
© ECMWF 2013 © ECMWF 2012

Metview Training Course – March 2013

Metview – Macro Language

Iain Russell, Sándor Kertész, Fernando Ii

Meteorological Visualisation Section, ECMWF

© ECMWF 2013

Slide 2

Macro Introduction

 Designed to perform data manipulation and plotting from

within the Metview environment

Metview Training Course – March 2013

© ECMWF 2013

Slide 3 Metview Training Course – March 2013

Macro Introduction

 Able to describe complex sequences of actions

© ECMWF 2013

Slide 4 Metview Training Course – March 2013

Macro Introduction

 Easy as a script language - no variable declarations or

program units; typeless variables ; built-in types for

meteorological data formats

© ECMWF 2013

Slide 5 Metview Training Course – March 2013

Macro Introduction

 Complex as a programming language - support for

variables, flow control, functions, I/O and error control

© ECMWF 2013

Slide 6

Macro Introduction

 Interfaces with user’s FORTRAN and C programs

Metview Training Course – March 2013

© ECMWF 2013

Slide 7 Metview Training Course – March 2013

Uses of Macro Language

 Generate visualisation plots directly

 Generate a derived data set to drop in plot or animation

windows or to input to other applications

 Provide a user interface for complex tasks

 Incorporate macros in scheduled tasks - thus use Metview

in an operational environment, run in batch mode

© ECMWF 2013

Slide 8 Metview Training Course – March 2013

Data For Tutorial

 cd ~/metview

 ~trx/mv_data/get_macro_data

Data is unzipped into

 metview/macro_tutorial

© ECMWF 2013

Slide 9 Metview Training Course – March 2013

Creating a Macro Program

 Save visualisation as Macro -

limited in scope

 Drop icons inside Macro Editor, add

extra bits

 Write from scratch (the more

macros you write, the more you

recycle those you have done,

lessening the effort)

© ECMWF 2013

Slide 10 Metview Training Course – March 2013

The Macro Editor

© ECMWF 2013

Slide 11 Metview Training Course – March 2013

The Macro Editor

Drop icons directly into the editor

Run (automatically saves the macro first)

 Tab settings (Settings | Tabs…)

 Insert function name (F2)

 Insert code template (F4)

Advanced run options

© ECMWF 2013

Slide 12 Metview Training Course – March 2013

Executing Macros Another Way

Right-click
Execute

© ECMWF 2013

Slide 13 Metview Training Course – March 2013

Macro Documentation

 All Macro functions are documented in the new

Metview 4 Confluence pages:

 https://software.ecmwf.int/metview/The+Macro+Language

 Some more Metview 4 documentation there, plus

tutorials

 But some things are still only in the Metview 3

documentation:

 http://www.ecmwf.int/publications/manuals/metview

 ‘Full’ Metview 4 documentation is in progress

© ECMWF 2013

Slide 14 Metview Training Course – March 2013

Tutorial Steps 1-4

 Steps 1-4 : Basic intro - input, basic contours, plot window,

variables and functions

 Steps 5-7 : Outputs other than on-screen

 Step 8 : Macro run mode control

 Steps 9-10 : User Interfaces in Macro

 Step 11 : Macro in Batch

 Steps 12a,b,c : Using functions in Macro (libraries)

 Embedding FORTRAN and C in Macro

© ECMWF 2013

Slide 15 Metview Training Course – March 2013

Macro Essentials - Variables

 No need for declaration

 Dynamic typing

a = 1 # type(a) = ’number’

a = ’hello’ # type(a) = ’string’

a = [4, 5] # type(a) = ’list’

a = |7, 8| # type(a) = ’vector’

© ECMWF 2013

Slide 16 Metview Training Course – March 2013

Macro Essentials - Strings

 ’Hello’ is the same as ”Hello”

 Concatenate strings with strings, numbers and dates using

the ’&’ operator

eg. ”part1_” & ”part2_” & 3

produces ”part1_part2_3”

 Obtain substrings with substring()

e.g. substring (”Metview”, 2, 4)

produces ”etv”
first last

© ECMWF 2013

Slide 17 Metview Training Course – March 2013

Macro Essentials - Strings

 Split a string into parts using parse()

 Creates a list of substrings

 n = parse("z500.grib", ".")

 print ("name = ", n[1], " extension = ", n[2])

 prints the following string :

 name = z500 extension = grib

© ECMWF 2013

Slide 18 Metview Training Course – March 2013

Macro Essentials - Dates

 Dates defined as a built-in type - year, month, day, hour,

minute and second.

