The 5th edition of the IESWG meeting, FMI Finland, September 26-28, 2023

# All-sky Evapotranspiration Data Products from Satellite Observations for Taiwan Weather Models and Agricultural Drought Monitoring

Li Fang, Xiwu Zhan, Jicheng Liu, Istvan Laszlo, NOAA-NESD/S Christopher Hain, NASA-MSFC Martha Anderson, USDA-ARS Yu-Cheng Chang, Tony Liao, CWA, Taiwan

# OUTLINE

All-sky Evapotranspiration Data Products from Satellite Observations for Taiwan Weather Models and Agricultural Drought Monitoring



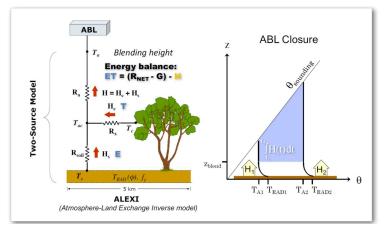
GET-D and ALEXI Model



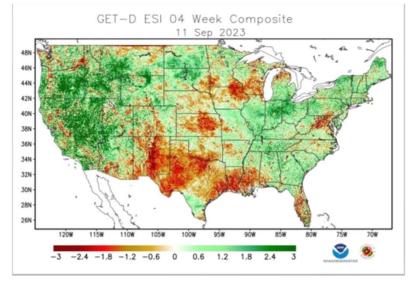
GET-D for Taiwan Weather Models



GET-D Clear-sky vs. All-sky



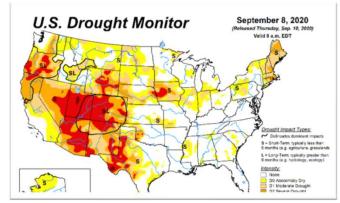

Products Validation & Unique advantages


### GOES ET and Drought Monitoring System (GET-D)

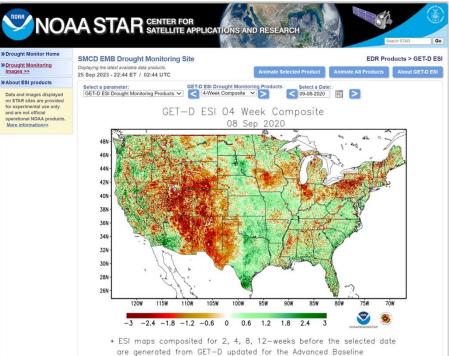
- Atmosphere-Land Exchange Inversion (ALEXI): a diagnostic modeling approach, built on the twosource energy balance model, to exploit the mid-morning rise in temperature to derive the land surface fluxes, including ET
- Evaporative stress index (ESI): indicates how the current rate of ET compares to long-term climatology; Negative ESI values show below normal ET rates, indicating vegetation that stressed due to inadequate soil moisture, and vice versa

#### ALEXI Model




#### **GET-D ESI**




STAR GET-D web page

### GOES ET and Drought Monitoring System (GET-D)

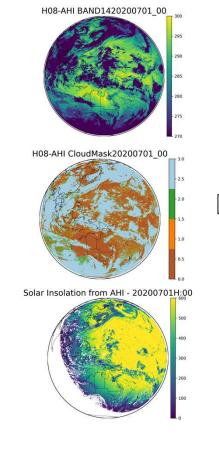
GET-D ESI 4-week composite on Sept. 8, 2020, compared with U.S. Drought Monitor Map



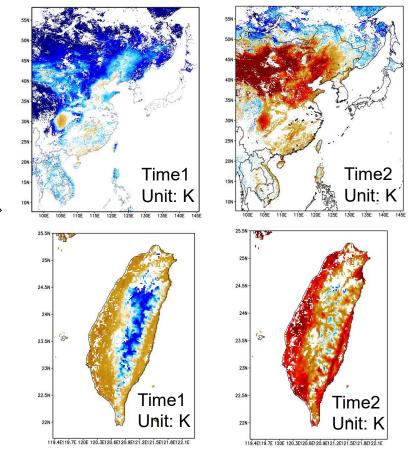
- NOAA NESDIS GET-D product system was operationally generating ET and drought maps at 8 km resolution using GOES-13/15 observations since 2016
- Current GET-D experimental system routinely generates ET and ESI over Contiguous US (CONUS) at 2 km resolution using GOES-16/18 Advanced Baseline Imager (ABI) observations



Imagers (ABI) of GOES-16 and GOES-17 satellites.


