

Metview Macro First Tutorial

Meteorological Visualisation Section
Operations Department

ECMWF

19/03/2012

This tutorial was tested with Metview version 4.2.2

and will not work for previous versions.

© Copyright 2012

European Centre for Medium-Range Weather Forecasts

Shinfield Park, Reading, RG2 9AX, United Kingdom

Literary and scientific copyrights belong to ECMWF and are reserved in all countries.

The information within this publication is given in good faith and considered to be true, but
ECMWF accepts no liability for error, omission and for loss or damage arising from its use.

INTRODUCING METVIEW MACRO

Overview
A macro language was part of the first design specification of Metview and is designed to perform
data manipulation and plotting from within the Metview system environment.

A language is the best "user interface" to describe very complex sequences of actions (particularly if
the flow of action is conditional) and it also provides a common means to express the mathematical
formulae used when performing data manipulations. The Metview macro language was designed to
be :

• as easy to use as a script language (e.g. UNIX shell) - to be as simple as a shell implies that
no variable declarations or program units should be required. This feature is achieved
through the implementation of typeless variables, a benefit of object-oriented languages.

• as powerful as a modern computer language - to be as complex as a computer language
implies support for variables, flow control, functions and procedures, I/O and error control.

The Metview macro language provides an easy, powerful and comprehensive way for a researcher
to manipulate and display meteorological data. It extends the use of Metview into an operational
environment as it enables a user to write complex scripts that may be run everyday at user defined
times.

Furthermore, the seamless integration with user written FORTRAN and C programs, access to shell
commands from within the macro code, possibility to set and use environment variables and the
ability of macro programs to be run in batch (command line mode) are major features of Metview
Macro which extend enormously its range of application.

This tutorial exercise provides a step by step introduction to the Metview Macro language, divided
in the following main sections :

• A simple visualisation task introduces Macro’s basic features

• The Macro’s task control features are applied to this simple task

• Role and implementation of functions in Macro, including the integration of user’s FOR-
TRAN and C routines

• Further short examples involving all types of data that Macro can handle

Metview Macro First Tutorial

Page 4

The Metview Macro Icon
In Metview everything is an icon, and macro programs are represented in user
workspaces by their own icon which looks like so:

Working with the macro language follows the usual Metview procedure:

• create a Macro icon, where suitable code is written and kept, which is saved in
your work space

• carry out an action on the macro icon - depending on its code you may
execute, visualise, save or drop the icon to obtain the desired output

Which action you choose to run the macro program depends on how you implement
the macro return. This is a particular topic of the tutorial, since this provides a
powerful means to control Metview tasks and allows the same macro program to be
run in a variety of ways, producing a variety of outputs.

Creating a Macro Program
You can create a macro program by one of three procedures.

The first is ideal while creating your very first programs, since it shows clearly the
relationship between icons and macro code:

• You may create (and possibly test) the icons required for the task - e.g. MARS
icon(s) and contour icon(s), and drop them inside the macro editor window.
This provides you with the macro language equivalents of the icons. You still
have to structure these into a proper macro program and add relevant
instructions (e.g. the one to plot the data). This procedure is very effective and
helpful if you want to know how to specify a given definition (or part of it) in
macro language code. Creating complex programs following this procedure
may be quite cumbersome. Note that the resulting textual translation only specifies
those parameters in the dropped icon which have been changed from their default
values.

The second offers a quick way to turn interactive code into a macro program :

• Simply save a visualisation on screen as a macro icon. This gives you a
program that can regenerate the visualisation but its scope is limited, the
automatically generated code maybe cumbersome to understand and doesn’t
help you much when you need to carry out computations on existing data

The third is just hand coding:

• Create a macro program from scratch, type in the relevant code and / or cut
and paste from other programs or available examples.

In this tutorial we will start with the first approach and then quickly move on to hand
coding due to the limitations of icon-drop programming.

Metview Macro First Tutorial

Page 5

A BASIC MACRO PROGRAM

Introduction
The first steps in this tutorial cover a simple exercise based on differences between
analysis and forecast fields. The tutorial materials consist of :

• A single GRIB file (TUV_Data) containing multi-level temperature and wind
analysis fields for 01/03/2012 and multi-level temperature/wind 5 and 2 day
forecast fields verifying in the same date

• Two GRIB Filter icons, one filtering only the temperature analysis data from the
file (Tan), the other the temperature forecast data (Tfc)

• A Simple Formula icon (fa_diff) set up to return the difference between the
temperature analysis and the forecast fields at each level

• Two Contour icons (pos and neg) providing contours suitable for temperature
difference fields

To examine the data interactively you can visualise the fa_diff icon using both the pos
and neg contour icons dropped together; you may also inspect and Examine any of the
Tan, Tfc or TUV_Data icons as well.

Other icons are provided to help in the first stages of the tutorial : a Display Window
icon (dw), a Geo View icon (ps_atlantic) and a Cross Section View icon (xs_euro).

A final word on how to carry out the tutorial exercise :
The tutorial is organised as a work through number of sequential steps. Save the result of each
step in a separate macro. Generally, to progress to the next, step duplicate the macro for the
current step and edit this duplicate.

Step1 - From icons to macro code
The quick and easy way to start coding your interactive work in macro is to simply
drop the prepared icons inside a Macro editor.

We know that visualising the fa_diff icon leads to a display window with a set of
forecast-analysis difference fields. This icon uses other icons as input, but there is no
need to worry about this :

Dropping an icon in a Macro editor will provide the macro code equivalent of the
icon, and the macro code equivalent of the all the icons it uses as input.

Start by creating a Macro icon. Rename it to step1.

Edit the macro – if you took the icon from the drawer, there will be a header line -
place the cursor after this line.

Metview Macro First Tutorial

Page 6

Double-click step1, then drag the fa_diff icon and drop it inside the macro editor
window. The following piece of text is written to it (a dummy group and user id have
been used) :

#Metview Macro

Importing : /macro_tutorial/macro_tut1/TUV_Data

tuv_data =
read("/home/xy/xyz/metview/macro_tutorial/macro_tut1/TUV_Data")

Importing : /macro_tutorial/macro_tut1/tfc

tfc = read(
 logstats : "",
 type : "fc",
 param : 130,
 date : 20120228,
 step : 48,
 data : tuv_data
)

Importing : /macro_tutorial/macro_tut1/TUV_Data

tuv_data =
read("/home/xy/xyz//metview//macro_tutorial/macro_tut1/TUV_Data")

Importing : /macro_tutorial/macro_tut1/tan

tan = read(
 logstats : "",
 type : "an",
 param : 130,
 date : 20120301,
 data : tuv_data
)

Importing : /macro_tutorial/macro_tut1/fa_diff

fa_diff = tfc - tan

Looking at the code above you can see how all the intervening icons have been
translated into Metview macro. Because each is read in turn and the TUV_Data icon is
used as input in both Tan and Tfc filter icons, the TUV_Data file is read twice. So, you
can delete the second reading of the GRIB file. You can also remove the comments,
or add your own if you so wish.

The resulting code reads the GRIB file, and then filters out the analysis and the
forecast data, storing them in the variables tan and tfc. These variables hold the
fields and are of type fieldset. This is also the type of the variables tuv_data and
fa_diff.

Note that no further action has yet been specified. So if you were to save and run the
above macro, nothing visible would happen, though the data would have been read
and filtered. So, to make things more interesting, add the line of code below :

 plot(fa_diff)

To run the macro use one of these two methods:

• Click the ‘play’ button (keyboard F9) from the Macro editor

Metview Macro First Tutorial

Page 7

• save the macro and choose Execute from the icon right-click menu
Either way, the result is a default display window with the difference fields displayed
using the default contouring.

NOTE:
You can remove the logstats lines from your macro code if you wish – they do not do
anything.

Only the non-default parameters in a dropped icon are written to the macro.

The GRIB file icon internal to the GRIB Filter icon was also translated into the macro.
When you drop an icon inside a macro editor, all of its internal (input) icons also get
translated to macro code.

Variables are typeless - they are simply created when something is assigned to them
and take the type of whatever is assigned. The memory and disk space used by
variables is released if you assign another item to the variable, or if the variable
becomes out of scope (e.g. when the macro finishes).

Whatever you do not specify in macro is provided by the system defaults (e.g. display
window and contours).

Comments in macro programs are anything preceded by the symbol #.

Strings can be inside double (“) or single (‘) quotes - both are equivalent.

Step 2 - Using contours and a display window
Duplicate the step1 macro icon and rename the duplicate step2.

In the previous step we did not specify a suitable contour and we simply used the
default projection (cylindrical) and geographical area (globe). In this step we will
specify all these elements, still by means of icon drops.

