold (1 m2 m−2 for 147 

coniferous forest or 0.3 m2 m−2 for other vegetation types). Vegetation phenology relies on 148 
photosynthesis-driven plant growth and mortality, and photosynthesis is related to the mesophyll 149 
conductance. More information on the CO2-responsive version of ISBA can be found in [62-63], also. 150 

The multilayer diffusion scheme described in [58-59] drives transfers of water and heat through the 151 
soil. Finally, the Simplified Extended Kalman Filter Data Assimilation (DA) technique (SEKF, [18, 152 
32-33, 34, 39, 51] is the main technique available within LDAS-Monde. While ensemble based DA 153 
techniques are currently being tested and implemented [39, 64], to date the LDAS-Monde SEKF is 154 
the more robust. It uses finite differences to compute the flow dependency between the assimilated 155 
observations (SSM and LAI) and the analyzed variables (soil moisture from soil layer 2 (1cm to 4cm) 156 
to layer 8 (80cm to 100cm), representing the first meter of soil and LAI, see Table I). Further details of 157 
the analysis methodology can be found in [34, 18]. While control variables are directly updated 158 
thanks to their sensitivity to the observed variables, expressed by the SEKF Jacobians [18, 65], other 159 
variables are indirectly modified by the analysis through biophysical processes and feedbacks in the 160 
model by updates of the control variables.161 
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Table I: Set up of the experiments used in this study. 162 

Experiments 

(time period) 
Model 

Domain  
& spatial resolution 

 

Atm. forcing 
DA 

method 
Assimilated 

observations 
Observations 

operators 
Control variables 

LDAS-ERA5 
(2008-10/2018) 

ISBA 
Multi-layer soil 

model 
CO2-responsive 

version 
(Interactive 

vegetation) 
 

Western Europe 

defined as 

longitudes from 

10.5°W to 20.5°E, 

latitudes from 42°N 

to 59°N 
 

 

 

 

 

 

 

North Western 

Europe defined as 

gongitudes from 

5°W to15°E, 

latitudes from 48°N 

to 55°N 

ERA5 
 

SEKF 

SSM  
(ASCAT) 

 

LAI 
(GEOV2) 

 

Rescaled 

WG2 (Second 

layer of soil 

(1-4cm)) 
 

LAI 
 

Layers of soil 2 to 8 (WG2 to WG8, 1-100cm) 
 

LAI 
 

LDAS_HRES 
(04/2016-2018 

2018) IFS_HRES 

ERA5_010 
(2017) 

ERA5 

downscaled 

to 

0.10°x0.10° 
12-month model run 

 

LDAS_fc_d2 
(2018) 

IFS_HRES 

day 2 

forecast 12-month model run, every day a 2-day forecast initialized by an analysis is ran 

LDAS_fc_d8 
( 2018) 

IFS_HRES 

day 8 

forecast 12-month model run, every day an 8-day forecast initialized by an analysis is ran 

 163 
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2.2. Satellite derived observations 164 

Two satellite products from the Copernicus Global Land Service project are used in this study, 165 
the Surface Soil Moisture (SSM) and the Leaf Area Index (LAI) derived from SPOT-VGT (prior to 166 
2014) and PROBA-V (from 2014 onward). The SSM is derived from the Advanced Scatterometer 167 
(ASCAT), an active C-band microwave sensor on board the European MetOp polar-orbiting satellite 168 
(METOP-A&B). Information on soil moisture comes from ASCAT radar backscatter coefficients 169 
using a methodology developed at the Vienna University of Technology (TU-Wien) based on a 170 
change detection approach originally developed for the active microwave instrument flown 171 
on-board the European satellites ERS-1 and ERS-2 [66-67]. The recursive form on an exponential 172 
filter [68] is applied to the soil moisture product to estimate the Soil Wetness Index (SWI) using a 173 
timescale parameter, T, varying between 1 day and 100 days. The result for the top soil moisture 174 
content (<5 cm) is expressed as a degree of saturation and ranges between 0 (dry) and 100 175 
(saturated). In this study, SWI-001 (i.e. T=1 day) is used as a proxy for SSM [69]. It is a global product 176 
at 0.1°x0.1° spatial resolution available daily from 2007. As in [7], pixels whose average altitude 177 
exceeds 1500 m above sea level as well as pixels with urban land cover fractions larger than 15% 178 
were discarded as those conditions may affect the retrieval of soil moisture from space. SSM product 179 
has to be transformed into the model-equivalent surface soil moisture for data assimilation purposes 180 
and in order to address possible misspecification of physiographic model parameters (like the field 181 
capacity and the wilting point). Following [18] and [33] a linear re-scaling approach applied at a 182 
seasonal scale over the whole considered periods was used. It makes use of the first two moments of 183 
the cumulative distribution function (CDF) and consists of a linear re-scaling enabling a correction of 184 
the differences in the mean and variance of the distribution. 185 

