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Arakawa & Schubert, 1974

Designing a parametrisation scheme
e.g. convection

= grid box
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We observe a continuum of scales of motion

Nastrom & Gage, 1985

100km
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Stochastic Parametrisation
• We do not observe a clear separation of scales for many processes
• Grid-scale variables do not fully constrain sub-grid scale motions
• Stochastic parametrisation scheme: describes the sub-grid tendency 

in terms of a pdf constrained by the resolved-scale flow
• Provides stochastic realisations of the sub-grid flow, not some 

assumed bulk average effect.
• Represents unresolved sub-grid variability

stochastic
Trial #1 Trial #2 ... Trial #N

traditional
‘best guess’
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A general framework for stochastic parametrisation
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Identify uncertain process in 
forecast model

Characterise uncertainty in that process

Measurements

Design stochastic parametrisation 
to explore this uncertainty

Theoretical ideas
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3. Compare at 
later time

Forecast model

1. Coarse grain high resolution 
data to forecast model grid

Use a high resolution simulation as ‘truth’

2. Step forward both high-
and coarse-resolution fields

High resolution 
model
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OpenIFS SCM as Forecast Model

• How do we use an SCM?
– Use coarsened high-res simulation 

to prescribe Initial conditions, 
Advective tendencies (dynamical 
forcing) and Boundary conditions

• Benefits of using SCM? 
– Supply dynamical tendencies

targets uncertainty in the 
parametrisation schemes

– SCM portable and cheap
– Tile many SCM to cover domain

• OpenIFS SCM CY40R1 at TL639, 
91 vertical levels

Advective 
tendencies

Initial Conditions

Surface Fluxes

Christensen, Dawson and Holloway, 2018, JAMES
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Existing high resolution dataset: Cascade

thanks to Chris Holloway, U. Reading

CASCADE 4km 3DSmag OLR

• UK Met Office atmospheric model setup 
• Semi-Lagrangian, non-hydrostatic dynamics, 4km resolution
• Large tropical domain (15,500 km x 4,500 km), 9 days of data. Hourly dumps.
• Prescribe observed SST; boundary conditions from ECMWF 25 km analysis
• Convection scheme switched on but only active in low CAPE environments

Holloway et al, 2012; 2013
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What we do
6

• Coarse-grain Cascade to TL639
• Run an independent SCM simulation, initialised every hour, from 

every lat-lon point in the coarse-grained domain (>68,000) 
• Compare evolution of SCM over one hour with Cascade
• Repeat for entire 9-day Cascade simulation

Hannah Christensen Constraining stochastic parametrisation schemes



Case study: is there any physical basis for SPPT?

å
=

++=
5
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)1(
i

iPeDT
T  – Total tendency
D – Dynamics tendency
P  – Physics tendency

Pattern correlated in space & AR(1) in time:

All variables see same perturbation
Perturbation constant in height

σ L (km) ! (days)
0.52 500 0.25

0.18 1000 3

0.06 2000 30

Palmer et al, 2009.
ECMWF Tech Memo 598

• Stochastically Perturbed Parametrisation Tendencies (SPPT)
– represents random errors due to model’s physical parametrisation schemes
– Developed at ECMWF. Implemented in models worldwide
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Analysing the data: multiplicative noise? 
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iPeDTSPPT:

Calculate ‘true’ total 
tendency from Cascade Dynamics tendency from 

Cascade, processed by SCM

Consider error in SCM 
physics tendencies

T −D = (1+ e) Pi
i=1

5

∑
‘true’ physics 

tendency parametrised 
physics tendency

6

PCAS PSCM
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Standard deviation vs. mean

SPPT: standard deviation proportional to mean

stratosphere

surface

Data grouped by level. 
Dark blue: levels 91—87 (ground—995 hPa)
Yellow: levels 32—36 (86—60 hPa)

Uncertainty in T tendency

T −D = (1+ e) Pi
i=1

5

∑
PCAS PSCM

Hypothesis:

If this is true:

! P#$% | P%#' = !) P%#'
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Where are the different schemes active?
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Can we use the Cascade simulation to ‘tune’ SPPT?