First, ensure the cursor in the Macro editor is placed before the call to the plot()
function as the icon code is inserted at the cursor location.

Second, drop the contour icons pos and neg. This adds the contour macro definitions
to the program.

Third, drop the display window icon dw after the contour definitions. This dw icon
uses the map view icon ps_atlantic as input, and this icon uses the Coastline icon acoast
as input. As before, all these input embedded icons are automatically translated to
macro.

You should obtain (after cleaning comments and excluding previous code):

pos = mcont(
 contour_line_thickness : 2,
 contour_line_colour : "red",
 contour_highlight : "off",
 contour_level_selection_type : "level_list",
 contour_max_level : 10,
 contour_min_level : 0.5,
 contour_level_list : [0.5,1,2,4,10]

Metview Macro First Tutorial

Page 8

)

neg = mcont(
 contour_line_thickness : 2,
 contour_highlight : "off",
 contour_level_selection_type : "level_list",
 contour_max_level : -0.5,
 contour_min_level : -10,
 contour_level_list : [-10,-4,-2,-1,-0.5]
)

acoast = mcoast(
 map_coastline_resolution : "low",
 map_coastline_thickness : 3,
 map_coastline_land_shade : "on",
 map_coastline_land_shade_colour : "grey",
 map_coastline_sea_shade : "on",
 map_coastline_sea_shade_colour : "RGB(0.9,0.95,1)",
 map_grid_longitude_increment : 10
)

ps_atlantic = geoview(
 map_projection : "polar_stereographic",
 map_area_definition : "corners",
 area : [30,-25,50,65],
 coastlines : acoast
)

page = plot_page(
 view : ps_atlantic
)

dw = plot_superpage(
 custom_width : 29.7,
 custom_height : 21.0,
 pages : page
)

Now, simply add the variables pos, neg and dw to the plot() function:

plot (dw, fa_diff, pos, neg)

The above line can be understood as: plot in dw, the fieldset fa_diff with the
contours pos and neg. Now run the macro.

NOTE:
The internal coastline icon was also imported even though it is placed in a hidden
folder.

The plot() function can take a variable number of arguments but it is important
that they are supplied in a well defined order :

• the first argument must be the display window variable (if you are using a non
default one)

• the second argument (or first if you’re happy with the default display window)
must be the data to be plotted

• the remaining arguments following the data must be visual definitions (e.g.
contours , wind arrows, ...) and you can have as many as you need.

Metview Macro First Tutorial

Page 9

• if plotting several data, each must be followed by the visual definition (e.g.
contour) that applies to it. If using a single visual definition for all data items,
specify all the variables first and then the visual definition.

We run the macro with the Execute action, but you can do it with other actions (or run
modes), such as Visualise, Examine or Save - the outcome would have been the same,
since we coded a specific action in the macro (plot), which is carried out irrespective
of the run mode. Later we’ll see how to make the macro respond differently to
different run modes.

Step 3 - Add some control : Variables
DUPLICATE the step2 macro icon and rename the duplicate step3.

So far the forecast step and the forecast and analysis dates are fixed and so is the plot
geography. We now create variables to hold these values in order to introduce more
flexibility in the macro. Note that Macro accepts both " and ’ as string delimiters.

Start by adding the following lines at the top of the macro:

par = "t"
vf_date = 2012-03-01
n_of_days = 5
the_area = [30,-25,50,65] # S, W, N, E

and modify the data filtering as such :

tfc = read(
 type : "fc",
 param : par,
 date : vf_date - n_of_days,
 step : n_of_days * 24,
 data : tuv_data
)

tan = read(
 type : "an",
 param : par,
 date : vf_date,
 data : tuv_data
)

Also modify the ps_atlantic definition as follows:
ps_atlantic = geoview(
 map_projection : "polar_stereographic",
 map_area_definition : "corners",
 area : the_area,
 coastlines : acoast
)

Clearly this changes nothing in the results as the program stands. However, the use of
the variables allows us to view some different outputs with relatively little change. In
addition to temperature, the source GRIB file contains U and V wind components.
Also, the forecast step is not limited to 5 days; a 2-day forecast is available in the data
file.

Metview Macro First Tutorial

Page 10

Try the following, in any order or combination:

• Change the variable n_of_days to 2.

• Change the variable par to "u" or "v" or ["u", "v"]. Note that the contour
definition used for the temperature fields may not be appropriate for wind
components. The last option defines a list of parameters; Metview will filter
out both the u and v wind components. Also note that when Metview has u and
v wind components sequentially, it will display them as a single vector wind
field.

• Change the area definition. This is a list, denoting the South, West, North and
East limits of the area to be visualised.

In real life you are likely to be filtering data out of larger GRIB files or else retrieving
data from a database. Under these circumstances you will have greater flexibility
when changing parameters.

In any case it is good programming practice to keep input values which you may need to
change, assigned to clearly named variables placed at the top of the macro - should you need
to change any of those input values you don’t need to search for their each and every
occurrence in the macro code.

NOTE:
That numbers can specify dates in some Macro functions if they follow some pre
defined formats (e.g. YYYY-MM-DD).

The way the macro language performs date manipulations - you can subtract or add
any number (integer or real) from a date and the result will be another date (down to
the second).

The use of lists - the plotting region was held in a variable of type list (the_area).
The parameter variable (par) can be a list (["u", "v"]) or, alternatively, a string ("t").
For ease of editing, you could always specify a list, even if only filtering a single
parameter, for example, ["t"].

Step 4 - Add some control : a function
Duplicate the step3 macro icon and rename the duplicate step4.

The macro language supports functions like any other programming language. Here
we provide a simple example where the difference between analysis and forecast is
computed by a function.

We will prepare a function that takes as its arguments the name of a GRIB data file, a
parameter code, a verification date and a forecast step in days and which returns the
difference field.

To do this prepare a function declaration and rearrange the macro, moving the data
reading and filtering inside the body of the function, as shown below. Things to watch
out for are highlighted in bold.

function fc_an_diff (fname, par, vf_date, n_of_days)

Metview Macro First Tutorial

Page 11

 infile = read(fname)

 fc = read(
 type : "fc",
 param : par,
 date : vf_date - n_of_days,
 step : n_of_days*24,
 data : infile
)

 an = read(
 type : "an",
 param : par,
 date : vf_date,
 step : 0,
 data : infile
)

 return fc-an

end fc_an_diff

Make sure that the three calls to read have been moved from the main body of the
program - they should now only appear in the new function definition. Likewise,
remove the tfc-tan calculation as it should also appear only in the function.

You can then call the new function. We also have to add a new variable to hold the
file name from which we filter the data. To make this more general we also exemplify
the usage of environment variables in macro :

home = getenv("HOME")
path = home & "/metview/macro_tutorial/macro_tut1/"
file_name = path & "TUV_Data"
par = "t"
vf_date = 2012-03-01
n_of_days = 5
the_area = [30,-25,50,65] # S, W, N, E

(...) # contouring and plot window

fa_diff = fc_an_diff(file_name, par, vf_date, n_of_days)
plot (dw, fa_diff, pos, neg)

At present, we are always using the contour visual definitions pos, and neg, even if
plotting wind arrows. Metview knows not to apply a contour definition to a wind
arrow plot, but we can do better than this. Drop the icon Wind Plot into the macro
editor just below the pos, and neg definitions, creating a new one called wind_plot.
Now add the following lines to select which visual definition we will use:

if (par = [’u’, ’v’]) then
 visdef = wind_plot
else
 visdef = [pos, neg]
end if

Now we just have to revise the plot command to use this selected visual definition
instead of always using pos and neg:

plot (dw, fa_diff, visdef)

NOTE:

Metview Macro First Tutorial

Page 12

The use of environment variables in macro code. Macro can read and set environment
variables (through getenv() and putenv()) and this can be extremely useful to
provide system input to the macro and to generalise your programs. A typical usage is
to retrieve paths of storage locations specified as environmental variables (e.g.
$SCRATCH).

The use of a full path to the data file. The read() function requires a full path if the
macro is being run from within the macro editor; otherwise a relative path will be ok.

The string concatenation to form the full file name. Here we concatenated the path for
the user home directory with the metview path and file name. A common usage is to
derive a file name from, for example, verification date / forecast step / parameter
specification by users who employ consistent file naming conventions.

The function code can be placed anywhere in the macro program. Functions can be
stored in separate files, forming libraries available to one or all users.

No variable types are specified for the function arguments (but they could have been).
You could have used the parameter number (130) rather than the letter ("t").

If You Have Extra Time ...

Print some statistics on the data. The following code will print information about the
first difference field (level 850hPa):

print ('minvalue: ', minvalue(fa_diff[1]))
print ('maxvalue: ', maxvalue(fa_diff[1]))
print ('average: ', average (fa_diff[1]))

Look at the output area in the Macro editor (or the Metview message window) to see
this information. Can you find the page in the Metview Macro documentation which
describes the list of available functions on fieldsets?

