

Impact of microwave radiance assimilation over land using dynamic emissivity in the global NWP system of JMA

Keiichi KONDO^{1, 2}, Kozo OKAMOTO², Takeshi IRIGUCHI², Hideyuki FUJII³, Kazumasa AONASHI⁴

1: JMA, 2: JMA/MRI,

3: JAXA (Currently RESTEC), 4: Kyoto University

Motivation

- It is important to estimate land surface emissivity for the radiance assimilation in the NWP systems.
 - The emissivity spatiotemporally varies depending on surface conditions.
- In the current global NWP system of JMA, the climatological atlas emissivity is used for the microwave (MW) radiance assimilation over land.
- JMA/MRI is working on applying a dynamic emissivity (DE, Karbou et al. 2006) method to the global NWP system of JMA to reduce uncertainty related to the radiative transfer calculation.
 - In addition to the emissivity, land surface temperature (LST) is also important as one of parameters for radiative transfer model.
 - Based on the DE, a Bayesian method is developed to dynamically estimate the emissivity and LST simultaneously by using satellite observations.

影厅 Japan Meteorological Agency

Dynamic Emissivity (Karbou et al. 2006)

• Radiative transfer equation under clear sky condition $T_b(\nu,\theta) = T_s \varepsilon(\nu,\theta)\Gamma + \{1 - \varepsilon(\nu,\theta)\}\Gamma T_a^{\downarrow}(\nu,\theta) + T_a^{\uparrow}(\nu,\theta)$

 $T_b(v, \theta)$: brightness temp. v: frequency θ : zenith angle T_s : land surface temp. (LST) T_a^{\downarrow} : downwelling T_b T_a^{\uparrow} : upwelling T_b Γ : transmissivity

• Estimated emissivity $\varepsilon(\nu, \theta)$

$$\frac{\varepsilon(\nu,\theta)}{\left(T_{s}-T_{a}^{\downarrow}(\nu,\theta)\right)\Gamma} < \frac{T_{b}(\nu,\theta)-T_{a}^{\downarrow}(\nu,\theta)\Gamma}{\left(T_{s}-T_{a}^{\downarrow}(\nu,\theta)\right)\Gamma} < \frac{\varepsilon(\nu,\theta)}{\varepsilon(\nu,\theta)}$$

 $\varepsilon(\nu, \theta)$ is estimated from observed T_b and atmospheric model variables. Here, a model surface temperature is used as T_s .

- In addition to the emissivity, the LST should be estimated simultaneously to calculate more accurate T_b .
 - The model LST has some biases which come from insufficient land surface processes in a numerical model.

Bayesian estimation method based on the DE

• Estimated emissivity in DE method

$$\varepsilon(\nu,\theta) = \frac{T_b(\nu,\theta) - T_a^{\downarrow}(\nu,\theta)\Gamma - T_a^{\uparrow}(\nu,\theta)}{\left(T_s - T_a^{\downarrow}(\nu,\theta)\right)\Gamma}$$

- Errors of observed T_b and model LST T_s should be considered.

To treat the errors of observed T_b and model LST T_s , the DE method is extended. \rightarrow A Bayesian estimation method based on the DE (named as BDE)

• Estimated
$$\mathbf{X}^{a} = \begin{pmatrix} T_{s_est} \\ \varepsilon_{est} \end{pmatrix}$$
 is written as follows,
 $\mathbf{X}^{a} = \mathbf{X}^{b} + \mathbf{B}\mathbf{H}^{\mathrm{T}}(\mathbf{H}\mathbf{B}\mathbf{H}^{\mathrm{T}} + \mathbf{R})^{-1}(\mathbf{y} - h(\mathbf{X}^{b}))$

- h: Nonlinear radiative transfer equation
- H: Linearized radiative transfer equation
- **B**: background error variance of $\mathbf{X}^{b} = \begin{pmatrix} T_{s_model} \\ \varepsilon_{atlas} \end{pmatrix}$
- R: observation error variance of brightness temperature ${f y}$
- y: observation (multiple channels are available.)

Comparison of LSTs

• Comparison of LST by the BDE with the Meteosat LST. 10 Apr. 2023, 00 UTC

- The BDE can compute an increment of LST to cancel the warm bias of model LST.

