

Metview Macro Advanced
GRIB Handling Tutorial

Meteorological Visualisation Section
Operations Department

ECMWF

19/03/2012

Metview Macro Advanced GRIB Handling Tutorial

Page 2

This tutorial was tested with Metview version 4.2.2

and will not work for previous versions.

© Copyright 2012

European Centre for Medium-Range Weather Forecasts

Shinfield Park, Reading, RG2 9AX, United Kingdom

Literary and scientific copyrights belong to ECMWF and are reserved in all countries.

The information within this publication is given in good faith and considered to be
true, but ECMWF accepts no liability for error, omission and for loss or damage
arising from its use.

Metview Macro Advanced GRIB Handling Tutorial

Page 3

Introduction
This tutorial aims to introduce some advanced concepts in handling GRIB data. In
particular, it will cover:

• masking fieldsets

• extracting point values

• extracting meta-data

Relevant reference information can be found here:
http://www.ecmwf.int/publications/manuals/metview/manual/
Functions_and_Operators_on_Fieldsets.html

Masking one Field Based on Values in Another
For this exercise, we will take a wind field and
mask out values which are above zero degrees
Celsius according to a temperature field, keeping
just the grid points where the temperature is below
zero.

Fieldset masking operations depend primarily on
two functions, bitmap and nobitmap. Their
documentation is reproduced here:

fieldset bitmap (fieldset,number)

fieldset bitmap (fieldset,fieldset)

Returns a copy of the input fieldset (first argument) with zero or more of its
values replaced with grib missing value indicators. If the second argument is a
number, then any value equal to that number in the input fieldset is replaced
with the missing value indicator. If the second argument is another fieldset
with the same number of fields as the first fieldset, then the result takes the
arrangement of missing values from the second fieldset. If the second
argument is another fieldset with one field, the arrangement of missing values
from that field are copied into all fields of the output fieldset. See also
nobitmap .

fieldset nobitmap (fieldset,number)

Returns a copy of the input fieldset (first argument) with all of its missing
values replaced with the number specified by the second argument. See also
bitmap.

http://www.ecmwf.int/publications/manuals/metview/manual/Functions_and_Operators_on_Fieldsets.html�
http://www.ecmwf.int/publications/manuals/metview/manual/Functions_and_Operators_on_Fieldsets.html�

Metview Macro Advanced GRIB Handling Tutorial

Page 4

To get you started, here is some code to read the temperature and wind fields from the
given GRIB file. Note that this is very simplistic and normally you would properly
filter the data, but this shows another way to select fields from a fieldset if you
already know their ordering.

tuv_data = read('TUV_Data')
t = tuv_data[1] # select just the first field (Temperature)
uv = tuv_data[2,3] # select the 2nd and 3rd fields (U/V)

Remember that the data are stored in Kelvin, not Celsius, and that 0°C ~= 273.15°K.

Now have a go at using the bitmap function to perform the mask. If you would like
to try this by yourself, you might find the following hints helpful.

Hints

Working backwards from what we want:

• we want to create a mask field which we can apply to the wind field using the
bitmap(fieldset, fieldset) function.

• this mask field will contain missing values where the temperature field is
above zero (we do not care what the other values in the mask field are – the
bitmap(fieldset, fieldset) function will simply copy across the
pattern of missing values)

• to create these missing values in the first place, we will use the
bitmap(fieldset, number) function; for this to work, we will need to set
all the points we wish to ‘become missing’ to one unique value

• logical operators such as <, > and = return a new fieldset where all the values
are either 1 or 0, depending on whether they pass the test

• plot the results of intermediate steps to check that they are what you expect

Solution

As is often the case, the actual code to perform this task is much shorter than the
explanation! Here is one solution with just 3 lines of code:

cold_mask = t < 273.15 # cold_mask contains just 1s and 0s
cold_mask = bitmap(cold_mask, 0) # turn 0s into missing values

uv_cold_only = bitmap(uv, cold_mask) # apply the temperature mask to
the u/v

An alternative, but equivalent, piece of logic could have been:

cold_mask = t >= 273.15 # cold_mask contains just 1s and 0s
cold_mask = bitmap(cold_mask, 1) # turn 1s into missing values

Metview Macro Advanced GRIB Handling Tutorial

Page 5

Notice something which went unsaid here: uv and therefore uv_cold_only are both
fieldsets with 2 fields – the bitmap function applied the mask to both fields. If you
look again at the documentation for this function, you will see that this is the expected
behaviour.

A common use for masking operations is to use a land/sea mask to remove land or sea
points from another field.

Extracting Point Values

Individual Points

The easiest way to find the value at a particular location in a GRIB field is to use the
nearest_gridpoint, nearest_gridpoint_info and interpolate functions.
These all take a fieldset as their first argument; their subsequent arguments provide
the location(s) of the point(s) to be extracted and can be a geopoints variable, a list
containing a latitude and a longitude, or else latitude and longitude provided as
separate arguments. The nearest_gridpoint functions also accept as their second
and third arguments vectors of latitudes and longitudes for more efficient extraction of
multiple values.