Add the possibility to plot onto a Mollweide-projected map. It should then be possible
to switch between the two map types by changing a single line of code.

Place the code that selects the visual definition into a separate function. It should take
as its parameter the name of the meteorological parameter to plot, and return the
appropriate visual definition. Note that the visual definitions themselves (cdiff and
wind_plot) will have to be moved into this function so that it can ‘see’ them. If you
want to return a ‘null’ visual definition if the supplied parameter is not one for which
we have a visual definition, then you can return the empty definition, ().

Progress So Far
At this stage we have successfully implemented a number of Metview Macro features
in our code. To recap let us show the full code developed so far. A few comments
have been added for clarity:

#Metview Macro

Program parameters

Metview Macro First Tutorial

Page 13

home = getenv("HOME")
path = home & "/metview/macro_tutorial/macro_tut1/"
file_name = path & "TUV_Data"
par = "t" #['u','v']
vf_date = 2012-03-01
n_of_days = 5
the_area = [30,-25,50,65] # S, W, N, E

Define some visual definitions

pos = mcont(
 contour_line_thickness : 2,
 contour_line_colour : "red",
 contour_highlight : "off",
 contour_level_selection_type : "level_list",
 contour_max_level : 10,
 contour_min_level : 0.5,
 contour_level_list : [0.5,1,2,4,10]
)

neg = mcont(
 contour_line_thickness : 2,
 contour_highlight : "off",
 contour_level_selection_type : "level_list",
 contour_max_level : -0.5,
 contour_min_level : -10,
 contour_level_list : [-10,-4,-2,-1,-0.5]
)

wind_plot = mwind(
 wind_arrow_thickness : 4,
 wind_thinning_factor : 4
)

acoast = mcoast(
 map_coastline_resolution : "low",
 map_coastline_thickness : 3,
 map_coastline_land_shade : "on",
 map_coastline_land_shade_colour : "grey",
 map_grid_longitude_increment : 10
)

ps_atlantic = geoview(
 map_projection : "polar_stereographic",
 map_area_definition : "corners",
 area : the_area,
 coastlines : acoast
)

Define the display window

page = plot_page(
 view : ps_atlantic
)

dw = plot_superpage(
 custom_width : 29.7,
 custom_height : 21.0,
 pages : page
)

Check which visual definition to use: contour or wind arrows?

if (par = ['u', 'v']) then

Metview Macro First Tutorial

Page 14

 visdef = wind_plot
else
 visdef = [pos, neg]
end if

Derive the difference field

fa_diff = fc_an_diff(file_name, par, vf_date, n_of_days)

Plot the result

plot (dw, fa_diff, visdef)

===

A function to compute a difference field
Author, date, restrictions, argument types, etc,...

function fc_an_diff (fname, par, vf_date, n_of_days)

 infile = read(fname)

 fc = read(
 type : "fc",
 param : par,
 date : vf_date - n_of_days,
 step : n_of_days*24,
 data : infile
)

 an = read(
 type : "an",
 param : par,
 date : vf_date,
 step : 0,
 data : infile
)

 return fc-an

end fc_an_diff

Clearly there are weaknesses in the current program, mainly:

• The macro program is only catering for on-screen visualisation. Other
alternatives such as PostScript are available but there is a need to choose
between them without editing the code

• Users need a way to pass arguments to the macro without having to edit the
code each and every time.

The next section will show how to implement user control over macro program runs.

Metview Macro First Tutorial

Page 15

OTHER MACRO OUTCOMES
With Metview Macro you can specify a variety of outcomes for your task other than
the on- screen visualisation we have been dealing with so far. You may also :

• return the output to the user (e.g. when the macro icon is dropped somewhere)

• save the output (whether GRIB, BUFR, text) to a file

• visualise the output on a medium other than the screen (PS, JPEG or PNG
files)

Here we show simple examples of how to obtain these outcomes.

Step 5 - Macro Return
Duplicate the step4 macro icon and rename the duplicate step5.

So far we have been executing the macro files that we have written. What happens if
you drop this icon inside an existing display window? Nothing, because the macro did
not explicitly provide any return information about what must be plotted.

To solve this, consider the entire macro as a function which can return something. We
simply remove the plot_superpage() command and replace the plot()
instruction with a return instruction:

the previous code
(...)

fa_diff = fc_an_diff (file_name, par, vf_date, n_of_days)
return fa_diff

The macro can return more than a simple fieldset or item; returned items can be more
complex objects, such as lists, which can hold a variety of different variable types:

(...)
return [fa_diff, visdef]

This can be used to provide not only the data but also suitable visual definitions.

Running the macro by itself will no longer result in a plot because we have removed
the plot() command.

Now, when you drop the macro icon in a display window, the macro output (in this
case a difference field and a contour) is returned to Metview which will pass it to the
visualisation module and hence the field will be visualised with the specified contour.
If returning only the field, it will be visualised with the default contours; if returning a
list of field plus contour it will use the returned contours.

Try dropping the macro in the visualised Geo View icon Mollweide; also try
dropping it into the visualised cross-section view icon xs_euro. You can also try cre-
ating a display window with a frame for a cross-section and a frame for a geo view.

Metview Macro First Tutorial

Page 16

NOTE:
Macros that return fieldsets (or other data such as geopoints) are a powerful feature in
that they can be used as input to another application, e.g. a GRIB Filter, a Cross-Section,
etc.,. This is particularly relevant when you need to operate on a field which may be
the result of a very complex calculation only feasible to carry out by means of Macro.

In Metview 3, the call to plot_superpage() would have to be commented out in
order to avoid an empty Display Window being generated by the macro. In Metview
4, the Display Window will only be generated when the plot() command is called,
so we can leave the code harmlessly in place.

Step 6 - Saving Output to a File
Duplicate the step5 macro icon and rename the duplicate step6.

Apart from visualisation and returning we can use macros to derive data files. This
may be your express purpose or you may need to do it if the derived data takes too
long to calculate, and/or is too complex and/or is too large. In this situation you
simply save the result of your calculations to a file.

In our tutorial example, all you need to do to save the difference field to a GRIB file
is to replace the return instruction of the previous step by a suitable use of the function
write() :

previous code
(...)

saving the resulting data
write("Diff.grib", fa_diff)

This creates the file in the same directory where you run the macro from. You may
also use a file handler to do the same job in a different way (see NOTE to understand
the difference):

previous code
(...)

saving the resulting data
fhan = file("Diff.grib")
write(fhan, fa_diff)
fhan = 0 # this closes the file

You do not need to specify what kind of data is being written. The macro will know
what data type the variable holds and write() will create the right kind of file (e.g.
a fieldset is written to a GRIB file). The file, if saved within the Metview environment
(directory tree) will be assigned the icon of that file type.

NOTE:
When writing just once, it does not matter much whether you use a filename or a file
handler. However, when writing multiple times to a file, the choice does matter:

Metview Macro First Tutorial

Page 17

• when using a filename, write() will always overwrite the given file with
new data.

• when using a file handler, write() will overwrite an existing file, but append
on subsequent calls using the same file handler.

• there exists a similar function, append() which will always append data to a
file, even a pre-existing one; it does not matter here whether a filename or a
file handler is used.

• there are other more subtle differences between using file names and file
handlers - see the Metview User Guide.

In all cases you can specify a path to save the output in a place other than the current
folder.

Step 7 - Other Visualisation Media (PS/PDF/
PNG/SVG)
For this step we require again the geographic details and display window definition,
so duplicate the step4 macro icon and rename it step7. Note: we make a copy of step4!

So far we have been visualising on the screen. You can obtain a PS, PNG, PDF, SVG,
etc. from the Display Window’s Export button, but you may need to produce the
output directly to one (or more) of these formats, either because that is the desired end
product or because you run the macro in batch and hence cannot use an interactive
visualisation.

The way to code for other output devices is to specify them with the xxx_output()
functions and set the one(s) you want to use with the setoutput() function.

The new code follows after the set up of the input variables :

Program parameters

home = getenv("HOME")
(...)

define some output media

outfile = path & 'diff'
to_psfile = ps_output (output_name : outfile)
to_pngfile = png_output(output_name : outfile)
to_svgfile = svg_output(output_name : outfile)

set the required output medium to one of the defined above

setoutput(to_psfile)

Remainder of macro code (geography, display window, plot cmd,...)
(...)