SPPT seems like good first-order representation of 
uncertainty in IFS

Ø Measure optimal parameters for SPPT to 
improve scheme 
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Analysing the data: characteristics of e 

SPPT:

Calculate ‘true’ total 
tendency from CASCADE Assume SCM dynamics 

tendency is ‘correct’
Consider error in SCM 
physics tendencies

SOLVE
i.e.
Following the 
assumptions of 
SPPT, can we 
measure the 
statistical 
characteristics of 
the perturbation eDo not use data from BL 

or stratosphere (tapered)

T
q
U
V
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Snapshot of optimal SPPT ‘e’ perturbation
3am                                                        7:30am                                                12pm

Operational SPPT Fitted SPPT
μ(e) 0.0 -0.07
σ(e) 0.55 0.40
skew(e) 0.0 0.6
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Spatio-temporal correlations
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• Model spatio-temporal correlations as a sum over n AR(1) processes with different scales

Operational SPPT Fitted SPPT
σi 0.52 0.18 0.06 0.35 0.17 0.10

Li (km) 500 1000 2000 32 370 -

!i 6 h 3 d 30 d 1.2 h 4.3 d -
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Conclusions and relevance for SPPT

• Defined a framework to derive SCM forcing files from high-
resolution model data

• Proposed a general technique for assessing model error
– Can be used to constrain existing stochastic parametrization schemes and 

potentially motivate new approaches

• Multiplicative noise reasonable first-order approach
– Convection in particular could benefit from a separate stochastic scheme

• Spatio-temporal correlation scales used in stochastic 
parametrisations have a physical basis
– Not just pragmatic solution to get decent ensemble spread

• To tune SPPT, reduce standard deviation but include skewness
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Thanks for listening
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880 hPa

900 hPa

920 hPa

level 91
level 90

level 89

Coarse graining details

1. Local area averaging for coarse graining

2. Linearly interpolate in time
3. Vertical interpolation

4. Above high-resolution model top, pad data using ECMWF analysis
5. Advective tendencies estimated from the coarsened fields

6. Specify sensible and latent heat fluxes from high-resolution dataset, but take 
static boundary conditions from operational ECMWF model at T639

• Evaluate coarse-scale grid box mean psfc
• Coarse-grain other fields along model levels
• Interpolate from native model levels to 

target model levels

Christensen et al, 2018, JAMES.



What we do
6

• Coarse-grain Cascade to TL639
• Run an independent SCM simulation, initialised every hour, from 

every lat-lon point (>68,000) in the coarse-grained domain
• Run each SCM simulation for two hours, discard the first hour to 

avoid focus on spin up
• Repeat for entire 9-day Cascade simulation

Time / hr

Cascade

SCM

0                      1                      2                      3                      4                      5

Initialise 2-hour SCM simulations every hour
Only consider 2nd hour of SCM forecast to avoid focus on spin-up



What information do we have?
6

ü Total change in (T, q, U, V) in high-resolution Cascade 
over 1hr time interval as a function of model level, 
location and forecast start time

ü Change in (T, q, U, V) in IFS SCM over 1 hr, decomposed 
into dynamics and individual parametrized tendencies, 
as a function of model level, location and forecast start 
time



• E.g. Initial tendency approach in which physics tendencies in 
data assimilation cycle are compared to the analysis 

• E.g. Transpose AMIP in which climate models are run in 
weather forecasting mode from common initial conditions

Initial 
tendency

Transpose AMIP My SCM
approach

Decompose model evolution          
(& error) into single processes J J
No data assimilation capabilities 
needed to evaluate forecast model J J
Comparison of model with its native 
analysis may mask errors L
Inconsistencies in IC can lead to 
systematic drifts L L

Cf. existing approaches to identify model error



Consider T850 tendency ( / K h-1)
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Characteristics of ‘e’

Compare to operational parameters
mean µ = 0
standard deviation σ = 0.55
skewness ! = 0
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Correlation scales of ‘e’

• Model temporal and spatial correlation scales as arising from a 
sum over several scales

• Iteratively fit each scale, long to short

<= e.g., in time

<= plot log(autocorrelation) 
and perform linear fit



New optimal parameters for SPPT in IFS?