4 / 22

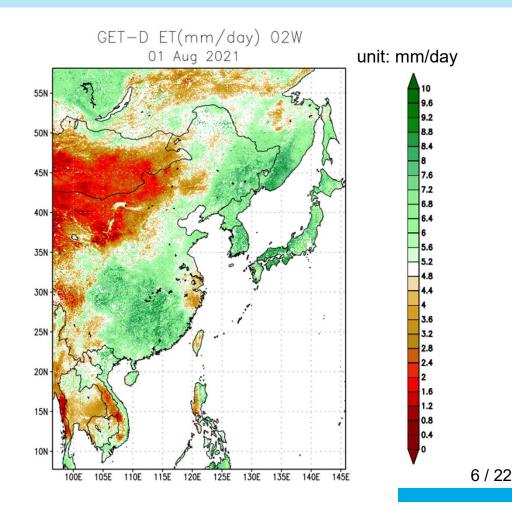
**STAR GET-D** 


web page

### GET-D for Taiwan Central Weather Administration

- The GOES-based GET-D system has been reconfigured for observations from the Advanced Himawari Imager (AHI) for Taiwan Central Weather Administration (CWA)
- GETD4CWB system generates daily ET at 2km spatial resolution over Taiwan region




Three Major Himawari-8 Inputs: BT, Cloud Mask & DSR Full Disk at 2 km



Extract Clear-sky LST at morning rise hours Time 1: 1.5 hour after sunrise Time 2: 1.5 hour before noon

# **GET-D using AHI for Taiwan Weather Models**

- The GETD4CWB system has been demonstrated fully functional to map ET using AHI
- GETD4CWB ET estimates have been evaluated using in-situ observations over 20 stations in Taiwan region
- The GETD4CWB system (v1.0) has been delivered to Taiwan Central Weather Bureau, as well as supporting documents



# OUTLINE

All-sky Evapotranspiration Data Products from Satellite Observations for Taiwan Weather Models and Agricultural Drought Monitoring

