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Coupled NWP modelling in polar regions

Large errors still exists in current NWP systems

* (Near-) Surface temperature over land/sea-ice, in particular over snow-covered surfaces

* Relevant for reanalysis as well
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Modelling challenges

Modelling improvements are challenging in polar area
« Range of scales and processes, e.g. "air mass transformation”
* Mixed phase clouds, stable boundary layers, sea-ice, snow

» Lack of detailed observations of the coupled processes
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Modelling challenges — Coupled modelling at the I\\jiu_rtfatc:e.mterfa(:es Persson et al. (2017)
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Needs for modelling surface energy balance

Errors in the surface (skin) temperature, may affect the uptake of satellite observations
(together with other sources of errors, e.g. observation operator)
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Advanced prediction in
polar regions and beyond

» better coverage from
polar orbiting satellites
than anywhere else

* more challenges with
their use
* model errors
« radiative transfer
modelling

* more data rejected for
tropospheric channels
in winter, in particular
over snow and sea-ice

Lawrence et al, ECMWEF,
TM845, 2019



How are cold surfaces modelled in the ECMWEF IFS land-surface model?

Over land:
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Impact of multi-layer snow modelling on snow depth in land-surface only (offline)
simulations
« Offline: land-surface model driven by ERA5 meteorological forcing

« Evaluation using global synop network of snow depth observations, 2014 to 2018
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Impact of multi-layer snow modelling on snow mass in offline simulations

« Evaluation using Snow Water equivalent Copernicus GLS product

« Comparison for shallow snowpack and for the accumulation period (Dec/Jan) for 3 years

SWE bias (mm) control Single-layer

Large positive biases over North
America, Scandinavia, Rockies;
negative biases in central Siberia

Multi-layer snow has small but
positive impact (North America)

How much can we trust the SWE
product?



Impact of multi-layer snow modelling in coupled land-atmosphere forecasts

Coupled forecasts for winter 2016/2017 (December to February), t+24 hours,

Initialised from ECMWF operational analysis
Bias minimum 2-metre temperature (T2m) Absolute bias difference T2m
single-layer snow (CTL) against obs (multi-layer sno? Il (S|gle-layer snow)
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» Improved simulation of cold episodes with multi-layer Advanced prediction in
polar regions and beyond

¥ SNoOw



Impact of multi-layer snow modelling in coupled land-atmosphere forecasts

Bias minimum 2-metre temperature (T2m)

single-layer snow (CTL) against obs
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Advanced prediction in
polar regions and beyond

Temperature profile within the snowpack for
Jan-Feb 2017 at Sodankyla, Finland
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Improved simulation of snow internal
temperature/density gradients

» Coupling to snow emission models, see
Hirahara et al., Rem. Sens. 2020



Coupling approach of different Earth System Components
in the ECMWEF IFS

Background FC: Separate analyses

Coupled model -

Atmosphere -
° Atmosphere
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- Land: ’
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and:
now and ice

 an
\ <& 4 ECMWF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS 11



Snow data assimilation and observations
Data Assimilation: de Rosnay et al SG 2014

« Optimal Interpolation (Ol) is used to optimally combine the model first guess,
in situ snow depth and IMS snow cover

* No variations in the algorithm with the multi-layer snow, analysis performed
using the total snow depth NOAA/NESDIS

IMS Snow extent data

GTS Snow depth (e. g availability for 15 January 2020)
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Multi-layer snow impact in the snow data assimilation system

Winter 2019/2020, 3 months analysis, compared to analysis using the single-layer snow scheme
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Impact on snow depth in forecasts initialized from analysis using the multi-layer snow
Winter, 3 months (DJF 2019/2020), verification with synop observations.

FC at DAY 5, 00UTC
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How are cold surfaces modelled in the ECMWEF IFS land-surface model?

Over sea-ice
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How are cold surfaces modelled in the ECMWF IFS land-surface model?