 Dates can be created as literals using :

 yyyy-mm-dd

 yyyy-DDD

 where : yr, yyyy - 4 digit yr, mm - 2 digit month, dd - 2

digit day, DDD - 3 digit Julian day.

 The time can be added using :

 HH:MM or HH:MM:SS

 Eg start_date = 2003-03-20 12:01

© ECMWF 2013

Slide 19 Metview Training Course – March 2013

Macro Essentials - Dates

 Function date() creates dates from numbers:

d1 = date(20080129)

today = date(0)

yesterday = date(-1)

 Hour, minute and second components are zero.

 To create a full date, use decimal dates:

d = date(20080129.5)

or

d = 2008-01-29 + 0.5

or

d = 2008-01-29 + hour(12)

© ECMWF 2013

Slide 20 Metview Training Course – March 2013

Macro Essentials - Dates

 Note that numbers passed to Metview modules are

automatically converted to dates:

r = retrieve(date : -1, ...)

r = retrieve(date : 20070101, ...)

© ECMWF 2013

Slide 21

Macro Essentials - Dates

 Loops on dates using a for loop:

 for d = 2007-01-01 to 2007-03-01 do

 ... # each step is 1 day

 end for

 for d = 2007-01-01 to 2007-03-01 by 2 do

 ... # each step is 2 days

 end for

 for d = 2007-01-01 to 2007-03-01 by hour(6) do

 print(d)

 ... # each step is 6 hours

 end for

Metview Training Course – March 2013

© ECMWF 2013

Slide 22 Metview Training Course – March 2013

Macro Essentials - Lists

 Ordered, heterogeneous collection of values. Not limited in

length. List elements can be of any type, including lists.

List are built using square brackets, and can be initialised

with nil:

 l = [3,4,"foo","bar"]

 l = nil

 l = l & [2,3,[3,4]]

 l = l & ["str1"] & ["str2"]

 europe = [35,-12.5,75,42.5] # S, W, N, E

© ECMWF 2013

Slide 23 Metview Training Course – March 2013

Macro Essentials - Lists

 Accessing List Elements

 Indexes start at 1

mylist = [10,20,30,40]

a = mylist[1] # a = 10

b = mylist[2,4] # b = [20,30,40] (m to n)

c = mylist[1,4,2] # c = [10,30] (step 2)

© ECMWF 2013

Slide 24 Metview Training Course – March 2013

Macro Essentials - Lists

 Useful List Functions

 num_elements = count (mylist)

 sorted = sort (mylist)

 # can provide custom sorting function

if (2 in mylist) then

 …

end if

© ECMWF 2013

Slide 25 Metview Training Course – March 2013

Macro Essentials - Lists

 Useful List Functions

 mylist = [’b’, ’a’, ’a’, ’c’]

 # find occurrences of ’a’ in list

 index = find(mylist, ’a’) # 2

 indexes = find(mylist, ’a’, ’all’) # [2,3]

 # return list of unique members

 reduced = unique(mylist) # [’b’, ’a’, ’c’]

© ECMWF 2013

Slide 26 Metview Training Course – March 2013

Macro Essentials - Lists

 List Operations

 Operators acting on lists will act on each list element,

returning a list of results

 a = [3, 4]

 b = a + 5 # b is now [8, 9]

 c = a * b # c is now [24, 36]

 Lists are general-purpose, and are not recommended for

handling large amounts (thousands) of numbers – for that,

use vectors (see later)

© ECMWF 2013

Slide 27 Metview Training Course – March 2013

Macro Essentials - Fieldsets

 Definition

 Entity composed of several meteorological fields, (e.g.

output of a MARS retrieval).