LAI, defined as one-sided area of green elements of the canopy per unit horizontal ground area 186 
is observable from space and practically quantifies the thickness of the vegetation cover. Several LAI 187 
collections/versions are available from the CGLS project from 1999. They are retrieved from the 188 
SPOT-VGT (from 1999 to 2014) and then from PROBA-V (from 2014 to present) satellite data 189 
according to the methodology proposed by [70]. This study makes use of the GEOV2, 1km spatial 190 
resolution and 10-day steps in near real time product. Its development has followed several steps 191 
including (1) applications of a neural network for providing instantaneous estimates from 192 
SPOT-VGT reflectances, (2) a multi-step filtering approach to eliminate contaminated data (e.g., 193 
affected by atmospheric effects and snow cover), and (3) temporal techniques for ensuring 194 
consistency and continuity as well as short term projection of the product dynamics [71] (LAI 195 
Product User Manual, 196 
https://land.copernicus.eu/global/sites/cgls.vito.be/files/products/GIOGL1_PUM_LAI300m-V1_I1.60197 
.pdf , last access January 2019).  198 

2.3. ECMWF atmospheric forcing 199 

LDAS-Monde is driven by near-surface meteorological fields from both ECMWFs’ reanalysis, 200 
ERA5, released in 2018, as well as its high resolution operational high resolution weather analysis 201 
and forecasts (HRES). ERA5 underlying model and data assimilation system are very similar to that 202 
of the operational weather forecast. ERA5 production cycle (IFS Cycle 41r2) is still close to that of the 203 
HRES (IFS Cycle 41r2 to 43r3 from 2016 and 45r1 from June 2018, more information at 204 
https://www.ecmwf.int/en/forecasts/documentation-and-support/changes-ecmwf-model, last access January 205 
2019). The main difference between the two is the horizontal resolution with 31 km in ERA5 and 9 206 
km in HRES. Another difference is the data assimilation time window which is from 21:00 UTC to 207 
09:00 UTC in ERA5 and from 21:00 UTC to 03:00 UTC in HRES, as it allows more observations to be 208 
assimilated in ERA5. The shorter time window in HRES is due to ECMWF operational constraints to 209 
deliver timely forecasts. 210 

The ERA5 forcing data includes the lowest model level (about 10-meters height) air 211 
temperature, wind speed, specific humidity and pressure and the downwelling fluxes of shortwave 212 
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and longwave radiation and precipitation partitioned in solid and liquid phases. ERA5 is processed 213 
from the forecasts initialized daily at 00:00 UTC and 12:00 UTC using the hourly forecasts from +1 to 214 
+12h. HRES forcing data is processed from the forecasts initialized at 00:00 UTC and 12:00 UTC also 215 
using the forecasts from +1h to 12h. The same downwelling fluxes as in ERA5 are used but for HRES 216 
we processed 2-meters temperature and dewpoint temperature and 10-meters wind-speed. Specific 217 
humidity was then calculated from 2-meters temperature and dewpoint temperature. HRES also has 218 
the lowest model level data archived, but due to data storage and access constraints it was more 219 
efficient to process the 2-meters temperatures and 10-meters wind speed. Despite the difference in 220 
the processing of the near-surface fields, lowest model level and 2-meters temperature and 221 
10-meters winds are very similar, and this is not expected to impact substantially the results. In 222 
ERA5 and HRES, the +1h to +12h hourly forecasts were concatenated to generate continuous time 223 
series and the data processed in the original resolution was bilinearly interpolated to a regular grid 224 
of 0.25°x0.25° and 0.1°x0.1°. From the forecast initialized at 00:00 UTC, HRES is also available up to 225 
10-d ahead. HRES forecast step frequency is hourly up to time step 90, 3-hourly from time-step 93 to 226 
144 and 6-hourly from time-step 150 to 240 (i.e. 10 days). While the original 3-hourly time steps are 227 
used up to day 6 (time step 144), the 6-hourly time steps from day 6 to 10 are interpolated to 3-hourly 228 
frequency.  229 