Over sea-ice

* 4-layer thermodynamic ice-scheme, no snow on top

* lce fraction from sea-ice model (LIM2) coupled every
coupling step

/ \dt_coup

Ice fraction Ice fraction
I f ) ,Single layer
L /—«V‘y_\\ snow
4-layer ice
no snow

HTESSEL

Keeley and Mogensen, ECMWEF, 2018
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Testing the impact of snow over sea-ice in the ECMWF IFS

APPLICATE.eu

Advanced prediction in
polar regions and beyond

» Accounting for the thermal effect of snow on top of sea-ice in the IFS
* Coupling of ice fraction and snow depth from LIM2

: . dt coup
Multi-layer or single-layer

snowpack lce fraction+

snow depth
I

I i
—< - Single layer snow

Two ice
layers

LIM2

4-layer ice 4-layer ice
no snow

Arduini et al. 2021 (submitted to JAMES)
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Evaluating the impact of snow over sea-ice in the ECMWF IFS

» Evaluation using surface temperature from Copernicus Marine Environmental Monitoring Service (CMEMS)
» Coupled ocean-atmosphere forecasts at day 2 and 5 for Winter 2015

TSK no snow TSK multi-layer Snow depth LIM2
day2 ) ) day2 /2

General reduction of the bias in
snow on ice experiment compared
to satellite product

Are the biases reduced for the right
reason?

2 « Compensation between snow and

2>

|_||v| T sea-ice (e.g. thickness)

60°N

TSK multi-layer Snow depth

How good is the snow depth
represented on a pan-Arctic scale?

What is the uncertainty of
the satellite?
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Evaluating the impact of snow over sea-ice in the ECMWF IFS, good case

Evaluation using in situ observations from N-ICE2015 campaigns and co-located CMEMS satellite

observations, Jan/Feb 2015
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« Accounting for snow over sea-ice
improves the match of the short-range
FC to in-situ observations

« Variability of surface temperature
more consistent with observations

 Satellite observations of Tskin hardly
show the in situ variability

APPLICATE.eu”

Advanced prediction in 19
polar regions and beyond



Evaluating the impact of snow over sea-ice in the ECMWEF IFS, less good case

Evaluation using in situ observations from SHEBA campaign, January 1998
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« Accounting for snow over sea-ice improves
skin temperature in certain situations but
degrades in others

 Errors in skin temperature linked to large
underestimation of LW down, e.g. errors in
mixed-phase clouds

- Compensating errors between rapidly
changing LWdown (e.g. cloud cover/phase)
and surface response, degrading the skin
temperature in the experiments with snow

Arduini et al. 2021 (submitted to JAMES)
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Advanced prediction in
polar regions and beyond
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Impact on Arctic winter states — SHEBA case

Cloudy state
\ SHEBA CTL; no show Snow on ice
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« Arctic boundary layer is preferentially in two states —

cloudy and clear-sky states (see Pithan et al. 2016
Isothermal  Stably-stratified y | ( )

* No-snow experiment shows little sensitivity in
el temperature inversion to net longwave variations
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Advanced prediction in » Accounting for snow over sea-ice enables a better
polar regions and beyond T .
description of the clear-sky state and atmospheric
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A\ & 4 ECMWF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS e S O S



Summary and additional thoughts

* Improving coupled modelling of snow and sea-ice can also enable to improve our use of

” 7

microwave satellite observations in the polar regions ("all-sky”, "all-surface” assimilation)

» Multi-layer snow model targeted for operational implementation in IFS cycle 48r1 (2022/2023)

improves the snow representation and near-surface temperature biases over cold surfaces

» Accounting for snow over sea-ice can help in addressing biases in surface temperature

- How do we initialize those components in a coupled NWP system, e.g. snow depth/cover over sea-ice?

> Benefitting from future satellite missions, e.g. CIMR?