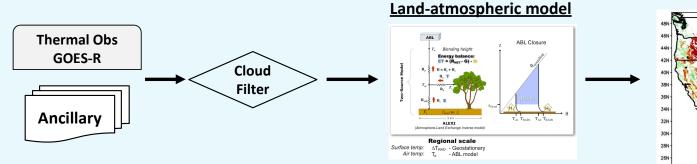


GET-D and ALEXI Model

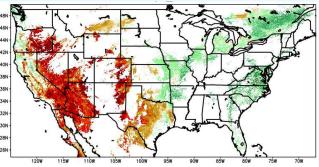


**GET-D for Taiwan Weather Models** 



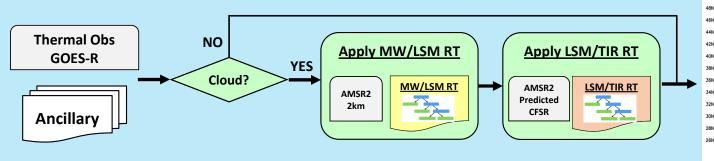

### GET-D Clear-sky vs. All-sky

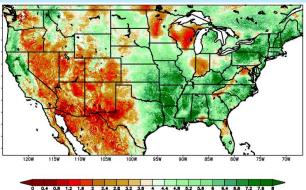



Products Validation & Unique advantages

# **Clear-sky and all-weather GET-D Systems**

#### Predictions based on physical model

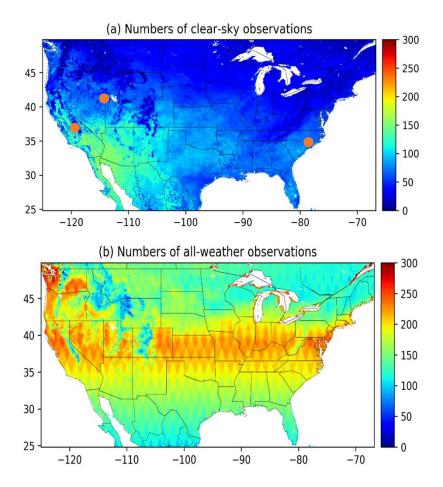


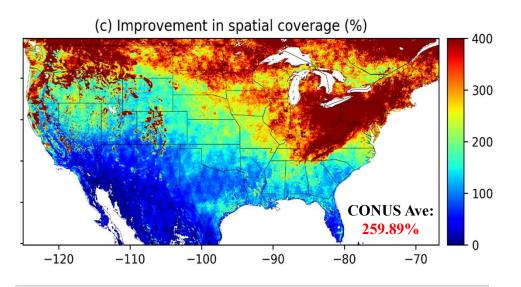


#### **Clear-sky ET Product**




#### Predictions based on machine learning






### **Clear-sky/all-weather ET Products over CONUS and East Asia**



## Improvement in data coverage





Numbers of valid ET retrievals during the validation period (Jan.1 to Dec. 31, 2018);

- (a) # of clear-sky ET estimates based GOES-16/17;
- (b) # of all-weather ET from MW/TIR coupled LST;
- (c) improvement in spatial coverage in percentage.
- Three sample stations for time-series ET validation against in-situ observations

# OUTLINE

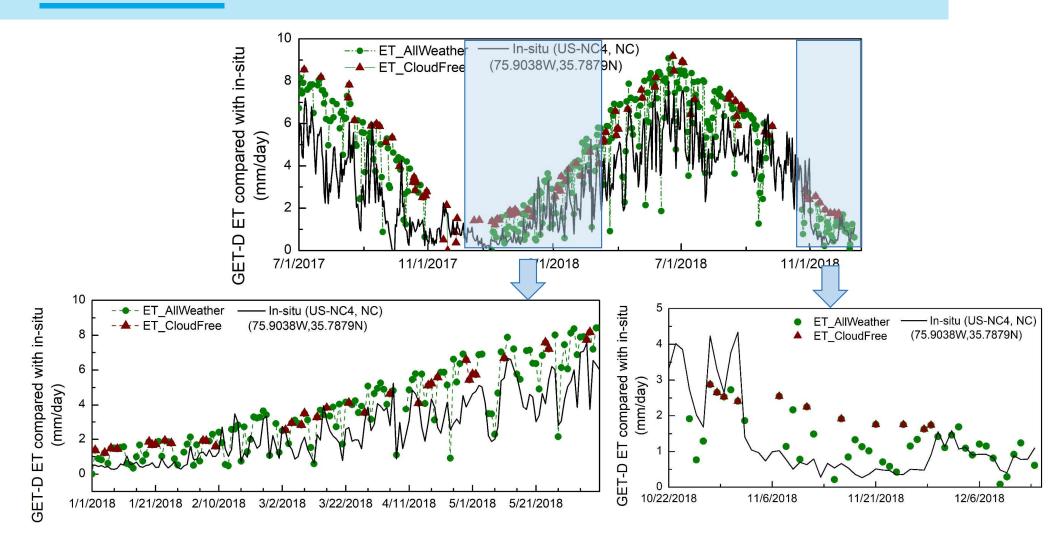
All-sky Evapotranspiration Data Products from Satellite Observations for Taiwan Weather Models and Agricultural Drought Monitoring