Metview Macro First Tutorial

Page 18

Now save and execute the macro. The result will be a PS file represented by a PS
icon, or a series of PNG or SVG files represented by their respective icons. Alter-
natively, the plot may be visualised on-screen by removing or commenting out the
setoutput command. Try changing the setoutput call in order to see each type of
output. If you have need of more than one output format, you can pass them all to the
setoutput command, for example these are equivalent:

setoutput(to_psfile, to_pngfile) # passing two variables
setoutput([to_psfile, to_pngfile]) # passing a single list variable

NOTE:

A number of output device definitions are provided, (to_psfile, etc) one or more of
which are explicitly selected with the setoutput() function. You needn’t specify
anything if you want your output on-screen, since this is the default output medium.
There is no harm in keeping the definitions for output formats you will not use – for
example, if you do not use to_svgfile, then defining it will have virtually no
impact on performance.

For some output types, Metview automatically appends a number and an extension to
the supplied filename. This is because these types cannot hold more than one ‘page’
per file.

In Metview 3, the function setoutput() had to come before the setting up of the
display window. The display window must be defined if you use setoutput(). This
restriction is no longer true in Metview 4.

If You Have Extra Time ...

There may be cases where an output filename should reflect the nature of the data.
Add some code to generate a meaningful filename using the parameter name, the
forecast step and the analysis date as elements. An example output filename for
PostScript might be:

t_20120301_5_diff.ps

For the ‘uv’ case, you will have to translate the list [‘u’, ‘v’] into a string. The
following piece of code checks for the case where the parameter is a list and makes a
single string out of its elements:

if (type (par) = 'list') then
 parameter_name = ""

 loop element in par
 parameter_name = parameter_name & element
 end loop
else
 parameter_name = par
end if

The function yyyymmdd() takes a date and creates an eight-digit number out of it.
The Metview User Guide details many functions that can be used to produce different
formats from a date. Numbers are automatically converted to string form when
appended to a string.

Putting everything together, a possible line of code to produce the filename could be:
outfile = path & parameter_name & '_' & yyyymmdd(vf_date) & '_'

Metview Macro First Tutorial

Page 19

 & n_of_days & '_diff'

Add another line to the title, specifying the number of days that the forecast represents
(held in variable n_of_days). To get the basis for the code, you can create a new
Text Plotting icon, add a second line to it, then drop it into the Macro editor for
further editing. Remember to add your title definition to the plot() command.

Plot to an SVG file. Then examine the resulting
SVG icon to open it in the editing program
Inkscape. After some Ungroup commands, you
will be able to edit individual features in the file.

Metview Macro First Tutorial

Page 20

MACRO RUN MODE CONTROL
Given the possible outcomes from Macro, it would be convenient to cater for all of
them from within the same program; otherwise you will need to keep duplicated code.
To do this, remember that you can run a macro program either :

• by choosing one of the following options from its icon menu:
o Execute

o Visualise

o Save

o Examine

• or by dropping the icon in a plot window or editor window icon field

• or by running in batch mode.

The way a macro is run is called the macro run mode. The four icon menu options
above correspond to an identically named run mode. The last two options correspond
to the run modes Prepare and Batch respectively. There is a also an Edit run mode, used
for coding user interfaces (see below).

A macro can detect its own run mode and this provides the solution to our problem -
we can assign specific actions and outcomes to each (or some) of the run modes
including preventing the macro from running.

In our example we follow a very widespread usage of using run modes to specify
different media for the macro output :

• plot to a display window if the run mode is Visualise

• print to a PNG file if the run mode is Execute

• print to a PS file if the run mode is Batch

• save the difference fields to a file if the run mode is Save

Step 8 - Macro Control Using runmode()
Duplicate the step7 macro icon and rename the duplicate step8.

The way to code run mode dependent outcomes is by using the function runmode().
It returns a string with the run mode:

mode = runmode()

So it is enough to check this string and to code accordingly, either using if/else
conditions or the case/of condition test.

To introduce the new functionality replace the existing unconditional call to
setoutput() by the following lines of code :

define four output media
(...)

Metview Macro First Tutorial

Page 21

check run mode
mode = runmode()

select outcome dependent on run-mode
if (mode = "execute") then setoutput(to_pngfile)
else if (mode = "batch") then setoutput(to_psfile)
else if (mode = "visualise") then print('Plotting to screen')
else if (mode = "prepare") then print('Plotting to screen')
else fail("Only execute, batch and visualise allowed")
end if

remaining code
(...)

Now, depending on how you call the macro your output will be directed to different
media. Choose different options from the icon’s right-click menu to see what happens.
Note that you can also simulate these actions from within the Macro editor (Program |
Run Options). The ‘prepare’ run mode is the default one when you run your macro
from the Macro editor. The ‘batch’ run mode will be explained in a later paragraph.

If you select an option not covered by the allowed run modes (e.g. Save or Examine),
the macro will stop, turn red (failed run) and issue an error message - this behaviour is
provided by the fail() function. A related function, stop(), will do the same but
allow the macro to exit in the green state (successful run).

Note that you may have to delete the output files before running the macro in order to
see that it has worked!

To run the macro in batch mode, you call Metview with the option -b followed by
the macro name on the command line (assuming you are running from the same directory
as the macro - otherwise you must provide a path to it). For example:

metview -b step8

or
metview4_new -b step8 [use this one for the ECMWF March 2012 course!]

The newlines within the conditional branching part of the code are down to personal
preference. You could also have formatted the code as follows:

if (mode = "execute") then
 setoutput(to_pngfile)
else if (mode = "batch") then
 setoutput(to_psfile)
...

If You Have Extra Time ...

One important piece of functionality that we have omitted is the ability to save our
derived data. Add some code to handle the Save run mode by saving the derived data
in a file. There are three things you will have to do:

• at the end of the run mode checks, instead of
 else fail (...)

• we should not fail if the mode is “save”:
 else if (mode <> "save") then fail (...)

• we must again check the run mode, and if it is Save then write the data to a file
(see Step 6); otherwise plot the data.

Metview Macro First Tutorial

Page 22

USER INPUT TO MACRO PROGRAMS
So far we have been developing examples of short illustrative macro programs, but
one very desirable element is missing: the flexibility to run the same code for different
parameters - e.g. you should be able to use the code of the above examples to plot
differences for other parameters, other dates or forecast steps.

When users need to provide variable input to the macro this clearly shouldn’t be done
by editing the code every time. Here a distinction needs to be made between minor
and major input:

• minor input consists of small, infrequently changing items such as the
directory path to a file store; this is better handled via environment variables.

• major input consists of files, retrieves, contour icons, etc., and this is handled
by building a user interface.

For minor input via environment variables we have provided an example in the code
from step 4 onwards, where we read the user’s home directory from the environment
variable $HOME. This is pretty much all there is to it in terms of accessing the
environment variables, though frequently users will use the value stored in the
environment variable to choose between two options.

This section addresses how to provide major input to a macro program via graphical
user interfaces similar to those of icon editors, built by the user code. A user interface
is defined by the input elements (things such as sliders and option buttons) and their
layout. Macro implements such user interface input elements as functions you can
call. You may also define default values, so the macro can run with some regularly-
used set of values.

So all you have to do is to write the code for the user interface. Then the code has to
retrieve the information you input in the user interface and pass it on to the part of the
code that carries out the calculations.

There are two ways to implement a user interface :

• The first implementation of user input, demonstrated in step 9, is self-
contained within a macro program. It uses the macro dialog() function.

• The second, demonstrated in step 10, uses a related Metview Module called
Macro Parameters in conjunction with the Macro module itself.

Step 9 - User Interface 1 : dialog() Function
Duplicate the step4 macro icon and rename the duplicate step9. Note: we make a copy
of step4!

This implementation of a user interface to enter input is self contained within a macro
program, using the macro function dialog(). The steps are as follows :

• Create a set of input elements to form a user interface. These are created via
the input element functions.

Metview Macro First Tutorial

Page 23

• Pass the returns from the input element functions to the dialog() function.
This creates the user interface and presents it to the user who may then modify
the input values at will.

• dialog() extracts the input values which are then assigned to a definition
variable to be used in the remainder of the macro.

The input elements that we will enable users of this macro to enter in the user
interface will be :

• A GRIB icon storing the analysis and forecast data

• The verification date

• The forecast step

• The meteorological parameter

• The geographical area to plot

First, you will need to modify the function fc_an_diff() so that it accepts a
data object instead of a file name as the first argument. Simply remove the read()
instruction on the function’s first line and replace its first argument by the variable
infile. We need to do this as we will supply the data icon directly through the user
interface.

Second, you can remove the hardcoded variables sitting at the top of the macro, as the
user interface will take their place.

The following code shows the changes you need to make to the macro.