2.4. Experimental setup 230 

Table I presents the different experiments evaluated in this study. LDAS-Monde is first forced 231 
by ERA5 from 2008 to October 2018 (LDAS-ERA5) and HRES (LDAS-HRES) from April 2016 to 232 
December 2018 over a western Europe domain (defined as longitudes from 10.5°W to 20.5°E, 233 
latitudes from 42°N to 59°N). IFS is obtained from frequently updated versions of operational 234 
system at ECMWF (including changes in spatial and vertical resolutions, data assimilation, 235 
parameterizations, and sources of data), while reanalysis like ERA5 guarantees a higher level of 236 
consistency (e.g., same model) over long time period because of its frozen configuration. From April 237 
2016 onward, IFS has a spatial resolution of about 0.1°x0.1° (HRES). Despite the spatial resolution, 238 
ERA5 being a recently released dataset, its production cycle (IFS Cycle 41r2) is still close to that of the 239 
HRES (IFS Cycle 41r2 to 43r3 from 2016 and 45r1 from June 2018). At the ERA5 spatial resolution, 240 
large scale, long time experiments are computationally affordable, and HRES can be used to focus on 241 
specific domains or events.  242 

Vegetation outputs from this set of 4 experiments (assimilation of SSM and LAI as well as their 243 
model counterpart, i.e. open-loops without assimilation) are then evaluated. Vegetation from 244 
another experiment (model only, without assimilation) is evaluated: ISBA forced by ERA5 245 
down-scaled to HRES spatial resolution (from 0.25°x0.25° to 0.10°x0.10°) for 1 year (2017). 246 
Additionally to the LDAS-HRES analysis experiment, daily forecast experiments with 8-day lead 247 
time (from LDAS-HRES analyzed initial conditions) were also performed over 2018. Forecast 248 
experiments with 2 days and 8 days lead time (LDAS_fc_2d and LDAS_fc_8d, respectively) are 249 
evaluated.  250 

3. Results  251 

3.1. Monitoring the heatwave impact on LAI and SSM using remote sensing 252 

Time-series on figure 1 illustrate monthly anomalies (difference to the mean scaled by the 253 
standard deviation) for CGLS products GEOV2 LAI (fig.1a) and ASCAT SSM (fig.1b) over the 254 
periods 2000 to 2018 and 2008 to 2018, respectively, averaged over the domain (presented by figure 255 
2). On both time-series, July is highlighted in red and the dashed lines represent the value of July 256 
2018. As for LAI (fig.1a), July 2018 exhibits a large negative anomaly, greater than twice standard 257 
deviations (stdv) on average. Such a low value is not observed in this 19-yr time-series for a month of 258 
July and only one month, in summer 2003: August 2003 presents an anomaly value below than that 259 
of July 2018. In 2003, large parts of Europe were affected by record-breaking temperature in summer 260 
(e.g., [72]). June to October 2018 presented negative LAI anomalies, also. Table II presents the 261 
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fraction of the considered domain affected by negative anomalies greater than 2 stdv for all months 262 
of July over 2000-2018 for GEOV2 LAI and 2008-2018 for ASCAT SSM. In July 2018, it represents 263 
nearly 19% of the domain for LAI, the largest percentage observed in 19-yr. Not only the 2018 264 
summer heatwave lead to very large negative anomaly values in LAI but it has affected a large part 265 
of the domain. Figure 2a shows maps of anomaly for July 2018 for GEOV2 LAI.  266 

From fig.2a, it is visible that most of the UK, Northern part of France, Belgium, Netherlands, 267 
Denmark, Germany and Czech-republic present anomaly values greater than -2 stdv. ASCAT SSM 268 
exhibits large negative anomalies for July 2018 (fig.2b), greater than -1, also. Such low values were 269 
also observed in July 2008 and 2015, and it is worth noticing from Table II that in July 2018, 10% of 270 
the domain was affected by anomalies greater than -2 stdv, while only 2.2% and ~3% for July 2008 271 
and 2015. From fig.2b (maps on anomaly for July 2018 for ASCAT SSM), it is visible that the southern 272 
part of the domain present large positive anomaly values (e.g., north of Spain, in the Balkans) as well 273 
as the good geographical agreement between GEOV2 LAI and ASCAT SSM anomalies. While some 274 
winter months show large negative anomaly in ASCAT SSM, e.g. December 2010, 2011, this might be 275 
related to frozen conditions not accounted for and interpreted as dry conditions. 276 

 277 

Figure 1. Monthly Anomaly time-series (scaled by the standard deviation) of satellite derived (a) 278 
GEOV2 Leaf Area Index over 2000-2018 and (b) Surface Soil Moisture over 2008-2018 from the 279 
Copernicus Global Land Service averaged over the domain (presented by figure 2). Months of July 280 
are highlighted in red, dashed lines represent values for July 2018. 281 
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 282 