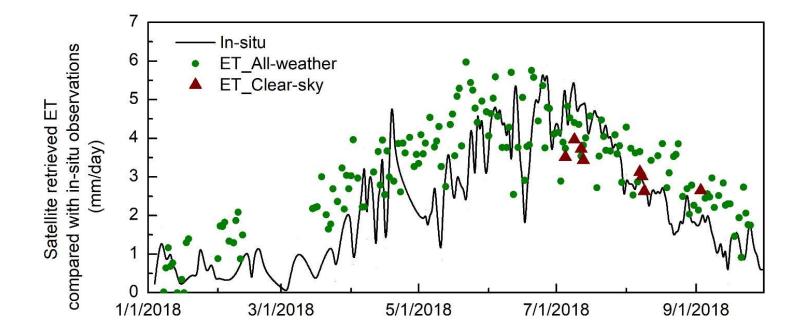
GET-D and ALEXI Model



**GET-D** for Taiwan Weather Models




GET-D Clear-sky vs. All-sky




Products Validation & Unique advantages

## Validation of clear-sky & all-weather ET

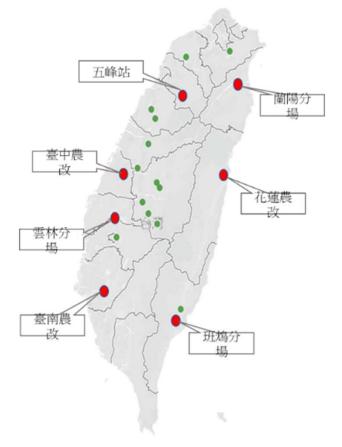


## Validation of clear-sky & all-weather ET



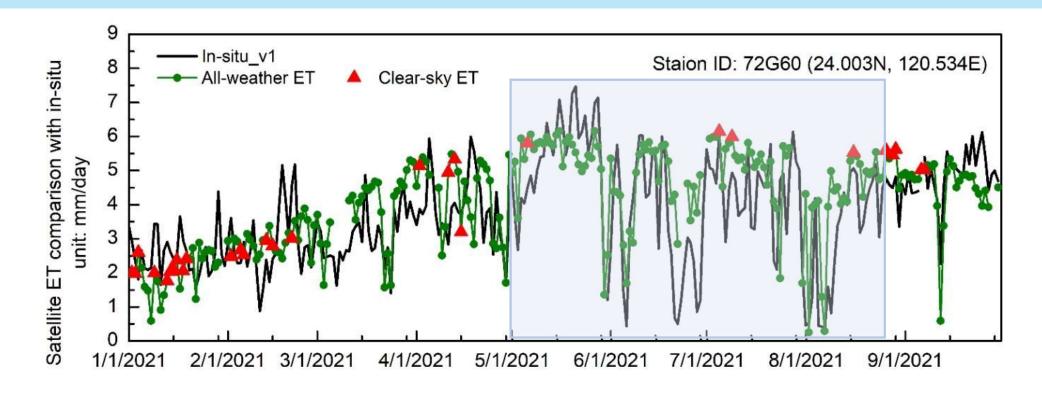
Time series comparison of clear-sky ET (derived from GOES16/17) and all-weather ET (derived from GOES&AMSR2&CFSR combined LST), along with in-situ ET observations at the US-Rms station in ID; Jan. 1 to Dec. 31, 2018; Unit: mm/day