Program parameters

home = getenv("HOME")
(...)

define the user interface components
a = icon(
 name : "input data",
 class : "GRIB"
)

b = any(
 name : "verif date (yyyy-mm-dd)",
 default : "2012-03-01",
 help : "help_script",
 help_script_command : "echo Dates must be in YYYY-MM-DD
format"
)

c = slider(
 name : "days",
 min : 1,
 max : 10,
 default : 5
)

d = option_menu(
 name : "parameter",
 values : ["UV", "t"],
 default : "t"
)

e = any(
 name : "area",

Metview Macro First Tutorial

Page 24

 help : "help_input",
 input_type : "area",
 default : [30,-25,50,65] # S, W, N, E
)

retrieve the input values
input = dialog([a, b, c, d, e])

if input <> nil then
 indata = input["input data"]
 vf_date = input["verif date (yyyy-mm-dd)"]
 n_of_days = input["days"]
 par = input["parameter"]
 the_area = input["area"]

 # translate "UV" into a list, since that is what ’read’
understands
 if (par = "UV") then
 par = ["u", "v"]
 end if

else
 fail("macro failed to get input elements")
end if

print (vf_date, " ", n_of_days, " ", par)

vis defs, geography and display window
(...)

derive and plot the difference field
fa_diff = fc_an_diff(indata, par, vf_date, n_of_days)

plot(dw, fa_diff, visdef)

The first section of the code creates a user interface with five input elements: an icon
field Input Data which accepts only GRIB data icons; a text field Verif Date with a
default value of 2012-03-01 (‘any’ means the input text can be a number, a string, a
date, a list, etc.) and a help button which executes a shell command in order to display
a message; a slider Days with a minimum of 1, a maximum of 10 and a default value of
5; an option menu Parameter with two options t and UV; and a text field Area which
includes a help button, enabling the user to easily select an area via a graphical user
interface (see the help and input_type members).

In the second part of the code, a list containing these user interface elements is passed
to dialog() which presents the user interface to the user and returns a definition
variable called input which holds the input values. The input values are extracted
from this definition and used in the remainder of the macro. Note that when working
with U/V pairs, we need to supply the read() function with a list, not a string, hence
there is some additional code to perform this conversion.

To run the macro, Execute or Visualise it: a simple user interface comes up ready for
user input. This interface has input tools similar to those you can find in other icon
editor windows.

Specifying values for Verif Date, Days, Parameter and Area is straightforward. The input
file is specified simply by dropping the data icon in the icon field. Once you finish
specifying the input parameters, click-left the OK button and the macro will run. In
this way you can use the same macro to plot analysis vs forecast of any number of

Metview Macro First Tutorial

Page 25

days of either T or U/V, for any date, in a chosen geographical area (within the limits
of the data available in the file). You may wish to modify the macro so that the user
can also select the U and V wind components separately - this is a one-line change to
the definition of the Parameter input element. Note, however, that you may wish to
provide a different contour definition for these parameters.

Step 10 - User Interface 2 : Macro Parameters
Duplicate the step9 macro icon and rename the duplicate step10.

The main problem with using dialog() for managing user interfaces is that the
user’s preferences are not stored. If the defaults specified in the macro are not
suitable, then either the macro must be changed or the user must adjust the input
values each time they use the user interface.

An alternative way to provide user input to a macro program uses an auxiliary module
to Macro, named Macro Parameters. Once it has been set up, you will interact with your
macro through the Macro Parameters icon which can then store the values you have set
in the user interface. If you edit the Macro Parameters icon, it will call the edit handler
in your macro. Similarly, visualising the icon will call the visualise handler in
your macro. Handlers are special functions which are alternative entry points to your
macro.

The macro will implement a special handler called edit, called by the Macro
Parameters icon when you edit the Macro Parameters icon. Within this handler, the
required input elements (e.g. sliders, option buttons,...) are specified in exactly the
same way as in the previous step and returned as a list of controls.

Because of this set-up, we will also prevent the macro icon from running by itself.
This is achieved by checking the run mode at the start of the macro and preventing
action for all except run mode Edit.

prevents macro from working except if with Parameters
mode = runmode()

if not(mode = "edit") then
 fail("Error : Must use Macro with Parameters")
end if

on edit
 # define input elements a to e as in previous step
 (...)
 return [a, b, c, d, e]
end edit

Now, the rest of the macro will implement the passing of the values in a definition
using the same names. Here we restrict the operation to the Visualise run mode. All
other run modes will cause the macro to fail. The rest of the code will be:

on visualise(input)
 indata = input["input data"]
 vf_date = input["verif date (yyyy-mm-dd)"]
 n_of_days = input["days"]
 par = input["parameter"]
 the_area = input["area"]

Metview Macro First Tutorial

Page 26

 (...)

 fa_diff = fc_an_diff(indata, par, vf_date, n_of_days)

 plot(dw, fa_diff, visdef)
end visualise

exit program if not visualised
on execute(input)
 fail("Error : Visualise only")
end execute

on save(input)
 fail("Error : Visualise only")
end save

on examine(input)
 fail("Error : Visualise only")
end examine

on prepare(input)
 fail("Error : Visualise only")
end prepare

Note the code to trap any unwanted action or error in execution - the Macro program
icon cannot be used except within a Macro with Parameters icon; this is done by only
allowing the edit run mode. The Macro with Parameters icon can only be visualised, by
explicitly stopping the macro for any other handler / run mode.

To operate, create a Macro with Parameters icon and Edit it. Drop the macro program
icon inside its icon field. This builds a user interface in the icon editor - provide the
input as in the previous step and save the icon. Rename it to Step10.par (or whatever
you like).

To obtain your output simply visualise the Macro Parameters icon.

Apart from the obvious difference in the mode of operation, using Macro Parameters
allows you to keep the values you have last entered rather than reverting to the
defaults as is the case with the dialog() function. The idea is that you can have
several of these Macro Parameters icons each with different sets of input elements.

If you want to see exactly what information a Macro Parameters icon stores, click on
the icon at the top-left of its editor.

If You Have Extra Time ...

Add a control to the user interface to allow the selection of contouring styles for
temperature difference fields. There is another contouring icon, diff_shade, which
can be incorporated into the macro for this purpose.

Add a control to determine whether or not to apply land and sea shading to the
coastline rendering. Note that you can use code similar to this in order to dynamically
modify the coastlines:

mycoast = (map_coastline_resolution : "medium",
 ...) # this variable is a 'definition'

coast_shade = (map_coastline_land_shade : "on",
 ...) # this variable is a 'definition'

Metview Macro First Tutorial

Page 27

if (user_wants_coast_shading) then
 mycoast = (mycoast, coast_shade) # merge the two definitions
end if

acoast = mcoast(mycoast) # create a coastline out of the definition

Metview Macro First Tutorial

Page 28

RUNNING MACRO IN BATCH MODE
So far the tasks carried out have been interactive - they require an operator (you) to be
physically present and click mouse buttons for actions to take place. However, this
may be limiting and eventually you will want to automate a task or set of tasks (e.g.
routine plots of meteorological variables).

This may simply be a question of style (command line exclusivists), but more
frequently it is a crucial requirement - either for repetitive tasks or for long tasks that
need to be run overnight, for tasks embedded in shell scripts, etc.

Macro programs run in batch mode offer that possibility, particularly when coupled
with shell scripts and scheduling procedures.

How to run in batch
Metview runs in batch mode when option -b is specified when you first call it. You
can run Metview in batch mode while having a Metview interactive session up and
running. To run a macro in batch mode simply specify its name on the command line,
e.g.:

% metview -b macro_name

Or

% metview4_new -b macro_name [use this one for the
ECMWF March 2012 course!]

where macro_name is the name of the macro you want to run. You can specify a path
to the macro if not running from its own directory.

When Metview is run in batch you cannot have on-screen visualisations. Hence, the
result of the macro must be one of the following two:

• a plot in a PS, PNG, etc. file

• a data file (GRIB, geopoints, ASCII) with the results of the macro

Step 11 - User Input in Batch Mode
Duplicate the step7 macro icon and rename the duplicate step11.

If running macro in batch, it is frequently/usually required that you pass arguments to
it. These have to be provided on the command line, since interactive functionality is
not available. The general form of the macro run in batch is:

% metview -b macro_name input1 input2 ... inputn

where inputi describes an arbitrary number of input arguments.

Metview Macro First Tutorial

Page 29

To run this macro in batch mode, we need to pass the variables at the top of the macro
as command line arguments, e.g.:

% metview1

But the macro needs to retrieve the arguments from the command line. To do this we
need to use the arguments() function. The arguments() function parses all the
command line arguments that follow the macro name and returns them as a list,
whose elements can then be addressed/retrieved individually.

 -b step11 2012-03-01 5 t TUV_Data

It is also good practice to provide a check on the number of arguments. Further checks
could be done on the type (number, string, date,...) of the input arguments using the
type() function.