Figure 2. Monthly anomalies (scaled by standard deviation, expressed in units of standard deviation) 283 
maps for July 2018 for (a) GEOV2 Leaf Area Index with respect to 2000-2018 and (b) Surface Soil 284 
Moisture with respect to 2008-2018 from the Copernicus Global Land Service.285 
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Table II: Percentage of the domain with monthly anomalies lower than -2 stdv for satellite derived GEOV2 Leaf Area Index, ASCAT surface 287 

soil moisture. Only months of July are represented. 288 

 
July 

2000 

July 

2001 

July 

2002 

July 

2003 

July 

2004 

July 

2005 

July 

2006 

July 

2007 

July 

2008 

July 

2009 

July 

2010 

July 

2011 

July 

2012 

July 

2013 

July 

2014 

July 

2015 

July 

2016 

July 

2017 

July 

2018 

GEOV2 

Leaf 

Area 

Index 

5  0.4  0.25 5  0.6  0.8  1.84 1.14 0.22 0.03 0.67 0.70 0.28 0.7  0.25 2 0.10 0.6  18.8 

ASCAT 

SWI 
N/A N/A N/A N/A N/A N/A N/A N/A N/A 2.2 0.04 1.75 0.17 1.5 0.5 0.06 3.02 0.01 10. 

 289 
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3.2. Monitoring the heatwave impact on vegetation using LDAS-Monde 290 

LDAS-Monde being an offline reanalysis of the land surface variables, it is forced by 291 
atmospheric datasets: ERA5 and HRES in this study. Using both datasets to force LDAS-Monde 292 
produces a long reanalysis of the LSVs (from the use of ERA5) with real-time and even forecast 293 
capacity (from the use of HRES). As ERA5 is available with a large temporal extent (from 2000 at the 294 
time of study) it offers the possibility to analyze climatic signals. Anomaly time-series of air 295 
temperature and precipitation from ERA5 are presented in figure 3. While it is not our intention to 296 
repeat the study from [49] on predicting the summer 2018 heatwave it is however interesting to 297 
highlight that the April to August period in 2018 exhibits rather large positive anomaly values of air 298 
temperature (fig.3a) with July 2018 being the highest value observed between January 2001 and 299 
October 2018. For precipitation, all months from May to October 2018 present large negative 300 
anomalies with July 2018 being the third lowest within the considered period. One may also note the 301 
coherence between air temperature and precipitation from ERA5 and the satellite derived 302 
observation presented above for this 2018 heatwave event, particularly for LAI. As seen from figures 303 
3 and 1a, large positive anomalies of air temperature are associated with large negative anomalies of 304 
precipitation as well as large negative anomalies of LAI. In the beginning of 2007 temperature and 305 
precipitation show positive anomalies which reflect on LAI presenting large positive anomalies. 306 
While in the beginning of 2013, both air temperature and LAI show negative anomalies. 307 

When LDAS-Monde is driven by ERA5 and integrates LAI and SSM through data assimilation, 308 
those anomalies should be reflected on analyzed land surface conditions and their impact 309 
propagated to other land surface variables through biophysical processes and feedbacks in the 310 
model. Figure 4a illustrates observed CGLS GEOV2 Leaf Area Index (LAI), over 2008-2018 as well as 311 
LDAS-Monde LAI time-series forced by either ERA5 (LDAS-ERA5 hereafter) over January 312 
2008-October 2018 or HRES (LDAS-HRES hereafter) over April 2016-December 2018. Figure 4b 313 
shows the same as fig.4a for the common April 2014 to October 2018 period. From figure 4 one may 314 
notice the good agreement between the analyzed LAI and the observed annual cycle. While neither 315 
the open-loop nor the analysis capture the maximum LAI peak well (as already observed by [18]), 316 
the analysis efficiently corrects for the open-loop delay during the senescence phase. Considering 317 
the period where both ERA5 and HRES are available to force LDAS-Monde (April-2016 to October 318 
2018), one may notice the relative good agreement between LDAS-ERA5 and LDAS-HRES, both in 319 
the open-loops and analyses. The senescence phase being remarkably picked-up by LDAS-HRES 320 
analysis (which failed capturing the LAI peak intensity though). 321 