- Challenges related to compensating errors between cloud and surface processes: having confidence that

our model developments bring the model closer to observations for the right reason is crucial

APPLICATE.eu’

Py Advanced prediction in
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Impact on T2m in ensemble forecasts (8 members) — Fraction of CRPS err > 5K

Winter, DJF 2019/2020
FC initialized at 00UTC from analysis using consistent snow scheme
(multi-layer or single-layer)
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HTESSEL coupled to CAMA-Flood river-discharge for hydrological studies

Coupling river-discharges allow using in-situ EO of river discharge to inform land-
surface model developments on the impact on the hydrological cycle

HTESSEL driven by ERA5
meteorological forcing

River discharge observations from GRDC network
St CAMA-Flood river routing (colours indicate number of years with data)

vy I scheme
Runoff

'f:-':"'t; -

In preparation for
SWOT Mission

25

s EC...... Sub-surface runoff B A '-“ as UK SPACE

100
36
30
25
20
15
10



Evaluating land-surface model developments with hydrology,
the example of the multi-layer snow scheme

* More catchments show improvements, in particular over Rockies and mid-latitude Eurasia
« However many catchments in high latitude show lower KGE/correlation than the single-layer
snow experiment (Siberia and Alaska, e.g. permafrost regions)
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Evaluating land-surface model developments with hydrology,
the example of the multi-layer snow scheme

kge ML-SL for snow5_sfptpgelQ yearsge4 ups5000
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* |In permafrost areas, the increase in water
infiltrating into the soil due to warmer soil
temperature in snowML, amplifies
pre-existent biases in the river discharge.

Decreased discharge peak
in snow ML (dashed)

Soil temperature time-series
for Kolyma river catchment

ST-7cm offcontrol
ST-7cm snow5
ST-100cm offcontrol
ST-100cm snow5

-

Soil Temp W|th multi-layer is warmer
than in CTL in winter/spring

1980-11
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Optimising land-surface model developments with hydrology, multi-layer snow and
frozen soil example

Optimising parameters related to the frozen soil — Sensitivity to permafrost-related parameters

snowpack interaction for better runoff Area mean scores of KGE, bias, variability and correlation

from 33 catchments in [80-60N; 80-180E]
ML-opt; R=0.64, KGE=0.62
kge ML-SL for snow5_sfptpgelO_yearsge4 ups5000 0.1 1

\
5 00 @
;g -0.2 A Y - b
o SL' R=0.58, KGE—O 44
-0.3 -

ML; R 0.56, KGE= 035

Sensitivity to frozen soil, snow discretization and snow —0.075 —0.050 —0.025 0.000 0.025 0.050 0.075
density parametrization indicate an improvement of 0.27 Bias error
in KGE for ML-Opt compared to standard ML over Siberia
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Impact on Arctic winter states — N-ICE2015 case

Cloudy state
- Cloudy state
—~ 20 \N ICE 2015 & 20 y - SnowML
- | & 20 0.025
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Clear-sky state
« Arctic boundary layer is preferentially in two states —
cloudy and clear-sky states (see Pithan et al. 2016)
* No-snow experiment shows little sensitivity to net
sl longwave variations
APPLICATE.eu °
Advanced prediction in « Accounting for snow over sea-ice enables a better

polar regions and beyond .. .
description of the clear-sky state and atmospheric

PN inversions
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Role of Resolution, snow model, land DA
on global snow mass reanalysis Courtesy of Patricia De Rosnay

Global (land only, no glaciers)
N Ol i T BNt AL il

CE R AN AT | L | P e e |
HTESSEL (ERA5land): no DA, high res., single-layer snow oos{ HTESSEL (ERAS5-Land) -
SL snow, no DA
HTESSEL SL: no DA as E5L but @ES5 res. - res impact HTESSEL rL639
0,024
HTESSEL ML: - no DA, snow ML impact (on SWE) E 3 Dttt " e R
> h ) £ s
* ERAS5 snow: Land DA but no IMS snow cover - insitu snow 3., ' ,’\‘ ’v'*‘ y |
DA impact (vs HTESSEL SL) and IMS snow cover impact (vs =~ & v | |PA t
) v : impac
ERAS) 8o A o
- n | s | A “..w‘ ""

» ERAS: DA of in situ + snow cover (IMS) - spurious step Z | SLsnowFull DA noIMs 4 "' ‘.‘ N L
decrease in snow in 2004 (also reported in Zsoter et al. 2020, & G R K]
Mortimer et al. 2020) ] snw’ Full DA L639

L639
im0 wes o wes o0 o5 w0 205 2020

DA impact = (snow model errors?) + (precip errors?)

—

Snow melting? Snow density?
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