 Operations and functions on fieldsets

 Operations on two fieldsets are carried out between

each pair of corresponding values within each pair of

corresponding fields. The result is a new fieldset.

 result = fieldset_1 + fieldset_2

© ECMWF 2013

Slide 28 Metview Training Course – March 2013

Macro Essentials - Fieldsets

© ECMWF 2013

Slide 29 Metview Training Course – March 2013

Macro Essentials - Fieldsets

© ECMWF 2013

Slide 30 Metview Training Course – March 2013

Macro Essentials - Fieldsets

 Operations and functions on fieldsets

 Can also combine fieldsets with scalars:

 Z = X – 273.15

Gives a fieldset where all values are 273.15 less than the

original (Kelvin to Celcius)

 Functions such as log:

Z = log(X)

© ECMWF 2013

Slide 31 Metview Training Course – March 2013

Macro Essentials - Fieldsets

 Operations and functions on fieldsets

 Boolean operators such as > or <= produce, for each

point, 0 when the comparison fails, or 1 if it succeeds:

 Z = X>0

Gives a fieldset where all values are either 1 or 0

– can be used as a mask to multiply by

– bitmap() can be used to invalidate values

e.g.

 t2m_masked = t2m * landseamask

 t2m_masked = bitmap (t2m_masked, 0)

© ECMWF 2013

Slide 32 Metview Training Course – March 2013

Macro Essentials - Fieldsets

 suppose that fieldset ‘fs’ contains 5 fields:

 accumulate(fs)

 returns a list of 5 numbers, each is the

sum of all the values in that field

 sum(fs)

 returns a single field where each value is

the sum of the 5 corresponding values in

the input fields

 Many, many more – see the user guide

e.g. mean(), maxvalue(), stdev(),
coslat()

© ECMWF 2013

Slide 33 Metview Training Course – March 2013

Macro Essentials - Fieldsets

 Building up fieldsets

 fieldset & fieldset , fieldset & nil

 merge several fieldsets. The output is a fieldset with as

many fields as the sum of all fieldsets.

fs = nil

for d = 2006-01-01 to 2006-12-31 do

 x = retrieve(date : d, ...)

 fs = fs & x

end for

 This is useful to build a fieldset inside a loop.

© ECMWF 2013

Slide 34 Metview Training Course – March 2013

Macro Essentials - Fieldsets

 Extracting fields from fieldsets

 fieldset [number]

 fieldset [number,number]

 fieldset [number,number,number]

 Examples :

y = x[2] # copies field 2 of x into y

y = x[3,8] # copies fields 3,4,5,6,7 and 8

y = x[1,20,4] # copies fields 1, 5, 9, 13 and 17

© ECMWF 2013

Slide 35 Metview Training Course – March 2013

Macro Essentials - Fieldsets

 Writing Fieldsets as Text

 Easy to save in Geopoints format (see next slide)

© ECMWF 2013

Slide 36 Metview Training Course – March 2013

Tutorial Steps 5-7

 Steps 1-4 : Basic intro - input, basic contours, plot window,

variables and functions

 Steps 5-7 : Outputs other than on-screen

 Step 8 : Macro run mode control

 Steps 9-10 : User Interfaces in Macro

 Step 11 : Macro in Batch

 Steps 12a,b,c : Using functions in Macro (libraries)

 Embedding FORTRAN and C in Macro

© ECMWF 2013

Slide 37 Metview Training Course – March 2013

Macro Essentials – Loops, Tests &

Functions

 The for, while, repeat, loop statements

 See ‘Metview Macro Syntax’ handout

 The if/else, when, case statements

 See ‘Metview Macro Syntax’ handout

 Function declarations

 See ‘Metview Macro Syntax’ handout

© ECMWF 2013

Slide 38 Metview Training Course – March 2013

 Multiple versions

 Can declare multiple functions with the same name, but

with different parameter number/types.

function fn_test ()

function fn_test (param1: string)

function fn_test (param1: number)

 Correct one will be chosen according to the supplied

parameters

Macro Essentials – Functions

© ECMWF 2013

Slide 39 Metview Training Course – March 2013

Tutorial Step 8

 Steps 1-4 : Basic intro - input, basic contours, plot window,

variables and functions

 Steps 5-7 : Outputs other than on-screen

 Step 8 : Macro run mode control

 Steps 9-10 : User Interfaces in Macro

 Step 11 : Macro in Batch

 Steps 12a,b,c : Using functions in Macro (libraries)

 Embedding FORTRAN and C in Macro

© ECMWF 2013

Slide 40 Metview Training Course – March 2013

Tutorial Steps 9-10

 Steps 1-4 : Basic intro - input, basic contours, plot window,

variables and functions

 Steps 5-7 : Outputs other than on-screen

 Step 8 : Macro run mode control

 Steps 9-10 : User Interfaces in Macro

 Step 11 : Macro in Batch

 Steps 12a,b,c : Using functions in Macro (libraries)