Upper panel of figure 5 illustrates seasonal RMSD (fig5.a) and correlation (fig5.b) values 322 
between LAI from the model forced by either ERA5 (LDAS-ERA5 Open-loop) or HRES 323 
(LDAS-HRES Open-loop), the analysis forced by either ERA5 (LDAS-ERA5 Analysis) or HRES 324 
(LDAS-HRES Open-loop) and GEOV2 LAI estimates from CGLS from April 2016 to October 2018. 325 
Figure 5 lower panel shows the same between modelled/analyzed soil moisture from the second 326 
layer of soil (1-4cm) and ASCAT surface soil moisture estimates from CGLS, also (and converted into 327 
the model space, in m3m-3, as detailed in section 2.1). From figure 5 (all panels), one may see that 328 
LDAS-ERA5 and LDAS-HRES open-loops are quite comparable, LDAS-HRES open-loop being 329 
slightly better than LDAS-ERA5 open-loop in representing both LAI and soil moisture. It is also 330 
visible that the analyses add skill to both open-loops for both variables, which indicates the healthy 331 
behavior from the land data assimilation system. Over the whole common period (from April 2016 332 
to October 2018), averaged R and RMSD values for LDAS-ERA5 open-loop (analysis) are 333 
0.575(0.798) and 1.215 m2m-2 (0.796 m2m-2) for LAI, 0.748(0.772) and 0.038 m3m-3 (0.035 m3m-3) for soil 334 
moisture, respectively. For LDAS-HRES, they are 0.601(0.808) and 1.150 m2m-2 (0.772 m2m-2) for LAI 335 
and 0.750(0.772), 0.038 m3m-3 (0.036 m3m-3), respectively. 336 

Finally, figure 6 shows LAI for the month of July 2018 from the open-loop, observations, 337 
analysis as well as LAI differences (analysis minus open-loop) for LDAS-ERA5 (upper panels, 338 
0.25°x0.25° spatial resolution) and LDAS-HRES (lower panels, 0.10°x0.10° spatial resolution). From 339 
the two open-loops, one can see that LDAS-ERA5 and LDAS-HRES overestimate LAI with respect to 340 
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the observations. LDAS-HRES open-loop is however in better agreement with the observations than 341 
LDAS-ERA5 open-loop, particularly over the area most affected by the heatwave (e.g. over Belgium, 342 
the Netherlands, Germany and Poland). While the assimilation is efficiently reducing LAI in both 343 
LDAS-ERA5 and LDAS-HRES analyses, the latter is in better agreement with the observations than 344 
LDAS-ERA5 analysis, also. Despite their spatial resolution differences, ERA-5 and HRES results 345 
present similar LAI patterns. They both underestimate the amplitude and spatial extent of the 346 
drought in the open-loop, and for both the analysis effectively improves the particular LAI 347 
conditions associated to the 2018 heatwave. Furthermore, due to the large-scale nature of the 348 
drought event the spatial resolution differences between ERA5 and HRES do not affect significantly 349 
the simulations. 350 

Figure 7 represents maps of monthly anomaly from LDAS-ERA5 for July 2008, 2010, 2012, 2014, 351 
2016 and 2018 for soil moisture in the fourth layer of soil (wg4, between 20 cm and 40cm) as well as 352 
drainage, runoff and evapotranspiration over most of the UK. While wg4 is one of the control 353 
variables (i.e. directly impacted by the analysis), drainage, runoff and evapotranspiration are only 354 
indirectly impacted by the analysis through model feedbacks. July 2018 presents the strongest 355 
negative anomalies. It is worth mentioning the positive anomaly values for July 2012, particularly in 356 
runoff and drainage responding to persistent rain during the first weekend of July that had led to 357 
flooding in many part of the UK 358 
(https://www.metoffice.gov.uk/learning/learn-about-the-weather/weather-phenomena/case-studies/359 
july-2012-flooding, last access January 2019). 360 

 361 

Figure 3: Monthly Anomaly time-series (scaled by the standard deviation, expressed in units of 362 
standard deviation) of air temperature (a) and precipitations from ERA5 atmospheric reanalysis 363 
dataset over January 2001 – October 2018. 364 

https://www.metoffice.gov.uk/learning/learn-about-the-weather/weather-phenomena/case-studies/july-2012-flooding
https://www.metoffice.gov.uk/learning/learn-about-the-weather/weather-phenomena/case-studies/july-2012-flooding
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 365 

Figure 4. a) Observed CGLS GEOV2 Leaf Area Index (LAI) (green stars) over January 2008 to 366 
December 2018 as well as LDAS-Monde LAI time-series forced by either ERA5 (Open-loop is in blue, 367 
analysis is in red) over January 2008-October 2018 or HRES (Open-loop is in cyan, analysis is in 368 
orange) over April 2016-December 2018. b) Same as a) over LDAS-HRES and LDAS-ERA5 common 369 
period (April 2016 to October 2018). Data are averaged over the domain illustrated by figure 2, 370 
dashed line represents the date from when HRES is available (April 2016) and the date up to when 371 
ERA5 is available (at the time of the study). 372 
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 373 