To implement command line argument retrieval, remove the hardcoded variables
sitting at the top of the macro (apart from the_area) and replace with the following
piece of code :

command line arguments retrieved and stored in list
input = arguments()

check number of args and extract from list
if count(input) <> 4 then
 fail("wrong number of args - needs YYYY-MM-DD STEP PARAM
FILE_NAME")
else
 vf_date = input[1]
 n_of_days = input[2]
 par = input[3]

 home = getenv("HOME")
 path = home & "/metview/macro_tutorial/macro_tut1/"
 file_name = path & input[4]
end if

print ('Date: ' & vf_date & ', Days: ' & n_of_days)
print ('Parameter: ' & par & ', File: ' & file_name)

translate "UV" into a list, since that is what ’read’ understands
if (par = "UV") then
 par = ["u", "v"]
end if

Since only PS output is to be allowed you can remove the other unused output defini-
tions. The remainder of the macro would remain the same.

To run this macro, type the following on the command line (repeated from above):
% metview1 -b step11 2012-03-01 5 t TUV_Data

NOTE:
The macros run in batch are ideally suited to be incorporated into shell scripts. The
above example is still specific in that it looks for the input file in a particular
directory. This is the kind of parameter that could be read by the macro from an
environment variable (e.g. $DATADIR) or passed on the command line to make it
more general.

1 Use metview4_new instead of metview for the ECMWF March training course

Metview Macro First Tutorial

Page 30

If You Have Extra Time ...

Adapt the macro to accept another input parameter which will be added as a third line
of text to the title. On the command line, wrap the text in quotes if it contains any
spaces - otherwise Metview will see it as multiple parameters.

Metview Macro First Tutorial

Page 31

USING FUNCTIONS IN MACRO
User written functions in macro can be organised in ways other than keeping them
inside the macro program. This is particularly advantageous if the function performs a
useful and likely to be repeated task.

Metview offers several ways to organise your code, which we will review briefly. We
will take as a working example one of the programs resulting from the first part of the
tutorial. We’ll use that of Step 4 for simplicity, but this is applicable to any of the
other programs. The preparatory steps are:

• Duplicate the step4 macro and rename to step12

• Create a new Macro icon and bring up its editor

• Cut the function text from the step12 macro and paste to the new macro

• Rename the new macro with the name of the function

You should end with two macros, step12 with the main code, and fc_an_diff
containing the function code.

Step 12a - Including a Function
The include command literally includes the text of any macro at the insertion
point. In our current example to make the function available to the rest of the
program, it is enough to add the line:

 include "fc_an_diff"

anywhere in the macro.

The included macro is read at the point where the include instruction is found. You
can specify absolute or relative path names (understood to be relative to the position
of the macro being run, so be careful if you are running from within the macro editor):

 include ".../uid/metview/mylib/fc_an_diff"

In this way you can place small libraries of functions in macro files, stored in a folder
of your choice, ready for inclusion.

 NOTE:

Inclusion does not require the included macro to be a self contained program or
function, any partial fragment of code can be included.

Changes in a program which is included will affect all the macros that include it.

An include statement is interpreted before the rest of the macro is executed, including
lines that precede the include statement. This means that you cannot, for instance, use a
dynamically generated path to find the file to be included.

Metview Macro First Tutorial

Page 32

Step 12b - Function in a User/System Library
This is the method that can be really described as building a library of functions. Its
principle is very simple - place macro functions in a particular folder which is
searched by the function look- up procedure so they can be called from any macro
program without the need for an include statement.

In your case, simply drag the fc_an_diff macro icon to the folder
~/metview/System/Macros. From then on you can call this function from within
any of your macros. This allows you to build your own personal function library. For
a function to be available to all users, you need to place the macros with the functions
in a system wide Macro folder - your local Metview developer/guru will be of help.

Metview Macro First Tutorial

Page 33

FORTRAN AND C IN METVIEW
MACRO
The ability to embed FORTRAN and C programs within macros is a very powerful
feature of the Metview macro language. It extends immensely the scope of the macro
language and enables you to make efficient use of existing resources.

FORTRAN or C programs are used in tasks that cannot be achieved by means of a
function or combination of functions of the macro language. This happens for
example if the task requires calculations which are a function of gridpoint positions.
Otherwise, it may be that you already have suitable FORTRAN or C code and the
writing of the same task in macro language would simply consume precious time.

Currently the FORTRAN/C Metview macro interface is supported for input data of
types GRIB, number, string and vector. BUFR, images and matrices are awaiting
implementation. This exercise emphasises GRIB input.

Note that there are three interfaces available: the Macro/FORTRAN Interface (‘mfi’)
and the Macro/C Interface (‘mci’) use GRIB_API for GRIB handling (compatible
with GRIB editions 1 and 2). A ‘legacy’ interface which uses GRIBEX is available
but is deprecated and will not be discussed here – please use one of the other
interfaces.

This tutorial focuses on the ‘mfi’ interface, but equivalent example code is also
provided for the C interface.

General Approach
The basic principle is that FORTRAN programs are treated and work as any other
macro function. In fact, with the proper implementation method, a user cannot
distinguish by looking at the calling macro code between a FORTRAN program and a
macro function. There are two ways of using a FORTRAN program from a macro:
inlined and external. When a FORTRAN program is inlined, its source code is written
directly into the macro’s source file. This is the preferred way to use FORTRAN
programs with macro, as the user does not need to separately compile the program -
this is done automatically when the macro is run, using compiler settings that are
consistent with the Metview installation. The other option is to compile the
FORTRAN program into an external executable and reference this from the macro.
This has the disadvantage of being less portable (the executable will probably not be
portable across platforms) and the user also has to ensure that the compiler settings
are correct, and that the correct libraries are linked.

The requirements on either side are:

Macro side - you need only to use the FORTRAN function, e.g ensuring its input
data is available and correct, and its output used downstream. If using an externally
compiled executable, there will be a single declaration to provide; if using inlined
code, then the FORTRAN source will be written into the macro.

Metview Macro First Tutorial

Page 34

FORTRAN side - clearly you need to write the FORTRAN program; if creating an
external executable, you will need to compile and debug / test it. To write the code,
you have available a suite of FORTRAN routines which do the basics for you. These
are known as interface routines and they carry out tasks such as:

• get the input arguments

• decode GRIB headers

• create empty outputs (e.g. fieldsets)

• save and set results

At its simplest, the FORTRAN program dealing with a GRIB file is composed of

• a section where input is read and output prepared

• a section (loop) where the fields are loaded, expanded, validated and the
processing carried out (usually within a routine) and the result saved

• a section where output is set
If compiling the FORTRAN program externally, the executable has to be specified
via an extern declaration in the macro code, or alternatively must be placed in a
folder that Metview scans automatically during the function loading procedure (e.g.
the Macros folder within the System folder).

Simple Example - Advection of a Scalar Field

The Metview macro program

This example demonstrates a simple task which requires you to derive a fieldset from
some input fieldset using a FORTRAN program: obtaining the advection of a scalar
field which requires a FORTRAN program to compute the gradient of the field.

You could assume that you would have the FORTRAN program doing what you want
and for the time being concentrate on the writing of the macro program itself.
Assume, therefore that you will have a FORTRAN program called gradientb which
returns the gradient of a fieldset in its two components. Once you have this, it is a
trivial task to compute the advection of the scalar quantity for which you calculated
the gradient. The following macro computes the advection of specific humidity q at
700 hPa. Create a new Macro icon and rename it q_advection. Copy the following code
into it. Alternatively, copy the pre-prepared q_advection file from the Solutions folder
and study it.

set the area we wish to retrieve data from
N, W, S, E

area_xx = [70, -45, 10, 85]

Retrieve the specific humidity
q = retrieve(

Metview Macro First Tutorial

Page 35

 date : -1,
 param : "q",
 level : 700,
 grid : [1.5,1.5]
)

Get the u and v components of the wind
u = retrieve(
 date : -1,
 param : "u",
 level : 700,
 area : area_xx,
 grid : [1.5,1.5]
)
v = retrieve(
 date : -1,
 param : "v",
 level : 700,
 area : area_xx,
 grid : [1.5,1.5]
)

Compute the gradient of Q
q = gradientb(q)

Extract the area we are calculating on
q = read (area : area_xx, data : q)

Compute the advection of Q
a = q[1]*u + q[2]*v
a = -a * (10 ^ 8) # units will be 10e-8 (kg/kg)/sec

Plot positive advection in blue, negative in red
contour_common = (
 contour_level_selection_type : "interval",
 contour_interval : 3,
 contour_label : "on",
 contour_label_height : 0.25,
 contour_highlight : "off",
 contour_hilo : "on",
 contour_hilo_type : "number",
 contour_hilo_format : "F5.1",
 contour_hilo_height : 0.3
)

cont_n = mcont(
 contour_common,
 contour_max_level : -0.0001,
 contour_line_colour : "red",
 contour_label_colour : "red",
 contour_lo_colour : "red"
)

cont_p = mcont(
 contour_common,
 contour_min_level : 0.0001,
 contour_line_colour : "blue",
 contour_label_colour : "blue",
 contour_hi_colour : "blue"
)

A plot window
acoast = mcoast(
 map_coastline_resolution : "low",

Metview Macro First Tutorial

Page 36

 map_grid_longitude_increment : 10,
 map_coastline_land_shade : "on",
 map_coastline_land_shade_colour : "cream"
)

ps_atlantic = mapview(
 map_projection : "polar_stereographic",
 area : [30,-25,50,65],
 coastlines : acoast
)

page = plot_page(
 view : ps_atlantic
)

dw = plot_superpage(
 custom_width : 29.7,
 custom_height : 21,
 pages : page
)

Now plot the result

plot(dw,a,cont_p,cont_n)

The code above is straightforward. The only question remaining is the function
gradientb().

