

Towards an ensemble approach to surface analysis within the NWP model AROME-France

Sophie Marimbordes, Camille Birman, Nadia Fourrié, Etienne Arbogast, Jean-François Mahfouf CNRM/GMAP/OBS & CNRM/GMAP/ASSIM

Surface-atmosphere interface

SURFEX coupled with the atmospheric component

=

Importance of an accurate representation of surface-atmosphere coupling

Masson et al. 2013, The SURFEXv7.2 land and ocean surface platform for coupled or offline simulation of earth surface variables and fluxes

Data assimilation process

Data assimilation process

Outline

Model & Obj	AROME-France model + Objective of my Phd
2D-Var	Towards an ensemble variational approach 2D-Var approach to replace the 2D-OI surface analysis
2DEnVar	Implementation of the ensemble variational approach 2DEnVar surface DA scheme using AROME EDA
Optimisation	Optimisation of the ensemble variational approach Sensitivity tests

Outline

Model & Obj	AROME-France model + Objective of my Phd
2D-Var	<i>Towards an ensemble variational approach</i> 2D-Var approach to replace the 2D-OI surface analysis
2DEnVar	Implementation of the ensemble variational approach 2DEnVar surface DA scheme using AROME EDA
Optimisation	Optimisation of the ensemble variational approach Sensitivity tests

AROME-France surface analysis

Nature tile in SURFEX (ISBA3L)

Assimilation of 2-m temperature, 2-m relative humidity and snow depth observations

CANARI: 2D-OI analysis of 2-m temperature, 2-m relative humidity and SWE

Initialisation of soil variables in SURFEX

AROME-France surface analysis

Nature tile in SURFEX (ISBA3L)

Assimilation of 2-m temperature, 2-m relative humidity and snow depth observations

CANARI: 2D-OI analysis of 2-m temperature, 2-m relative humidity and SWE

Initialisation of soil variables in SURFEX

Outdated surface analysis

Implement a system closer to the upper air analysis:

- to facilitate code maintenance and evolution
- for future **coupled DA**

Model & Obj

AROME-France model

Limited Area Model Spectral and Non Hydrostatic model Coupled with hourly forecasts from ARPEGE

1.3 km horizontal resolution 90 vertical levels from 5 m to 10 hPa Forecasts up to +48 h

Surface model SURFEX

Weak coupling

- Coupled forecasts

- Uncoupled analysis

Data Assimilation

- OI land DA 3-hour cycle

- 3DEnVar atmospheric DA 1-hour cycle

AROME-France model

3DEnVar ⇒ background-error covariance *B-matrix* updated

Fully flow-dependent B-matrix with an Ensemble of Data Assimilation AROME EDA

AROME EDA (Ensemble of Data Assimilation)

Hydrostatic core **3.2 km** horizontal resolution

50 members

Short-term forecasts +3 h

OI land DA 3-hour cycle **3D-Var** atmospheric DA 3-hour cycle

- + Perturbation of observations
- + Perturbation of SST variable
- + SPPT = Stochastically Perturbed Parametrisation Tendencies scheme through the atmosphere
- A SPPT not applied near the surface

Objective

Can an ensemble-based surface analysis improve forecasts of low-level processes in a coupled SURFACE-ATMOSPHERE system?

2DEnVar approach similar to **3DEnVar**

Outline

Optimisation

Optimisation of the ensemble variational approach Sensitivity tests

2D-Var: background-error covariances

Gaspari & Cohn function (Gaspari and Cohn, 1999), with Daley length = 25 km

~ Gaussian function which becomes zero at a certain distance

- Univariate, static, homogeneous and isotropic

2-m temperature : $\sigma_b = 1.6 K$ $\sigma_b^2 = 2.56 K^2$

2-m relative humidity : $\sigma_{b} = 10 \%$

Similar to MESCAN spatial correlations defined in CANARI-OI
 (Häggmark et al. 2000)

2D-Var

2D-Var: 2-m temperature increments

2D-Var

2D-Var vs. CANARI-OI: forecast scores

Outline

Optimisation

Optimisation of the ensemble variational approach Sensitivity tests

2DEnVar: background-error covariances

- AROME EDA 50 members:3.2 km resolution, 3-h range forecasts
- Fully flow-dependent B-matrix

multivariate covariances: temperature / relative humidity

heterogeneous and **anisotropic** covariances: different shapes at different locations