Figure 5: Upper panel, seasonal (a) RMSD and (b) correlation values between leaf area index (LAI) 374 
from the model forced by either ERA5 (LDAS-ERA5 Open-loop in blue) or HRES (LDAS-HRES 375 
Open-loop in cyan), the analysis forced by either ERA5 (LDAS-ERA5 Analysis in red) or HRES 376 
(LDAS-HRES Open-loop in pink) and GEOV2 LAI estimates from the Copernicus Global Land 377 
Service project from 04/2016 to 10/2018. Lower panel, same as upper panel between 378 
modelled/analyzed soil moisture from the second layer of soil (1-4cm) and ASCAT surface soil 379 
moisture estimates from the Copernicus Global Land Service project. 380 

 381 

Figure 6: Upper panel, Leaf Area Index from (a) LDAS-ERA5 Open-loop, (b) the observations, (c) 382 
LDAS-ERA5 Analysis and (d) differences between LDAS-ERA5 Analysis and LDAS-ERA5 383 
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Open-loop for July 2018. Lower panel, same as upper panel for LDAS-HRES. Spatial resolution of 384 
upper panel is 0.25°x0.25°, spatial resolution of lower panel is 0.10°x0.10°. 385 

 386 

Figure 7. Maps of monthly anomalies (expressed in units of standard deviation) from LDAS-ERA5 387 
analysis for July 2008, 2010, 2012, 2014, 2016 and 2018 with respect to the 2008-2018 period (from left 388 
to right) for the following variables: soil moisture form the fourth layer of soil (between 20 cm and 389 
40cm), drainage, runoff and evapotranspiration (from top to bottom). 390 

3.3. Resolution vs. System evaluation 391 

Results presented above showed that driving the LDAS by either ERA5 or HRES lead to good 392 
results monitoring the impact of the summer 2018 heatwave on vegetation, with HRES providing 393 
better results. In an attempt to investigate whether the improvement from the use of ERA5 to HRES 394 
is due to the resolution only (e.g. better representation of land cover) or to the forcing quality (or 395 
both), another experiment was carried out for 2017 (see Table I). ERA5 was downscaled from 396 
0.25°x0.25° to 0.10°x0.10° (ERA5_010) spatial resolution to force ISBA and outputs were compared to 397 
those of LDAS_HRES open-loop (ran for 2017, with similar initial conditions). A bilinear 398 
interpolation from the native grid to the regular grid was made. Figure 8 illustrates monthly scores 399 
(R and RMSD values over 2017) for LAI from 2 experiments, namely ERA5_010 and LDAS_HRES 400 
open-loop. From the two panels of figure 8, one may appreciate the score similarities between 401 
ERA5_010 and LDAS_HRES open-loop. The later only performs slightly better than ERA5_010 from 402 
July onward for both R and RMSD values. HRES was upscaled to ERA5 spatial resolution to run 403 
ISBA and outputs where compared to those of LDAS-ERA5 open-loop (ran for 2017, with similar 404 
initial conditions), also, and similar results as discussed above were obtained (not shown). Although 405 

a longer time period would be required to further test these configurations, it is very interesting to 406 
notice than when ERA5 forcing is downscaled to 0.10°x0.10° to force ISBA, it performs almost as 407 
good as the operational forcing, HRES. These results could justify running longer periods of time of 408 
ERA5 at 0.10°x0.10° when the operational forcing is not available (e.g., prior to April 2016). 409 
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 410 

Figure 8: Monthly (a) RMSD and (b) correlation values between leaf area index (LAI) from the model 411 
forced by either HRES_010 or ERA5_010 (ERA5 forcing down-scaled to HRES spatial resolution) and 412 
GEOV2 LAI estimates from the Copernicus Global Land Service project for the year 2017. 413 

4. Discussions 414 

Both LDAS-Monde configurations forced by either ERA5 or HRES lead to an accurate 415 
representation of vegetation during the summer 2018 heatwave and in general. The HRES 416 
configuration presents slightly better results over the common period investigated. HRES being 417 
obtained from frequently updated versions of the IFS it is not a fixed system in time, while a 418 
reanalysis like ERA5 guarantees a higher level of consistency because of its frozen configuration. 419 
ERA5 has a coarser spatial resolution than the HRES. Its spatial resolution allows however LDAS 420 
experiments to be long term and affordable at large scale. With ERA5 available back to 1950 and 421 
covering near real-time needs with the ERA5T (https://climate.copernicus.eu/climate-reanalysis), an 422 
LDAS-ERA5 would be able to provide a model climate as reference for anomalies of the land surface 423 
conditions. Significant anomalies could then be used to trigger more detailed monitoring and 424 
forecasting activities for a region of interest using, for example the LDAS-HRES.  425 