## **Error statistics – over U.S.**


| Station | LAT     | LON      | Corre         | elation     | RMSE(mm/day) |             |  |
|---------|---------|----------|---------------|-------------|--------------|-------------|--|
| ID      | LAI     | LON      | clear-sky     | all-weather | clear-sky    | all-weather |  |
| US-ARM  | 36.6058 | -97.4888 | 0.8713        | 0.7431      | 0.9248       | 1.1754      |  |
| US-Bi1  | 38.0992 | -121.499 | 0.6267        | 0.7542      | 1.5537       | 1.3975      |  |
| US-Bi2  | 38.109  | -121.535 | 0.8202        | 0.7988      | 1.0228       | 1.147       |  |
| US-Hn2  | 46.6889 | -119.464 | 0.3981        | 0.4971      | 1.7704       | 1.4885      |  |
| US-Me6  | 44.3233 | -121.608 | 0.754         | 0.6064      | 1.2159       | 1.5778      |  |
| US-NC2  | 35.803  | -76.6685 | 0.9363        | 0.7726      | 2.011        | 11 2.2386   |  |
| US-NC3  | 35.799  | -76.656  | 0.861         | 0.7896      | 1.368        | 1.7162      |  |
| US-NC4  | 35.7879 | -75.9038 | 0.8155 0.7932 |             | 1.8388       | 2.1315      |  |
| US-Rls  | 43.1439 | -116.736 | 0.5908        | 0.6188      | 1.2332       | 1.2201      |  |
| US-Rms  | 43.0645 | -116.749 | 0.9401        | 0.778       | 0.9644       | 1.1715      |  |
| US-Ro4  | 44.6781 | -93.0723 | 0.8112        | 0.7428      | 1.4993       | 1.5841      |  |
| US-Ro5  | 44.691  | -93.0576 | 0.8248        | 0.6941      | 0.8241       | 1.226       |  |
| US-Ro6  | 44.6946 | -93.0578 | 0.772         | 0.7236      | 0.765        | 1.1051      |  |
| US-Rws  | 43.1675 | -116.713 | 0.6555        | 0.6881      | 1.2345       | 1.217       |  |
| US-Sne  | 38.0369 | -121.755 | 0.9025        | 0.9192      | 0.8479       | 0.7711      |  |
| US-SRG  | 31.7894 | -110.828 | 0.8084        | 0.6833      | 0.924        | 1.1197      |  |
| US-SRM  | 31.8214 | -110.866 | 0.8513        | 0.6914      | 0.6331       | 0.9114      |  |
| US-Ton  | 38.4316 | -120.966 | 0.7882        | 0.8719      | 3.8337       | 3.57        |  |
| US-Tw3  | 38.1159 | -121.647 | 0.2336        | 0.3846      | 1.7012       | 1.8738      |  |
| US-Tw4  | 38.103  | -121.641 | 0.8336        | 0.8375      | 2.319        | 2.0059      |  |
| US-Var  | 38.4133 | -120.951 | 0.4627        | 0.5952      | 1.9449       | 2.0997      |  |
| US-WCr  | 45.8059 | -90.0799 | 0.8216        | 0.7176      | 0.9867       | 1.68        |  |
| US-Whs  | 31.7438 | -110.052 | 0.4372        | 0.5785      | 1.1942       | 1.1607      |  |
| US-Xha  | 42.5369 |          | 0.6365        | 0.5238      | 2.495        | 2.4008      |  |
| Average |         |          | 0.727213      | 0.700142    | 1.462733     | 1.582892    |  |

Fang L, Zhan X, Schull M, Kalluri S, Laszlo I, Yu P, Carter C, Hain C, Anderson M. Evapotranspiration Data Product from NESDIS GET-D System Upgraded for GOES-16 ABI Observations. *Remote Sensing*. 2019; 11(22):2639. https://doi.org/10.3390/rs11222639

Fang L, Zhan X, Kalluri S, Yu P, Hain C, Anderson M and Laszlo I (2022) Application of a Machine Learning Algorithm in Generating an Evapotranspiration Data Product From Coupled Thermal Infrared and Microwave Satellite Observations. *Front. Big Data* 5:768676. doi: 10.3389/fdata.2022.768676

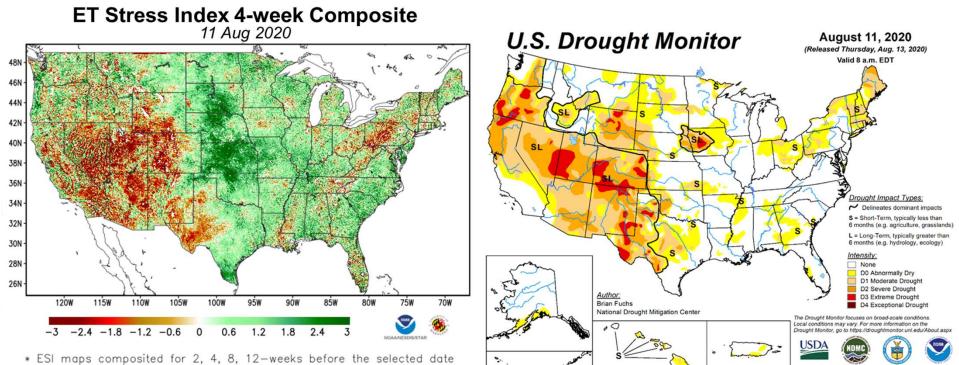

### Validation of GETD4CWB ET over Taiwan Region

- With the help of CWA team, ground daily ET observations over Taiwan region have been obtained
- STAR and CWA science teams have been working together on the in-situ daily ET integration and comparison with satellite ET estimates