– Gaspari & Cohn localization filter (1999) with Daley length = 25 km

2DEnVar

2DEnVar : 2-m temperature increments

(K)

2DEnVar vs. CANARI-OI: forecast scores

ΔRMSE (%)

Outline

Model & Obj	AROME-France model + Objective of my Phd
2D-Var	Towards an ensemble variational approach 2D-Var approach to replace the 2D-OI surface analysis
2DEnVar	<i>Implementation of the ensemble variational approach</i> 2DEnVar surface DA scheme using AROME EDA

Optimisation

Optimisation of the ensemble variational approach Sensitivity tests Sensitivity tests

Initial 2DEnVar

Localisation length = 25 km EDA resolution = 3.2 km Model error near the surface not represented in EDA

Sensitivity tests

- Localisation length: 50 km, 12.5 km
- EDA resolution: 1.3 km
- **EDA inflation**: *multiplicative inflation* x3 to background perturbations

Sensitivity tests

Initial 2DEnVar

Localisation length = 25 km EDA resolution = 3.2 km Model error near the surface not represented in EDA

Sensitivity tests

- Localisation length: 50 km, 12.5 km
- EDA resolution: 1.3 km
- EDA inflation: multiplicative inflation x3 to background perturbations

Positive impact with inflation INFx3

Optimisation

2DEnVar INFx3 vs. CANARI-OI

Reminder : 2DEnVar << CANARI-OI (K)

2DEnVar INFx3 vs. CANARI-OI: forecast scores

_1 -2

-3

-4

ΔRMSE (%)

Conclusion

2D-Var

Implementation of **2D-Var**

- CANARI-OI fits better to the observations
- system close to CANARI-OI \rightarrow solid base

2DEnVar

Implementation of 2DEnVar

- encouraging results
- but low spread in the EDA near the surface leading to lower forecast scores

Optimisation Sensitivity tests in 2DEnVar

- positive impact with inflated background perturbations
- 2DEnVar-INFx3 behaves similarly to CANARI-OI

Perspectives

– Article in preparation: Marimbordes et al. (2023) - QJRMS

Towards a 2DEnVar surface data assimilation approach within the convective scale numerical weather prediction model AROME-France

- 2DEnVar over another period (May-August 2023)
- Impact of cross-correlations
- Impact on soil variables
- Assimilation of a new variable in 2DEnVar
 - Land Surface Temperature (LST)
- Extend 2DEnVar to **snow** and **SST analyses** (CANARI variables)

MTG satellite, FCI radiometer

Thank you

Density and altitude (m) of 2-m temperature observation stations which are assimilated in CANARI (September 7, 2021 at 1200 UTC)

29

Sensitivity tests : EDA inflation

Error standard-deviation diagnostics from short-term forecasts (+3 h) AROME EDA, 50 members, 3.2 km

2-m temperature mean σ_h [7/09/2021 to 5/11/2021] **12 h**

Error correlations in CANARI-OI

CANARI-OI : **MESCAN** function

2-m T error correlations

Sensitivity tests : EDA inflation

Gapari & Cohn localization filter : L = 25 km

(K)

Sensitivity tests : EDA inflation

Forecast scores over 2 months (autumn 2021) : 2DEnVar-INFx3 vs. 2DEnVar

- Positive impact for T2m and Rh2m against surface station observations
- Neutral scores for Wind, P, Geop against surface station observations + ECMWF analysis + radiosondes
- Neutral impact for RR against gridded observations

ΔRMSE (%)

Positive impact with inflation : INFx3 better than NO-INF

• •

ΔFSS (%)

AROME-France model

Operational model

Limited Area Model Spectral and Non Hydrostatic model Coupled with hourly forecasts from ARPEGE

1.3 km horizontal resolution 90 vertical levels from 5 m to 10 hPa Forecasts up to +48 h

Surface model SURFEX

Weak coupling

- Coupled forecasts
- Uncoupled analysis

Data Assimilation

- OI land DA 3-hour cycle - **3DEnVar** atmospheric DA 1-hour cycle

AROME-France EDA

Research experiment

Hydrostatic core 3.2 km horizontal resolution

50 members

Short-term forecasts +3 h

OI land DA 3-hour cycle **3D-Var** atmospheric DA 3-hour cycle

+ Perturbation of observations
+ Perturbation of SST variable
+ SPPT = Stochastically Perturbed Parametrisation
Tendencies scheme through the atmosphere

A SPPT not applied at the surface