4.1. Are LAI and SSM relevant indicators? 426 

The Summer 2018 heatwave clearly had an impact on vegetation and soil moisture, as seen 427 
using satellite derived estimates of LAI and SSM. Those satellite estimates are very useful to monitor 428 
extreme events impacts but their use is limited by their temporal frequency of a few days at best. 429 
While microwave remote sensing provides a way to quantitatively describe the water content of a 430 
shallow near-surface soil layer, [73], the variable of interest for applications in short- and 431 
medium-range meteorological modeling and hydrological studies over vegetated areas is the 432 
root-zone soil moisture content which controls e.g. plant transpiration [68]. Similarly, estimates of 433 
above-ground biomass might be more useful than LAI for application linked to agriculture. 434 
Integration of these satellite derived datasets into LSMs through data assimilation is therefore of 435 
paramount importance to improve monitoring accuracy of extreme events impacts on LSVs. Not 436 
only the representation of LAI and SSM in such system will be improved but other model variables 437 
will benefit from the assimilation through biophysical processes and feedbacks in the model too [7, 438 
10, 18, 74]. 439 

4.2. Can the impact of heat waves on vegetation be anticipated? 440 

Two other experiments are presented in order to (i) study the possibility of forecasting the 441 
impact of extreme events on vegetation few days in advance and (ii) highlighting the fact that a 442 
forecast initialized by an analyzed state can have more skills than an open loop. For the whole 2018 443 
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and for each daily analysis from LDAS-HRES, 2 forecast experiments (2-day and 8-day forecast, see 444 
Table I) were conducted. The atmospheric forcing forecast is coming from HRES, as described in the 445 
materials and methods sections. For the sake of clarity, only forecasts with lead time of 2 and 8 days 446 
are presented (LDAS_fc_d2 and LDAS_fc_d8, respectively). Figure 9a illustrates LAI time-series 447 
from the open-loop, the analysis (ran for 2018, only) as well as the 2 forecast experiments 448 
(LDAS_fc_d2 and LDAS_fc_d8) for 2018 averaged over a domain defined as: longitudes from 4°W to 449 
15°E and latitudes from 48°N to 55°N. According to figure 2, this domain was more severely affected 450 
by the heatwave, and is represented by figure 9c. Firstly, the large error between all the experiments 451 
and the observations for the start of the growing season is noticeable. From March to June 452 
LDAS_HRES analysis as well as LDAS_fc_d2 and LDAS_fc_d8 are only slightly correcting for this 453 
issue. This is a known issue as already mentioned by [18], the CO2 —responsive version of ISBA is 454 
such that during the growing phase, enhanced photosynthesis corresponds to a CO

2
 uptake, which 455 

results in vegetation growth from a prescribed LAI minimum threshold (1 m2m-2 for coniferous 456 
forest or 0.3 m2m-2 for other vegetation types). These thresholds are probably too low and are 457 
currently being revisited using the CGLS LAI long term dataset. This is expected to lead to better 458 
representation of LAI during the vegetation growing phase [75]. However, during the senescence 459 
phase (see zoom on figure 9b), the analysis is quite efficient in reducing the differences with the 460 
observed LAI and it is quite interesting to notice that so are the 2-d and 8-d forecasts of LAI 461 
initialized by the analysis. This suggests that the impact of assimilating satellite observations in 462 
LDAS-Monde has the capacity to mitigate model deficiencies, leading to better estimates of the 463 
system states and that this impact can last in time. From all panels of figure 9, one may see that 464 
LDAS_fc_d2 and LDAS_fc_d8 are closer to the observations than the open-loop. Figure 9c represents 465 
RMSD values between the open-loop (ran for 2018, only) and the LAI GEOV2 observations and 466 
figure 9d the RMSD differences between the open-loop (analysis) and the LAI GEOV2. Negative 467 
(blue) values indicate areas where the analysis has smaller (i.e. better) RMSD values than the 468 
open-loop. Figure 9d is dominated by negative (blue) values showing the added value of the 469 
analysis over the open-loop. Finally figure 9e presents RMSD differences between the open-loop 470 
(LDAS_fc_d8) and the LAI GEOV2 observations and it is very interesting to notice than an 8-day 471 
forecast initialized by an analysis presents better skills in capturing LAI than an open-loop for most 472 
of the domain.  473 