| 項次 | 頁次 測站代碼 |            | 經度<br>WGS84 | 緯度<br>WGS84 | 海拔(橢球<br>高)(m)           |  |
|----|---------|------------|-------------|-------------|--------------------------|--|
| 1  | 72520   | 名稱<br>斑鳩分場 | 121.078     | 22.8295     | <del>同(III)</del><br>240 |  |
| 2  |         |            | 121.078     | 22.8295     | 175                      |  |
|    | 02000   | 臺東茶改       |             |             |                          |  |
|    | U2H48   | 臺大溪頭       | 120.798     | 23.6703     | 1150                     |  |
| 4  | 72G60   | 臺中農改       | 120.534     | 24.003      | 19                       |  |
| 5  | 72K22   | 雲林分場       | 120.477     | 23.6346     | 60                       |  |
| 6  | 72N10   | 臺南農改       | 120.342     | 23.0605     | 41                       |  |
| 7  | 72D08   | 五峰站        | 121.157     | 24.6122     | 1048                     |  |
| 8  | 82C16   | 茶改場        | 121.185     | 24.9085     | 195                      |  |
| 9  | 82A75   | 文山茶改       | 121.631     | 24.9558     | 401                      |  |
| 10 | 72U48   | 蘭陽分場       | 121.717     | 24.6863     | 27                       |  |
| 11 | K2E36   | 苗栗農改       | 120.829     | 24.4957     | 100                      |  |
| 12 | K2E71   | 大湖分場       | 120.872     | 24.4229     | 286                      |  |
| 13 | K2F75   | 種苗繁殖       | 120.801     | 24.226      | 470                      |  |
| 14 | 82H84   | 凍頂茶改       | 120.741     | 23.7625     | 390                      |  |
| 15 | 82H32   | 魚池茶改       | 120.914     | 23.8756     | 850                      |  |
| 16 | G2L02   | 嘉義農試       | 120.474     | 23.485      | 79                       |  |
| 17 | 72T25   | 花蓮農改       | 121.564     | 23.9752     | 36                       |  |
| 18 | E2H36   | 蓮華池        | 120.885     | 23.9183     | 681                      |  |
| 19 | U2HA3   | 臺大和社       | 120.889     | 23.5909     | 772                      |  |
| 20 | G2F82   | 農業試驗所      | 120.688     | 24.0313     | 90                       |  |

### Validation of GETD4CWB ET over Taiwan Region




Time series comparison between GETD4CWB estimates and in-situ ET measurements over the Station 72G60 from Jan. 1 to Oct. 1, 2021

## Validation of GETD4CWB ET over Taiwan Region

| Station<br>ID | LAT     | LON     | Correlation   |                 | Bias          |                 | RMSE          |                 | UbRMSE        |                 | Sample N      |                 |
|---------------|---------|---------|---------------|-----------------|---------------|-----------------|---------------|-----------------|---------------|-----------------|---------------|-----------------|
|               |         |         | Clear-<br>sky | All-<br>weather |
| 72D08         | 24.6122 | 121.157 | 0.49          | 0.44            | 1.60          | 2.92            | 2.38          | 3.52            | 1.76          | 1.96            | 28            | 264             |
| 72G60         | 24.003  | 120.534 | 0.81          | 0.65            | 0.08          | 0.38            | 0.93          | 1.25            | 0.92          | 1.19            | 28            | 264             |
| 72K22         | 23.6346 | 120.477 | 0.47          | 0.53            | 1.49          | 1.36            | 2.06          | 1.94            | 1.42          | 1.39            | 43            | 259             |
| 72N10         | 23.0605 | 120.342 | 0.73          | 0.62            | 1.13          | 1.58            | 1.55          | 2.05            | 1.05          | 1.31            | 34            | 263             |
| 72520         | 22.8295 | 121.078 | 0.19          | 0.18            | 1.56          | 1.18            | 2.32          | 2.47            | 1.72          | 2.16            | 37            | 260             |
| 72T25         | 23.9752 | 121.564 | 0.79          | 0.59            | 1.07          | 0.87            | 1.42          | 1.68            | 0.94          | 1.44            | 31            | 266             |
| 72U48         | 24.6863 | 121.717 | 0.68          | 0.71            | 0.83          | 1.28            | 1.45          | 1.88            | 1.19          | 1.39            | 27            | 263             |

## **Comparison of GET-D ESI and USDM Products**



\*\* 1 mas-

 \* ESI maps composited for 2, 4, 8, 12-weeks before the selected date are generated from GET-D updated for the Advanced Baseline Imagers (ABI) of GOES-16 and GOES-17 satellites.