 Embedding FORTRAN and C in Macro

© ECMWF 2013

Slide 41 Metview Training Course – March 2013

Tutorial Step 11

 Steps 1-4 : Basic intro - input, basic contours, plot window,

variables and functions

 Steps 5-7 : Outputs other than on-screen

 Step 8 : Macro run mode control

 Steps 9-10 : User Interfaces in Macro

 Step 11 : Macro in Batch

 Steps 12a,b,c : Using functions in Macro (libraries)

 Embedding FORTRAN and C in Macro

© ECMWF 2013

Slide 42 Metview Training Course – March 2013

Tutorial Step 12

 Steps 1-4 : Basic intro - input, basic contours, plot window,

variables and functions

 Steps 5-7 : Outputs other than on-screen

 Step 8 : Macro run mode control

 Steps 9-10 : User Interfaces in Macro

 Step 11 : Macro in Batch

 Steps 12a,b,c : Using functions in Macro (libraries)

 Embedding FORTRAN and C in Macro

© ECMWF 2013

Slide 43 Metview Training Course – March 2013

Fortran and C in Macro - Introduction

 Users can write their own Macro functions in Fortran or

C/C++, extending the Macro language

 Used in tasks which cannot be achieved by macro

functions. Or use existing FORTRAN/C code to save time.

 FORTRAN/C-Metview macro interfaces support input data

of types GRIB, number, string and vector. BUFR, images

and matrices are waiting implementation.

© ECMWF 2013

Slide 44 Metview Training Course – March 2013

Fortran and C in Macro - Introduction

 3 interfaces available:

 Macro/Fortran Interface (MFI)

Uses GRIB_API for fieldsets (GRIB 1 and 2)

 Macro/C Interface (MCI)

Uses GRIB_API for fieldsets (GRIB 1 and 2)

 Legacy Macro/Fortran interface

Uses GRIBEX for fieldsets (GRIB 1 only)

Deprecated: may disappear in the future

© ECMWF 2013

Slide 45 Metview Training Course – March 2013

Fortran/C in Macro – General Approach

 Embed FORTRAN/C source code in the macro source file

 Metview will automatically compile it at run-time

 OR

 Compile FORTRAN/C program separately or take an

existing executable

 FORTRAN/C program is treated as another macro function

 E.g. specify some MARS retrievals to provide input

fieldsets, use FORTRAN/C function to provide derived

field(s);

© ECMWF 2013

Slide 46 Metview Training Course – March 2013

Fortran/C in Macro – Inline Code

 Embed the FORTRAN/C code in the macro program using

the inline keyword

© ECMWF 2013

Slide 47 Metview Training Course – March 2013

Fortran/C in Macro – External Binary

 OR specify location of the FORTRAN/C executable to the

macro program

© ECMWF 2013

Slide 48 Metview Training Course – March 2013

Fortran/C in Macro – General Approach

 Use suite of FORTRAN/C routines to get the input

arguments, obtain GRIB_API handles for interrogation of

GRIB data, save and set results, - these are the “interface

routines” (mfi_*, mci_*).

 Schematically, the FORTRAN/C program dealing with a

GRIB file is composed of

 a section where input is read and output prepared

 a loop where fields are loaded, expanded, validated,

processed and saved

 a section where output is set

© ECMWF 2013

Slide 49 Metview Training Course – March 2013

Fortran in Macro – A Simple Example

 Advection of scalar field requires FORTRAN/C program to

obtain the gradient of the field.

 Assume you will have a FORTRAN program called

gradientb returning the gradient of a fieldset in two

components (then advection is trivial). First concentrate

on the writing of the macro program itself.

 Examine macro provided, which computes advection of

specific humidity q at 700 hPa

 Examine FORTRAN source code provided, which

computes gradient of a field

© ECMWF 2013

Slide 50 Metview Training Course – March 2013

Fortran in Macro – A Simple Example

 Note interface routines, prefixed by "MFI" (e.g.

mfi_get_fieldset, mfi_load_one_grib,

mfi_save_grib). Most of the FORTRAN code is standard

to process a GRIB fieldset.

 User routine GRAD() calculates gradient of input fieldset in

two components:

 saved separately and coded as wind components -

 each can be accessed separately in the macro for the

calculation of the advection.