This result is emphasized by figure 10 showing monthly RMSD and R values between LAI from 474 
the 4 above-mentioned experiments (LDAS-HRES open-loop and analysis, LDAS_fc_d2 and 475 
LDAS_fc_d8) and the GEOV2 observations over 2018. The RMSD and R values from LDAS_fc_d2 476 
and LDAS_fc_d8 experiments are better than from the open-loop, all year long. They are closer to 477 
those from the LDAS-HRES analysis than from its open-loop counterpart. As seen on figure 10b, it is 478 
from July 2018 that the differences between the open-loop and the analysis are the strongest. Impact 479 
of assimilating LAI and SSM estimates has a time persistence of at least 8 days on LAI. Future work 480 
could focus on giving more statistical strength to those results in particular by considering a longer 481 
time period as well as looking at other LSVs. 482 



Remote Sens. 2018, 10, x FOR PEER REVIEW  18 of 24 

 

 483 

Figure 9. (a) LAI time series from the model (LDAS-HRES Open-loop in blue), the analysis 484 
(LDAS-HRES Analysis in red), the 2-d and 8-d forecasts from the analysis (LDAS_Fc_d2 in green , 485 
LDAS_Fc_d8 in cyan respectively) as well as the observations from the Copernicus Global Land 486 
Service (LAI GEOV2, red stars) for 2018. (b) same as (a) focusing on the June-December period.(c) 487 
RMSD values between LDAS-HRES Open-loop ran over 2018 and LAI GEOV2, (d) RMSD differences 488 
between LDAS-HRES Analysis (Open-loop) and LAI GEOV2, (e) same as (d) for LDAS_fc_d8 and 489 
Open-loop. 490 
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 491 

Figure 10. Monthly (a) RMSD and (b) R values between LAI from the model (LDAS-HRES open-loop 492 
in blue), analysis (LDAS-HRES Analysis in red), the 2-d and 8-d forecast experiments initialised by 493 
the analysis and the Copernicus Global Land Service LAI GEOV2 over 2018. 494 

5. Conclusions and perspectives 495 

This study has investigated the capability of LDAS-Monde offline land data assimilation system 496 
to represent the impact of the summer 2018 heatwave on vegetation. Satellite derived leaf area index 497 
and surface soil moisture were assimilated in LDAS-Monde forced by either ERA5 reanalyses 498 
(0.25°x0.25° spatial resolution) or the IFS HRES operational product (0.10°x0.10° spatial resolution) 499 
from ECMWF. Both analysis experiments were able to represent the impact of the heatwave on 500 
vegetation well. While there is a surface physiography and modeling advantage of the HRES 501 
configuration, there is added value in down-scaling ERA5 to HRES spatial resolution, too. It would 502 
allow consistent, long term and high-resolution reanalysis of the LSVs. The possibility of forecasting 503 
LSVs was successfully implemented and it was showed that a forecast of LAI from analyzed initial 504 
conditions has more skills than an open-loop (with a persistence of at least 8 days). Combining ERA5 505 
atmospheric re-analysis, HRES analysis and its forecast within LDAS-Monde is highly relevant to 506 
foster research for land applications at various timescales from daily to annual. The use of HRES 507 
data to force LDAS-Monde is very promising and it can be complemented by ECMWF 51-member 508 
ensemble forecasts (~18 km spatial resolution). Moreover, one member of the ensemble is similar to 509 
HRES at a coarser spatial resolution, and as the ensemble is available up to 15-days lead time (twice 510 
a day and up to 45 days twice a week) it can be used to test longer range forecast of LSVs than when 511 
using HRES. Use of the ECMWF ensemble in LDAS-Monde could help capturing uncertainties in the 512 
representation of LSVs. It would open the possibility to anticipate the impact of heatwaves at 513 
monthly temporal scales using a probabilistic method. 514 

One of the limitations to the use of the discussed land data assimilation system at a high spatial 515 
resolution, for example using grid cells of 1 km or 300 m, is that analyzed atmospheric forcings are 516 
not available at these scales. While downscaling atmospheric forcing like the IFS HRES (e.g. from 517 
0.1°x0.1° to 0.01°x0.01° spatial resolution) is likely to add uncertainties, their impact on the 518 
representation of the LSVs can be reduced through the dynamic integration of satellite-derived LAI 519 
observations at fine scale like the 300m spatial resolution product from Copernicus Global Land 520 
Service. For the meteorological forcing, the use of AROME (Application de la Recherche à 521 
l'Opérationnel à Méso-Échelle) operational numerical prediction model from Météo-France 522 
atmospheric variables to drive the LDAS could also be investigated as its spatial resolution is 523 
already of 1.3 km x 1.3 km over France. The process of comparing Land Surface Models and 524 
observations, e.g. through data assimilation, permits highlighting model deficiencies, also. It is likely 525 
that the model would benefit from new LAI minimal values parameterization that are currently 526 
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being revisited at Météo-France using the long-term CGLS data-set including more than 18-yr of LAI 527 
data.  528 
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