Target sensors of DE

- Target sensors : AMSU-A, ATMS
- LST is estimated at 50.3 GHz.
- DE is estimated at 31.4 GHz or 50.30 GHz (Bormann et al. 2017).
- DE is used at surface-sensitive CHs over land.
 - AMSU-A
 - 54.40 GHz (ch6)
 - 54.94 GHz (ch7)
 - ATMS
 - 54.40 GHz (ch7)
 - 54.94 GHz (ch8)

Japan Meteorological Agency

CHs. 4 and 5 are not assimilated over land.

	СН	Central frequency	Absorption	Assimilation			
	1	23.800 GHz	H ₂ O				
-	2	31.400 GHz	window				
	3	50.300 GHz	O ₂				
	4	52.800 GHz	O ₂	○ (sea)	(qm		
	5	53.595 GHz ± 115 MHz	02	○ (sea)	ssure (
	6	54.400 GHz	O ₂	0	Pres		
	7	54.940 GHz	O ₂	0			
	8	55.500 GHz	O ₂	0	2		
	9	57.290 GHz (=f0)	O ₂	0	3		
	10	$f0 \pm 217 \text{ MHz}$	O ₂	0	5		
	11	$f0 \pm 322.2 \text{ MHz} \pm 48 \text{ MHz}$	O ₂	0	10		
	12	$f0 \pm 322.2 \text{ MHz} \pm 22 \text{ MHz}$	02	0			
	13	f0 \pm 322.2 MHz \pm 10 MHz	02	0			
	14	f0 \pm 322.2 MHz \pm 4.5 MHz	O ₂	\bigcirc			
	15	89.000 GHz	window				

Weighting Functions for AMSU-A (Janssen,1993)

Preliminary investigation (Passive cycle)

- To investigate impacts of DE and BDE, calculating radiative transfer model and QC are performed without DA cycles.
 - Background brightness temperature (TB) is calculated from the given first guess.
 - The calculated TBs by non-DE, DE, BDE are compared with observed TB.
 - This is not a DA cycle experiment.
- Global NWP system of JMA (operational system as of Jul. 2022)
 - Hybrid 4D-Var system (Outer: TL959L128 (20 km), Inner: TL319L128 (55 km))
- Experimental settings
 - The DE is applied to AMSU-A/chs. 5, 6, 7 and ATMS/chs. 6, 7, 8 over land.
 - AMSU-A/ch5 and ATMS/ch6 are not used over land in the operational system of JMA because they contaminated analyses and degraded forecasts.
 - However, this experiment is not a DA cycle, therefore the contaminated analyses are not used.
- Period: Aug. 2022, Jan. 2023

Name	Emissivity	LST	note
CNTL	Atlas emissivity	Model LST	operational settings
TEST1 (DE)	Estimated	Model LST	
TEST2 (BDE)	Estimated	Estimated	

O-B statistics: AMSU-A/ch6, Aug.

- The DE and BDE generally correct biases (O-B mean).
- The BDE degreases the O-B RMS more than the DE.
 - The Impact of estimating LST is great.

Emissivity, LST: AMSU-A/ch6, Aug.

- The estimated emissivities are almost the same or the emissivity of DE is slightly smaller.
- The BDE estimates the LST lower than model.

O-B statistics: AMSU-A/ch6, Jan. Diff (TEST1 (DE) - CNTL) Diff (TEST2 (BDE) - CNTL)

60°N

30°N

30°S

60°S

90°S

60°E

0°

 $-0.0332-0.0249-0.0166-0.0083 \ 0.0083 \ 0.0166 \ 0.0249 \ 0.0332$

-0.0332-0.0249-0.0166-0.0083 0.0083 0.0166 0.0249 0.0332

- The BDE degreases the O-B RMS more than the DE (similar to Aug.).
 - The Impact of estimating LST is great.

60°W

• Over Siberia, Tibet and Alaska, O-B RMS increases in the BDE.

120°E

180°

0.121 0.136 0.151 0.166 0.181 0.196 0.211 0.226 0.241 0.256

120°W

Emissivity, LST: AMSU-A/ch6, Jan.

- The BDE has slightly smaller increments of emissivity than the DE.
- The BDE estimates the LST lower than model.
 - Over Siberia, Tibet and Alaska where O-B RMS increases, the estimated LSTs are also smaller.