In a new macro, read any GRIB file and try to extract the values from some points.
Here is an example:

tuv_data = read("TUV_Data")

lat = 50
lon = 10

p = nearest_gridpoint(tuv_data, lat, lon)
print(p)

n = interpolate(tuv_data, lat, lon)
print(n)

i = nearest_gridpoint_info(tuv_data, lat, lon)
print(i)

Each function will return a list of results, one for each field in the fieldset. You can
see the the results of p and n are not the same; i gives more than just the raw values –
it gives the coordinates of the nearest points so you can see that they are not exactly at
the location we specified. The following output has been abridged by only
considering the first 3 fields (tuv_data = tuv_data[1,3]).

p: [282.181091309,1.51431274414,-0.407638549805]

n: [281.653313531,1.36153496636,-0.740971883138]

Metview Macro Advanced GRIB Handling Tutorial

Page 6

i:
[(value:282.181,latitude:49.5,longitude:10.5),(value:1.51431,latitude:
49.5,longitude:10.5),(value:-0.407639,latitude:49.5,longitude:10.5)]

The type of i is ‘list of definitions’. The following line of code shows how to access
particular elements of it:

print('first latitude: ', i[1].latitude)

Lists of Points

If you have a geopoints file containing a set of locations for which you wish to extract
the values from a GRIB field, the above functions will also accept your geopoints
variable as their second argument, returning a new geopoints variable with its fields
updated to contain the values from the GRIB field. Look at the supplied geopoints file
locations.gpt; the following code will use it to extract values from a set of
points:

locations = read("locations.gpt")
p = nearest_gridpoint(tuv_data, locations)
n = interpolate(tuv_data, locations)

If you set your macro to return one of these results, you can right-click examine the
macro to see what is generated.

All Points

If you wish to extract all the data points from the GRIB into a text file, the easiest way
is to use the GRIB to Geopoints icon and use it to generate the equivalent macro code.
You can then use the write function to write it to a file. Note that this will only
convert the first field in the fieldset – if you want to convert all the fields, you will
need to write a loop. Try it, or look in the solution below.

tuv_data = read("TUV_Data")

write a single field
geo = grib_to_geo(data : tuv_data)
write (getenv('SCRATCH') & '/T.gpt', geo)

write all fields
for i = 1 to count(tuv_data) do
 geo = grib_to_geo(data : tuv_data[i])
 write (getenv('SCRATCH') & '/tuv_' & i & '.gpt', geo)
end for

You can also extract the latitudes, longitudes and values as vector variables like
this:

tuv_data = read("TUV_Data")
data = tuv_data[1] # look only at the first field

lats = latitudes(data)
lons = longitudes(data)
vals = values(data)

Metview Macro Advanced GRIB Handling Tutorial

Page 7

As well as performing mathematical operations on them, the values can also be
written out to a text file in a format of your choosing. The syntax is the same as the
print command, except you should open a file handle.

This line shows how to access the individual grid points:
i = 100
print('i=', i, ', lat=', lats[i], ', lon=', lons[i], ', val=',
vals[i])

Try to write a loop which writes all the data values to a file. Sample code is provided
here:

write the whole lot out to a file
fh = file(getenv('SCRATCH') & '/field_points.txt')
for i = 1 to count(vals) do
 write(fh, 'index=', i, ', lat=', lats[i], ', lon=', lons[i], ',
val=', vals[i], newline)
end for
fh = 0 # close the file handle

Extracting Meta-Data from the GRIB Header
Metview Macro provides functions for accessing meta-data from GRIB headers using
GRIB_API. The functions are prefixed with grib_get, followed by the internal data
type that GRIB_API should use to retrieve the value (_long, _double, _string,
_long_array and _double_array). The Metview documenation page referred to
at the beginning gives details.

The following example shows a simple usage:

tuv_data = read("TUV_Data")
levs = grib_get_long(tuv_data, 'level')
print(levs)

Here, levs will be a list of numbers – one for each field in the fieldset. The output in
this case will be:

[850,850,850,300,300,300,850,850,850,300,300,300,850,850,850,300,300,3
00]

Inspect any GRIB file with Metview’s examine tool to see the available keys for that
GRIB (in this example, ‘level’ is the key), then write some code to extract this data.
Note that not all keys are valid for all GRIB files!

The following code will find the indexes of all fields whose units are Kelvin:

units = grib_get_string(tuv_data, 'units')
k = find(units, 'K', 'all')

The find function (new in Metview 4) normally returns the index of the first
occurrence of an item in a list; if a third argument, ‘all’, is given, it will return a list
of all occurrences.

This technique could be used to write a specialised GRIB filter. Try it – it just
involves looping through the list of indexes returned by find().

	Introduction
	Masking one Field Based on Values in Another
	Hints
	Solution
	Extracting Point Values
	Individual Points
	Lists of Points
	All Points
	Extracting Meta-Data from the GRIB Header