 Two methods for making the program visible to macros:

© ECMWF 2013

Slide 51 Metview Training Course – March 2013

Fortran in Macro – Embedding the

FORTRAN Program

 Method 1: write the FORTRAN code inline – i.e., inside the

macro code itself:

extern gradientb(f:fieldset) "fortran90" inline

PROGRAM GRADIENTB

CALL mfi_get_fieldset(fieldset_in, icount)

. . .

end inline

© ECMWF 2013

Slide 52 Metview Training Course – March 2013

Fortran in Macro – Embedding the

FORTRAN Program

 This can be written directly into the macro that will use it

or else in a separate file.

 If written to a separate file, it can be accessed with the

include macro command.

 If named correctly, it can be placed in the Macro folder of

the System folder (~uid/metview/System/Macros) . In

this case, the calling macro does not need any extra lines

in order to use this function.

© ECMWF 2013

Slide 53 Metview Training Course – March 2013

Fortran in Macro – Embedding the

FORTRAN Program

 Method 2: compile and link the FORTRAN program

separately. Then:

 a) inform the macro program where to find the FORTRAN

executable:

extern gradientb(f:fieldset)

"/home/xy/xyz/metview/fortran/gradientb"

 or b) place the executable in the Macro folder of the

System folder (~uid/metview/System/Macros)

 No need to specify this location to the macro

© ECMWF 2013

Slide 54 Metview Training Course – March 2013

Fortran in Macro – Embedding the

FORTRAN Program

 Finally, save the macro and execute to obtain the desired

result.

 The procedure above is fairly general and with minor

changes, can be adapted to other tasks just by replacing

the processing routine.

 NOTE: in some cases, it may be a good idea to perform the

GRIB handling within Macro, extract the values and

coordinates as vectors, and pass these to the inline

FORTRAN/C code instead – simpler inline code.

© ECMWF 2013

Slide 55 Metview Training Course – March 2013

Macro Essentials - Variables

 Scope and Visibility

 Variables inside functions are local

 Functions cannot see ‘outside’ variables

x = 9 # cannot see y here

function func

 y = 10 # cannot see x here

end func

 # cannot see y here

© ECMWF 2013

Slide 56 Metview Training Course – March 2013

Macro Essentials - Variables

 Scope and Visibility

 … unless a variable is defined to be ‘global’

global g1 = 9 # cannot see y1 here

function func

 y1 = 10 + g1 # can see g1 here

end func

 # cannot see y1 here

© ECMWF 2013

Slide 57 Metview Training Course – March 2013

Macro Essentials - Variables

 Scope and Visibility

 … a better solution is to pass a parameter

 … that way, the function can be reused in other macros

x = 9

func(x) # x is passed as a parameter

function func (t : number) #t adopts value of x

 y1 = 10 + t # y1 = 10 + 9

end func

© ECMWF 2013

Slide 58 Metview Training Course – March 2013

Macro Essentials - Variables

 Destroying variables automatically

 When they go out of scope

function plot_a

 a = retrieve(...)

 plot(a)

end plot_a

Main routine

plot_a() # a is created and destroyed

© ECMWF 2013

Slide 59 Metview Training Course – March 2013

Macro Essentials - Variables

 Destroying variables manually

 Set to zero

 (Variables can ‘hold’ lots of data, either in memory or in

temporary files)

 a = retrieve(...)

plot(a) # we have finished with ’a’ now

a = 0

b = retrieve(...)

plot(b)