18 / 22

droughtmonitor.unl.edu

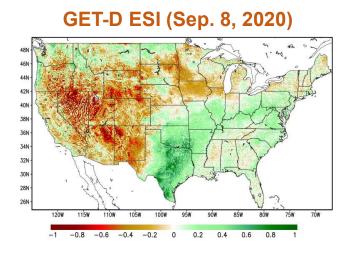
## Capability of capturing irrigation activities

- GET-D ESI does not require precipitation data, derived directly from remotely sensed land surface temperature
- GET-D ESI inherently includes non-precipitation related surface water signals such as irrigation activities, groundwater supplied vegetation, etc.

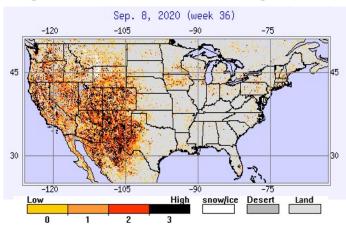


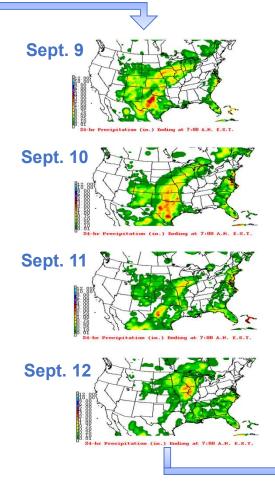

Agricultural fields in Columbia Basin, Washington

Monthly SPI (7/1/2021 - 7/31/2021, shaded)

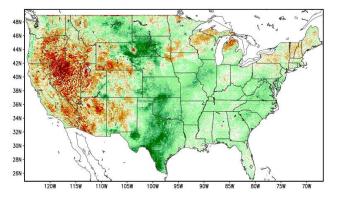



GET-D ESI over Crop Land in Columbia Basin, Washington June 14 – July 31, 2021

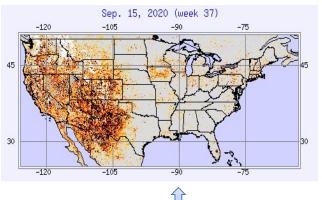


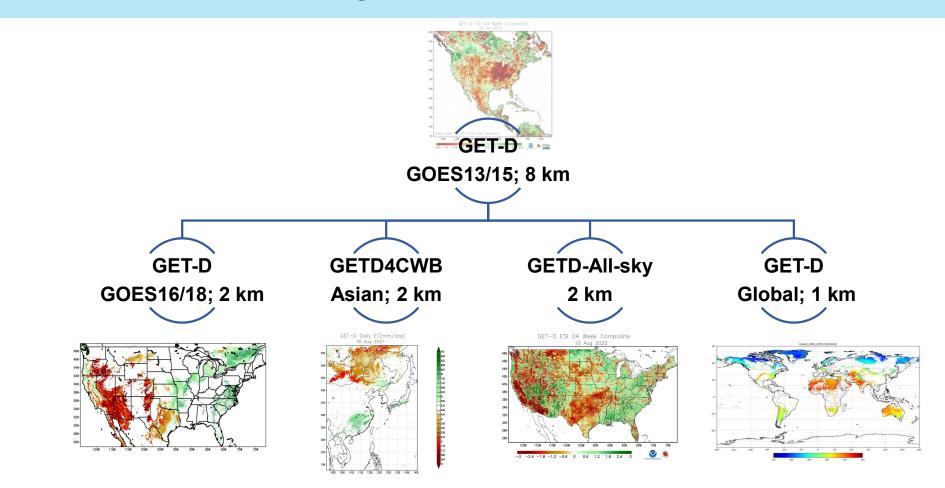

## **Early Warning of Agricultural Drought**




#### Vegetation Health based Drought (VHD)







#### GET-D ESI (Sep. 15, 2020)



#### Vegetation Health based Drought (VHD)



## **Summary and Future Steps**



# END

Thanks for your attention!

Questions? Please contact: <u>Li.Fang@noaa.gov</u> or <u>Xiwu.Zhan@noaa.gov</u>