The FORTRAN program

gradientb() is a FORTRAN program which you write and, in this case, embed in
the macro code. The program is structured according to the sections outlined above,
containing:

• a section where input is read (mfi_get_fieldset) and output prepared
(mfi_new_fieldset)

• a loop (on the number of fields in the argument fieldset) where the fields are
loaded (mfi_load_one_grib), expanded (grib_get_real8_array, a
GRIB_API function), validated and processed (user routines) and the result
stored (grib_set_real8_array) and saved (mfi_save_grib)

• a section where output is set (mfi_return_fieldset)

Note the interface routines, all prefixed by mfi. Most of this FORTRAN code is
standard to access and process a GRIB fieldset. The user only has to define the
routines VALID() and GRAD(). The first checks whether the properties of the input
match the requirements and the second derives the actual gradient field.

GRAD() takes the input fieldset, calculates its gradient in its two components. These
are saved separately and coded as wind components, so each of these can be accessed
separately in the macro for the calculation of the advection.

We will inline this program and so its compilation and linking will be taken care of
automatically without us even being aware of it.

Metview Macro First Tutorial

Page 37

The FORTRAN code is listed below, and may be copied into an empty Macro icon
named gradientb :

!
! "GRADIENTB" COMPUTES THE GRADIENT OF A FIELD
!
! THIS PROGRAM IS A MODIFIED VERSION OF THE FORMER
! "GRADIENT" TO TAKE INTO ACCOUNT THE UNITS.
!
! THE UNITS ARE IN THE INTERNATIONAL SYSTEM
!
! GRIBEX version: October, 1996
! GRIB_API version: March, 2010
! MFI version: November, 2010

 PROGRAM GRADIENTB
 USE grib_api
 IMPLICIT NONE

 INTEGER fieldset_in, fieldset_out, icnt
 INTEGER grib_id, isize, istatus, i
 INTEGER byte_size
 REAL*8, ALLOCATABLE :: grib_in(:)
 REAL*8, ALLOCATABLE :: grib_out_u(:)
 REAL*8, ALLOCATABLE :: grib_out_v(:)

 !-- GET FIRST ARGUMENT AS A FIELDSET.
 !-- icnt IS THE NUMBER OF FIELDS
 CALL mfi_get_fieldset(fieldset_in, icnt)

 !-- CREATE A NEW OUTPUT FIELDSET
 CALL mfi_new_fieldset(fieldset_out)

 !-- LOOP ON FIELDS
 DO i=1, icnt
 !-- GET NEXT FIELD FROM INPUT FIELDSET
 CALL mfi_load_one_grib(FIELDSET_IN, grib_id)

 !-- ALLOCATE ARRAYS, GET FIELD VALUES
 CALL grib_get_size(grib_id, 'values', isize)
 ALLOCATE(grib_in(isize), grib_out_u(isize), grib_out_v(isize))

 CALL grib_get_real8_array(grib_id, 'values', grib_in, istatus)

 !-- VALIDATE AND DERIVE OUTPUT
 CALL valid(grib_id)
 CALL grad(grib_in, grib_out_u, grib_out_v)

 !-- SET OUTPUT AS U COMPONENT OF WIND
 CALL grib_set_real8_array(grib_id, 'values', grib_out_u,
istatus)
 CALL grib_set_int(grib_id, 'paramId', 131)

 !-- ADD IT TO THE OUTPUT FIELDSET
 CALL mfi_save_grib(fieldset_out, grib_id)

 !-- SET OUTPUT AS V COMPONENT OF WIND
 CALL grib_set_real8_array(grib_id, 'values', grib_out_v,
istatus)
 CALL grib_set_int(grib_id, 'paramId', 132)

 !-- ADD IT TO THE OUTPUT FIELDSET
 CALL mfi_save_grib(fieldset_out, grib_id)

Metview Macro First Tutorial

Page 38

 !-- RELEASE MEMORY
 CALL grib_release(grib_id)
 DEALLOCATE(grib_in, grib_out_u, grib_out_v)

 END DO
 !-- RETURN THE RESULT
 CALL mfi_return_fieldset(fieldset_out)

 STOP
END

!!!
!--
!-- USER ROUTINE TO CHECK VALIDITY OF INPUT FIELD
!-- VALID FOR A GLOBAL FIELD, LAT/LONG, 1.5 DEG GRID
!--

SUBROUTINE valid(grib_id)
 USE grib_api
 INTEGER grib_id
 INTEGER ivalue
 REAL*8 rvalue

 CALL grib_get_int(grib_id, 'dataRepresentationType', ivalue)
 IF(ivalue .NE. 0) CALL mfi_fail("GRID not lat/lon")

 CALL grib_get_real8(grib_id, 'iDirectionIncrementInDegrees',
rvalue)
 IF(rvalue .NE. 1.5) CALL mfi_fail("GRID not 1.5/1.5")

 CALL grib_get_real8(grib_id, 'jDirectionIncrementInDegrees',
rvalue)
 IF(rvalue .NE. 1.5) CALL mfi_fail("GRID not 1.5/1.5")

 CALL grib_get_int(grib_id, 'Ni', ivalue)
 IF(ivalue .NE. 240) CALL mfi_fail("GRID not global")

 CALL grib_get_int(grib_id, 'Nj', ivalue)
 IF(ivalue .NE. 121) CALL mfi_fail("GRID not global")

 RETURN
END

!!
!--
!-- DERIVE GRADIENT OF INPUT FIELD F (BENITO ELVIRA, IM)
!-- FA = HORIZONTAL GRADIENT, FB = VERTICAL GRADIENT
!--

SUBROUTINE GRAD (F, FA, FB)

 !-- DIMENSIONS CORRESPONDING TO 1.5 x 1.5 GRID
 DIMENSION F(240,121), FA(240,121), FB(240,121)

 PI = ACOS(-1.0)
 RT = 6371000.0
 CB = (RT*1.5*PI)/180.0
 !-- COMPUTE HORIZONTAL GRADIENT
 DO I = 1, 121

 C = COS((90.0-I*1.5 + 1.5)*PI/180.0)
 FA(1,i) = (F(2,i)-F(240,i)) / (2.0*C*CB)
 FA(240,i) = (F(1,i)-F(239,i)) / (2.0*C*CB)

 DO J = 2, 239

Metview Macro First Tutorial

Page 39

 FA(j,i) = (F(j+1,i)-F(j-1,i)) / (2.0*C*CB)
 END DO

 END DO
 !-- COMPUTE VERTICAL GRADIENT
 DO I = 1, 240

 FB(i,1) = 0
 FB(i,121) = 0
 DO J = 2, 120
 FB(i,j) = (F(i,j+1)-F(i,j-1)) / (-2.0*CB)
 END DO

 END DO

 RETURN
END

Embedding the FORTRAN program

If we wished to embed the FORTRAN program directly into our macro
q_advection, then we would need only type/paste the code into the macro source
file and surround it with the following lines:

extern gradientb(f:fieldset) "fortran90" inline
... (FORTRAN code here)
end inline

Note that we could have used "fortran" here if our code was FORTRAN 77-
specific.

We would now have one source file containing both the macro code and the
FORTRAN code. This is fine if we will not wish to reuse the FORTRAN program for
another project.

However, we may wish to make this FORTRAN program available to other macros.
In this case, it can be placed in its own file, along with the extern ... inline
header/footer lines surrounding it as shown above. It can now be included by a macro
in the same way as any standard macro function, using the include directive or
placing it in a user or system library, as discussed in Steps 12 a, b and c. In the
example given in the Solutions folder, we inline the FORTRAN source code in a
separate file (gradientb) and include it in our main macro, using the following line
at the top of the macro:

include "gradientb"

Using an externally compiled FORTRAN program

If you are interested in compiling your FORTRAN program separately and using the
executable as a macro function, you should consult the Metview User Guide Vol II,
section “Using FORTRAN In Macro“.