© ECMWF 2013

Slide 60 Metview Training Course – March 2013

Macro Essentials - Geopoints

 Hold spatially irregular data

 ASCII format file

#GEO

PARAMETER = 2m Temperature

lat long level date time value

#DATA

36.15 -5.35 850 19970810 1200 300.9

34.58 32.98 850 19970810 1200 301.6

41.97 21.65 850 19970810 1200 299.4

© ECMWF 2013

Slide 61 Metview Training Course – March 2013

Macro Essentials - Geopoints

 Alternative format: XYV

#GEO

#FORMAT XYV

PARAMETER = 2m Temperature

long lat value

#DATA

-5.35 36.15 300.9

32.98 34.58 301.6

21.65 41.97 299.4

© ECMWF 2013

Slide 62 Metview Training Course – March 2013

Macro Essentials - Geopoints

 Alternative format: XY_VECTOR

#GEO

#FORMAT XY_VECTOR

lat lon height date time u v

#DATA

80 10 0 20030617 1200 -4.9001 -8.3126

80 5.5 0 20030617 1200 -5.6628 -7.7252

70 11 0 20030617 1200 -6.42549 -7.13829

© ECMWF 2013

Slide 63 Metview Training Course – March 2013

Macro Essentials - Geopoints

 Alternative format: POLAR_VECTOR

#GEO

#FORMAT POLAR_VECTOR

lat lon height date time speed direction

#DATA

50.97 6.05 0 20030614 1200 23 90

41.97 21.65 0 20030614 1200 4 330

35.85 14.48 0 20030614 1200 12 170

© ECMWF 2013

Slide 64 Metview Training Course – March 2013

Macro Essentials - Geopoints

 Operations on geopoints

 Generally create a new set of geopoints, where each

value is the result of the operation on the

corresponding input value

 geo_new = geo_pts + 1

Means "add 1 to each geopoint value, creating a new

set of geopoints".

(3, 4, 5, 6, 7, 8)

(4, 5, 6, 7, 8, 9)

© ECMWF 2013

Slide 65 Metview Training Course – March 2013

Macro Essentials - Geopoints

 Operations on geopoints

 geo_gt_5 = geo_pts > 5

Means "create a new set of geopoints of 1 where input

value is greater than 5, and 0 where it is not".

(3, 4, 5, 6, 7, 8)

(0, 0, 0, 1, 1, 1)

© ECMWF 2013

Slide 66 Metview Training Course – March 2013

Macro Essentials - Geopoints

 Filtering geopoints

 result = filter (geo_pts, geo_pts > 5)

 result = filter (geo_pts, geo_gt_5)

Means “extract from the first set of geopoints the points

where the corresponding point in the second parameter

is non-zero".

Means "create a new set of geopoints consisting only

of those points whose value is greater than 5".

geo_pts : (3, 4, 5, 6, 7, 8)

geo_gt_5 : (0, 0, 0, 1, 1, 1)

result : (6, 7, 8)

Equivalent

© ECMWF 2013

Slide 67 Metview Training Course – March 2013

Macro Essentials - Geopoints

 Example of functions on geopoints

 count (geopoints)

Returns the number of points

 distance (geopoints, number, number)

Returns the set of distances from the given location

 mean (geopoints)

Returns the mean value of all the points

© ECMWF 2013

Slide 68 Metview Training Course – March 2013

Macro Essentials - Geopoints

 Combining Fieldsets And Point Data

 Point data is stored in geopoints variables

 Combination of geopoints and fieldsets is done

automatically by Metview Macro :

 - for each geopoint, find the corresponding value in the

fieldset by interpolation

 - now combine corresponding values (add, subtract

etc.)

 - the result is a new geopoints variable

 - only considers the first field in a fieldset

© ECMWF 2013

Slide 69 Metview Training Course – March 2013

Macro Essentials – ASCII Tables

 ASCII Tables – columns of data in text files

 E.g. CSV (Comma Separated Value)

 Various parsing options for different formats

 Metview can directly visualise these, or read columns of

data into vectors (numeric) or lists of strings (text)

 Metview can currently only read ASCII Tables, not write

Station,Lat,Lon,T2m

1,71.1,28.23,271.3

2,70.93,-8.67,274.7

t2_csv = read_table(

 table_filename : 't2m.csv')

vals = values(t2_csv, 'T2m')

vals is now a vector

© ECMWF 2013

Slide 70 Metview Training Course – March 2013

Macro Essentials – Vectors

 Ordered, array of numbers. Much more efficient than lists

for high volumes of numeric data. Vectors are built using

the vertical bar symbol, and can be initialised with nil:

 v = |7, 8, 9|

 v = nil # start from nil and append

 v = v & |4.4, 5.5, 3.14| & |8, 9|

 v = vector(10000) # pre-allocate space

 v[1] = 4 # assign values to indexes

© ECMWF 2013

Slide 71 Metview Training Course – March 2013

Macro Essentials - Vectors

 Assigning/replacing a range of values at once:

v = |10,20,30,40|

v[2] = |99,99| # v is now |10,99,99,40|

© ECMWF 2013

Slide 72 Metview Training Course – March 2013

Macro Essentials - Vectors

 Operations and functions are applied to each element:

 x = |3, 4, 5|

 y = x + 10 # y is now |13, 14, 15|

 c = cos(x)

 u = |7.3, 4.2, 3.6|

 v = |-4.4, 1.1, -2.1|

 spd = sqrt((u*u) + (v*v))