Impacts of DE or BDE to non-Gaussianity of O-B

Non-Gaussianity is measured by Kullback– Leibler divergence (KLD).

$$D_{KL} = \int p(x) \log \frac{p(x)}{q(x)} dx$$

p(x): O-B histogram q(x): Gaussian function

- KLD = 0 → Gaussian PDF
- KLD > 0 → non-Gaussian PDF
- Non-Gaussianity is reduced by the DE and BDE.
 - The BDE makes the non-Gaussianity much smaller than DE.
 - Such small non-Gaussianity is useful to assimilate observational information because the 4D-Var is based on the Gaussian assumption.

Large O-B RMS, altitude and snow cover (Jan.)

Model elevation

Estimated surface types (Grody 1999)

O-B RMS (CNTL vs. BDE, Metop-C/AMSU-A/ch6)

- Over the Central Siberian Plateau, Tibet and Alaska, O-B RMS increases in the BDE.
 - The model elevation or snow are considered as factors.
- To avoid increasing the O-B RMS, the emissivity is set to the atlas instead of being estimated by BDE at high elevation and high latitudes.
 - In the future, we would like to treat the BDE over the snow cover areas.

Large O-B RMS, altitude and snow cover (Jan.)

Model altitude

Estimated surface types (Grody 1999)

O-B RMS (CNTL vs. BDE, Metop-C/AMSU-A/ch6)

Summary of preliminary investigation

- The DE and BDE generally correct biases (O-B mean).
- Non-Gaussianity of O-B is reduced by the DE and BDE.
- The BDE decreases the O-B RMS more than the DE.
 - The Impact of estimating LST is large.
- However, over Siberia, Tibet and Alaska, the O-B RMS increases.
 - The model altitude or snow are considered as factors.

- To avoid increasing the O-B RMS, the emissivity is set to the atlas instead of being estimated by BDE at high elevation and high latitudes.
 - The brightness temperature is the same as CNTL over such areas.
- This QC almost eliminated the deterioration of O-B.

The BDE with the QC is compared with the DE in DA cycle experiments.

Experimental settings of DA cycle

- Global NWP system of JMA (operational system as of Jul. 2022)
 - Hybrid 4D-Var
 - Outer model: TL959L128 (20 km)
 - Inner model: TL319L128 (55 km)
- Experimental settings
 - The DE and BDE are applied over land and sea ice.

Name	Emissivity	LST	note
CNTL	Atlas emissivity	Model LST	Operational settings
TEST1 (DE)	Estimated	Model LST	
TEST2 (BDE)	Estimated	Estimated	QC (high latitude and high altitude)

- Target period: Aug. 2021, Jan. 2022
- Target DE or BDE: AMSU-A and ATMS

O-B statistics (AMSU-A/ch6, against CNTL)

- The DE and BDE improve the background TB, and decrease the O-B STD.
- The BDE has larger impacts than the DE, particularly over Africa, the Middle East and Australia.

- Similar to Aug.
- The DE and BDE decrease the O-B STD over the sea ice.
 - CNTL: the emissivity is fixed at 0.9
 - DE and BDE: the emissivity is estimated.

Statistical verification of O-B STD (against CNTL)

• The first guess is slightly improved by the DE and BDE.

Improvement of forecast RMSEs (against ECMWF analysis, FT=24 hr)

Verification at 200 and 300 hPa where weighting functions for AMSU-A chs. 6, 7 have a peak.
 RMSE improvement (%), TEST1 (DE), Aug.
 RMSE improvement (%), TEST2 (BDE), Aug.

気象庁 Japan Meteorological Agency

Impacts of TEST2 (BDE) to the forecast (against RAOB)

The impacts of BDE to the medium-range forecast are neutral.

Summary of DA cycle experiments

- The BDE was compared with the DE by using the global NWP system of JMA for MW temperature sounders over land.
 - The BDE improves the first guesses better than the DE and non-DE, particularly over Africa, the Middle East and Australia.
 - Also, the short-range forecast (FT=24 hr) is improved by the BDE mainly over Africa.
 - The impacts of DE and BDE to the medium-range forecast (up to 11 days) are neutral.

Future works

- It is necessary to improve the treatment of BDE over snow.
- Assimilating more surface-sensitive channels (AMSU-A/ch5, and ATMS/ch6) over land should be investigated to improve forecasts of lower atmosphere.

気象庁 Japan Meteorological Agency

THANK YOU VERY MUCH!