3am                                                            7:30am                                                   12pm• Averaging over the variance ratios for the latitude, longitude and 

temporal correlations

Operational SPPT Fitted SPPT
μ(e) 0.0 -0.07

σ(e) 0.55 0.40

skew(e) 0.0 0.6

σi 0.52 0.18 0.06 0.35 0.17 0.10

Li (km) 500 1000 2000 32 370 -

!i 6 h 3 d 30 d 1.2 h 4.3 d -
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2. Beyond SPPT?

• SPPT is not a perfect representation of uncertainty in the IFS –
can we improve on it?

• Have not yet assessed other assumptions made in SPPT – are 
these valid?

• Simple approach:
– Relax each assumption in turn and fit new ‘optimal e’
– If the fitted ‘e’ is constant in dimension of interest then we should indeed 

hold the perturbation constant for that dimension

e.g. height, 
e.g. variable,
e.g. parametrisation



2. Beyond SPPT?

• SPPT is not a perfect representation of uncertainty in the IFS –
can we improve on it?

• Have not yet assessed other assumptions made in SPPT – are 
these valid?

SPPT

Vertical coherency of 
perturbations?

One perturbation for 
all tendencies?

(T, q, U, V)

One perturbation for all 
parametrisations?

(radiation, convection, etc)
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iSPPT: Consider different 
schemes

T −D− Pi
i=1

5

∑ = eiPi
i=1

5

∑

Þ Snapshot of optimal 
stochastic perturbation,   if 
different schemes can have 
different perturbations

0100 UTC: image spans 3am-12pm
7:30am in centre image

6 6
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iSPPT: Consider different 
schemes

0100 UTC: image spans 3am-12pm
7:30am in centre image

6 6

Measure standard deviations, 
temporal correlations and spatial 
correlations for each process

Generally little correlation 
between ei for different schemes
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Q. Vertical coherency of perturbations?

• Fit separate ez at each vertical level
• Consider pdf as a function of height summarised by deciles
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Q. Vertical coherency of perturbations?

• Fit separate ez at each vertical level
• Correlation between ez fitted to different model levels
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Q. One perturbation for all tendencies? (T, q, U, V)

• Fit separate eX for each prognostic variable
• Assess statistics of eX and correlation between different variables

!" = $" + (1 + (")*
+
,+,"

T q U V
μ(e) -0.06 -0.02 -0.37 -0.52

σ(e) 0.70 0.65 1.7 1.9

σi 0.66 0.17 0.13 0.6 0.22 0.1 1.6 0.47 0.18 1.8 0.54 0.18

Li (km) 39 400 - 33 430 - 38 270 - 26 290 -

.i 0.6 h 3.5 d - 1.2 h 4.3 d - 1.2 h 3.8 d - 1.2 h 4.2 d -

T, q statistics similar
Correlation = 0.35

U, V statistics similar
But low correlation = 0.08

All other correlation pairs < 0.1



Q. One perturbation for all parametrisations?

• ‘independent SPPT’
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iPeDTSPPT
6

6

• Tested in IFS and found to benefit forecast reliability in the 
tropics

T850, Tropics

Christensen, Lock, Moroz and Palmer, 2017, QJRMetS

Lead time / days

} iSPPT

SPPT
IC only



Q. One perturbation for all parametrisations?

• ‘independent SPPT’ seems to account for many results shown
– Low correlation measured between perturbations fitted to different 

schemes
– Perturbations to different schemes show very different noise 

characteristics
– Measured correlation in the vertical is limited to within parametrisations
– Measured correlations between perturbations applied to different 

variables are due to the physical relationship between those variables, as 
represented by the parametrisation schemes

– Approach would enable multiplicative noise to be easily replaced by an 
alternative approach if desired, e.g. for convection
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Fractional variance explained
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