© ECMWF 2013

Slide 73 Metview Training Course – March 2013

Macro Essentials - Vectors

 Accessing vector elements

 Indexes start at 1

v = |10,20,30,40|

a = v[1] # a = 10

b = v[2,4] # b = |20,30,40| (m to n)

c = v[1,4,2] # c = |10,30| (step 2)

d = v[1,4,2,2] # d = |10,20,30,40|

 # (take 2 at each step)

© ECMWF 2013

Slide 74 Metview Training Course – March 2013

Macro Essentials - Vectors

 The raw data in most file formats supported by Metview

can be extracted into a vector:

 vals = values(fieldset)

 vals = values(netcdf)

 vals = values(geopoints)

 vals = values(table, ’column_A’)

 vals = values(odb, ’column_A’)

© ECMWF 2013

Slide 75 Metview Training Course – March 2013

Macro Essentials - Vectors

 Vectors honour missing values and will not include them

in calculations

 For computations with many steps, vectors can be the

most efficient way to do it

 Stored in memory, no intermediate files on disk (but

greater memory usage!)

 Operations on lists of vectors:

a = [v1,v2] * [v3,v4]

a is now [v1*v3, v2*v4]

© ECMWF 2013

Slide 76 Metview Training Course – March 2013

Macro Essentials - Definitions

 A collection of named items (members)

 Eg

a = (x : 1, y : 2) # create definition

c = a.x # get value of ’x’

 or

c = a[”x”]

© ECMWF 2013

Slide 77 Metview Training Course – March 2013

Macro Essentials - Definitions

 Icon-functions take definitions:

acoast = mcoast(

 map_coastline_resolution : "high",

 map_coastline_colour : "red",

 map_grid_colour : "grey",

 map_grid_longitude_increment : 10,

 map_label_colour : "grey",

 map_coastline_land_shade : "on",

 map_coastline_land_shade_colour: "cream"

)

© ECMWF 2013

Slide 78 Metview Training Course – March 2013

Macro Essentials - Definitions

param_def = (param : "Z",

 type : "FC",

 date : -1,

 step : 24)

retrieve as LL grid or not according to user

choice

if (use_LL = "yes") then

 param_def.grid = [1.5,1.5]

end if

Z_ret = retrieve (param_def)

© ECMWF 2013

Slide 79 Metview Training Course – March 2013

Macro Essentials - Definitions

common_input = (levtype : "PL",

 levelist : 850,

 time : 12,

 grid : [2.5,2.5],

 type : "AN")

Uan = retrieve (common_input,

 date : -1,

 param : "U")

Van = retrieve (common_input,

 date : -2,

 param : "V")

© ECMWF 2013

Slide 80 Metview Training Course – March 2013

Macro Essentials – Data Input

 For GRIB files, read() reads the data into a fieldset

 For BUFR files, read() reads the data into an

observations variable (usually convert to geopoints before

using)

 For geopoints, read() reads the data into a geopoints

variable

 For netCDF, read() reads the data into a netcdf variable

 For ODB, read() reads the data into an odb variable

(Observational DataBase – see separate tutorial on the

web)

© ECMWF 2013

Slide 81 Metview Training Course – March 2013

Macro Essentials – Data Input

 For ASCII tables, read_table() reads the data into a table

variable

 For other ASCII data, read() reads the data into a list,

where each element is a string containing a line of the text

file. Use string functions parse() and substring() to

separate elements further.

© ECMWF 2013

Slide 82 Metview Training Course – March 2013

Macro Essentials – Data Output

 Use the write() function

using filename, subsequent calls overwrite

using file handler, subsequent calls append

 Can also use append()

 Automatic file format

fieldset -> GRIB file

observations -> BUFR file

geopoints -> geopoints file

netcdf -> netcdf file

string -> ASCII file (custom formats)

© ECMWF 2013

Slide 83 Metview Training Course – March 2013

Macro Documentation

 Metview 4 documentation here:

 https://software.ecmwf.int/metview/The+Macro+Language

 Material from this course will soon appear there!

 Some information still only on the Metview 3

documentation page:

 http://www.ecmwf.int/publications/manuals/metview

 Will be migrated to the Metview 4 pages

 Ask!

 metview@ecmwf.int