To use an externally compiled FORTRAN executable, you need to decide whether to
declare the function explicitly or have the macro load the function automatically.

To declare the function explicitly, use the extern keyword. For this, introduce the
following line at the top of the body of the macro program:

Metview Macro First Tutorial

Page 40

 extern gradientb(f:fieldset) "gradientb"

To have the macro program load the routine automatically you can place it in a user or
system library, as discussed in Steps 12 a, b and c. Once this is done, the FORTRAN
function is used exactly like any other macro function, with no difference in the
syntax.

Note
In order for Metview Macro to determine whether a file in a Macro folder is a
FORTRAN executable or a macro, it checks the return value of the UNIX file
command on the file. If it includes the word ‘executable’, then it is assumed to be a
FORTRAN program; otherwise, it is assumed to be a Metview macro.

Equivalent C Program

The following code shows the C equivalent of the above FORTRAN program, also
using GRIB_API to handle the data. See the Metview User Guide for more details of
the C interface.

extern gradientb(f:fieldset) "C" inline

/*
 "gradientb" - computes the gradient of a field.
*/

#include <stdio.h>
#include <string.h>
#include <math.h>
#include "macro_api.h"

/*
 check_data_ok - checks whether the data is in a format we can
work with - returns 1 if it is, 0 otherwise
*/

int check_data_ok (grib_handle *gh)
{
 char grid_type [32];
 int len = sizeof(grid_type);

 grib_get_string (gh, "typeOfGrid", grid_type, &len);

 if (strcmp (grid_type, "regular_ll"))
 {
 printf ("Data is in wrong grid type (%s) - it should be
'regular_ll'\n", grid_type);
 return 0;
 }

 /* if we got to here, then it was all good */

 return 1;
}

Metview Macro First Tutorial

Page 41

void compute_gradient (grib_handle *gh, double *vals_out_u, double
*vals_out_v)
{
 #define idx(X,Y) ((Y)*x_num + (X))

 double pi = acos(-1.0);
 double rt = 6371000.0;
 double cb = (rt * 1.5 * pi) / 180.0;
 long x_num, y_num;
 double x_inc, y_inc;
 double *vals;
 int ret, len;
 int i, j;

 if (!check_data_ok(gh))
 {
 mci_fail("Data not ok for this function - aborting.");
 }

 GRIB_CHECK(grib_get_long (gh, "numberOfPointsAlongAParallel",
&x_num), 0);
 GRIB_CHECK(grib_get_long (gh, "numberOfPointsAlongAMeridian",
&y_num), 0);
 GRIB_CHECK(grib_get_double (gh, "iDirectionIncrement", &x_inc),
0);
 GRIB_CHECK(grib_get_double (gh, "jDirectionIncrement", &y_inc),
0);

 x_inc /= 1000.0; /* increments are stored in millidegrees */
 y_inc /= 1000.0; /* increments are stored in millidegrees */

 /* check that the data is global */

 if ((x_num * x_inc != 360.0) || ((y_num-1) * y_inc != 180.0))
 {
 printf ("Data is not global (%d x %f, %d x %f)\n", x_num,
x_inc, y_num, y_inc);
 mci_fail("Data not ok for this function - aborting.");
 }

 len = x_num * y_num;

 vals = (double *) malloc (len * sizeof(double));

 printf ("getting %d elements...\n", len);
 ret = grib_get_double_array(gh,"values",vals, &len);
 printf ("got %d elements...\n", len);

 if (ret == GRIB_SUCCESS)
 {
 /* COMPUTE HORIZONTAL GRADIENT */

 for (i = 0; i < y_num; i++)
 {
 double c = cos((90.0 - (i * y_inc) + x_inc) * pi/180.0);

 if ((fabs(c) < 0.00001))
 {
 c = 0.00001;
 }

 vals_out_u[idx(0, i)] = (vals[idx(1, i)] -
vals[idx(239, i)]) / (2.0 * c * cb);

Metview Macro First Tutorial

Page 42

 vals_out_u[idx(239, i)] = (vals[idx(0, i)] -
vals[idx(238, i)]) / (2.0 * c * cb);

 for (j = 1; j < x_num-1; j++)
 {
 vals_out_u[idx(j,i)] = (vals[idx(j+1,i)] -
vals[idx(j- 1,i)]) / (2.0 * c * cb);
 }
 }

 /* COMPUTE VERTICAL GRADIENT */

 for (i = 0; i < x_num; i++)
 {
 vals_out_v[idx(i,0)] = 0;
 vals_out_v[idx(i,120)] = 0;

 for (j = 1; j < y_num-1; j++)
 {
 vals_out_v[idx(i,j)] = (vals[idx(i,j+1)] -
vals[idx(i,j-1)]) / (-2.0 * cb);
 }
 }
 }

 else
 {
 printf(">>> ERROR: grib_get_double_array returned %d\n", ret);
 }
}

int main()
{
 grib_handle* gh_a = NULL;
 grib_handle* gh_u = NULL;
 grib_handle* gh_v = NULL;
 void* grib_id = NULL;

 int num_fields = 0; /*-- field count --*/
 int ret_a = 0; /*-- function return value --*/
 int ret_b = 0; /*-- function return value --*/
 int i;
 size_t len_a = 0; /*-- number of grid point values --*/
 size_t len_b = 0; /*-- number of grid point values --*/
 void* grib_out_id = NULL; /*-- return GRIB id ptr, fieldset
handle */
 double *outvals_u = NULL; /*-- array for grid point values */
 double *outvals_v = NULL; /*-- array for grid point values */

 /* load the input grib fields */

 grib_id = mci_get_grib_id_ptr (&num_fields);

 /* loop on the input fields */

 for (i = 0; i < num_fields; i++)
 {
 /* get arrays of values from the fields */

 gh_a = mci_load_one_grib (grib_id);

 grib_get_size(gh_a,"values",&len_a);
 printf("GRID size: %d\n",len_a);

Metview Macro First Tutorial

Page 43

 grib_out_id = mci_new_grib_id_ptr(); /* create return GRIB
id ptr */

 /* allocate memory for the result arrays */

 outvals_u = (double *) malloc (len_a * sizeof (double));
 outvals_v = (double *) malloc (len_a * sizeof (double));

 /* compute the gradient fields */

 compute_gradient (gh_a, outvals_u, outvals_v);

 /* create new fields using these results */

 gh_u = grib_handle_clone (gh_a);
 gh_v = grib_handle_clone (gh_a);

 /* set their values using the arrays we've computed */

 grib_set_double_array(gh_u, "values", outvals_u, len_a);
 grib_set_double_array(gh_v, "values", outvals_v, len_a);

 /* set their parameters to U and V */

 grib_set_long (gh_u, "indicatorOfParameter", 131);
 grib_set_long (gh_v, "indicatorOfParameter", 132);

 /* save them as the result of this inline program */

 mci_save_grib (grib_out_id, gh_u);
 mci_save_grib (grib_out_id, gh_v);
 mci_return_grib (grib_out_id);

 if (outvals_u != NULL) free(outvals_u);
 if (outvals_v != NULL) free(outvals_v);

 grib_handle_delete(gh_a);
 grib_handle_delete(gh_u);
 grib_handle_delete(gh_v);
 }

 free(grib_id);

 return 0;
}
end inline

	Introducing Metview macro
	Overview
	The Metview Macro Icon

	A Basic Macro Program
	Introduction
	Step1 - From icons to macro code
	Step 2 - Using contours and a display window
	Step 3 - Add some control : Variables
	Step 4 - Add some control : a function
	If You Have Extra Time ...
	Progress So Far

	Other Macro Outcomes
	Step 5 - Macro Return
	Step 6 - Saving Output to a File
	Step 7 - Other Visualisation Media (PS/PDF/ PNG/SVG)
	If You Have Extra Time ...

	Macro run mode control
	Step 8 - Macro Control Using runmode()
	If You Have Extra Time ...

	User input to Macro programs
	Step 9 - User Interface 1 : dialog() Function
	Step 10 - User Interface 2 : Macro Parameters
	If You Have Extra Time ...

	Running Macro in batch mode
	How to run in batch
	Step 11 - User Input in Batch Mode
	If You Have Extra Time ...

	Using Functions in Macro
	Step 12a - Including a Function
	Step 12b - Function in a User/System Library

	FORTRAN and C in Metview Macro
	General Approach
	Simple Example - Advection of a Scalar Field
	The Metview macro program
	The FORTRAN program
	Embedding the FORTRAN program
	Using an externally compiled FORTRAN program
	Equivalent C Program

