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Predicting weather and climate: Why is it so hard?

National Geographic Creative

The Earth System is complex, huge and chaotic and we do not have
sufficient resolution to resolve all important processes.
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How do we treat uncertainties in weather forecasts?
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How do we treat uncertainties in weather forecasts?
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To improve a multi-dimensional, non-linear system...

You may need to run 100 years of a coupled climate model to identify
a response to a forcing...
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How do we treat uncertainties in weather forecasts?
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Ensemble forecasts can go wrong.

We introduce stochastic parametrisation schemes and perturbations
to initial conditions to improve ensemble spread.

These schemes are typically “local” and lack physical justification.
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Forecast skill is still improving

Higher resolution in weather models→ improved forecast skill.
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Weather and climate models are HPC applications

Neumann et al., Phil. Trans. A, 2019

I More resolution
→ more processes resolved.

I Ratio sustained/peak is going down.

I 1km resolution allows the explicit
representation of deep convection
and the generation of gravity waves
in the atmosphere and meso-scale
eddies in the ocean.
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Forecasts with billions of degrees-of-freedom

Clouds in a global weather simulation at 1 km resolution
(Figure courtesy of Nils Wedi)

Global simulations show a breath-taking level of complexity and can
represent many details of the Earth System.
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An example for the impact of high resolution

I Total precipitation accumulated for 24 hours.
I Explicit representation of deep convection
→ more realistic but too strong.

I The simulations were performed as part of the ESiWACE H2020
Centre of Excellence.

Dueben et al. ECMWF Newsletter 2018
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Challenges for future High Performance Computing
Technical:
I Individual processors will not be faster.

I Parallelisation (> 106 parallel processing units).
I Power consumption will be a big problem.
I Hardware faults may jeopardize large simulations.

I Hardware will be more heterogeneous.
I CPUs, GPUs, FPGAs, ASICs.
I Different hardware will require different code changes.
I We do not know what hardware we will be using in 10 years.
I We need Domain Specific Languages to port models.

I Machine learning has a strong impact on hardware
development. High floprate at low precision (16 bits and lower).

I I/O will (need to) become a focus.

Figure copied from https://venturebeat.com
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Challenges for future High Performance Computing
Scientific:

I Build algorithms that are efficient and accurate, and scale.
Explicit vs. implicit; spectral vs. gridpoint; ...

I Build performance models that are required for co-design.

I Optimise data flow and use in the models (NP-hard problem).

I Tune and evaluate high-resolution simulations.
Response to forcing of a non-linear system.

I Adjust accuracy to model uncertainty.

Fuhrer et al. GMD 2018

Peter Düben Page 12



Less numerical precision→ more computing power

Double precision (64 bits) is used almost exclusively in weather and
climate modelling.

Reduce numerical precision

→ lower power, higher performance.

→ higher resolution or increased complexity.

→ more accurate predictions of future weather and climate.

Temperature in Reading:
double precision (64 bits): 14.561192512512207◦C
single precision (32 bits): 14.5611925◦C
half precision (16 bits): 14.5625◦C
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A short introduction to bit representation
I The computer represents an integer number as a string of 32

bits. Each bit represents a power of two:

102090 = 0·20+1·21+0·22+1·23+0·24+0·25+1·26... =
31∑

i=0

bi2i

I A real number a is represented as a 64 bit floating point number:

a = (−1)S

(
1 +

52∑
i=1

b−i2−i

)
2E , where E =

(
10∑

i=0

ei2i

)
− 1023.

1 2 3 4 5 6 7 8

sign exponent significand
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Approaches to inexact floating point units
Stochastic processor
I If we reduce the applied voltage or the wall clock time beyond a

certain level, we will get hardware errors, but we will save power.
I The error rate of a stochastic processor can be reduced

massively, if the architecture is changed.
sign exponent significand

Pruning
Parts of the CPU that are hardly used or do not have a strong
influence on significant bits are removed.
sign exponent significand

Field Programmable Gate Array (FPGA)

I FPGAs are integrated circuits that can be configured by the user.
I Numerical precision can be customised to the application.

sign exponent significand

Easiest way: double→ single→ half.
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Two research questions
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Data assimilation with reduced precision
PhD student Samuel Hatfield
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Data assimilation in Lorenz’95 using an Ensemble Kalman filter.

A large ensemble at low precision is better than a small ensemble at
high precision at the same computing cost.

We gain almost one “day” in terms of predictability.
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Reduced precision in an atmosphere model

I We calculate weather forecasts with a spectral dynamical core
(full 3D dynamics on the globe but no physics).

I Floating point precision is reduced to 20 bits (instead of 64)
using an emulator in almost the entire model.

I We estimate savings for reduced precision in cooperation with
computer scientists (the groups of Krishna Palem - Rice
University, Christian Enz - EPFL and John Augustine - IITM).

To save power a reduction in precision is much more efficient when
compared to a reduction in resolution.

Studies with programmable hardware (FPGAs) confirm this result.

Düben et al. MWR 2015; Düben et al. DATE 2015; Düben et al. JAMES 2015; Russel, Düben et al. FCCM 2015.
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Reduced precision in an atmosphere model

Resolution Precision in Normalised Mean error
number of bits Energy Demand Z500 at day 2

235 km 64 1.0 2.3
315 km 64 0.47 4.5
235 km 20 0.29 2.5

To save power a reduction in precision is much more efficient when
compared to a reduction in resolution.

Studies with programmable hardware (FPGAs) confirm this result.

Düben et al. MWR 2015; Düben et al. DATE 2015; Düben et al. JAMES 2015; Russel, Düben et al. FCCM 2015.
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ECMWF’s weather forecast model in single precision

I Forecast quality in double and single precision is almost
identical.

I 40% reduction of run time.

I Benefit for global simulations at 1.0 km resolution.
Düben and Palmer MWR 2014; Váňa, Düben et al. MWR 2017
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Use machine learning hardware
Relative cost for model components at 1.25 km for a spectral model:

hydrostatic: non-hydrostatic:

The Legendre transforms are the killer (as expected). They are
standard matrix-matrix multiplications.

If we can re-scale the input and output fields, we can use half
precision arithmetic (low zonal wave numbers need to be secured).

Tensor Cores on NVIDIA Volta GPUs are optimised for half-precision
matrix-matrix calculations with single precision output. 7.8 TFlops for
double precision vs. 125 TFlops for half precision on the Tensor Core.
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Half precision Legendre Transformations
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Root-mean-square error for Z500 at TCo1279 resolution averaged
over multiple start dates.
Hatfield, Chantry, Dueben, Palmer, submitted to PASC2019.

The simulations are using an emulator to reduce precision.
Dawson and Dueben GMD 2017
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Two research questions
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A scale-selective approach

I Spectral models allow to treat different scales at different
precision.

I We can reduce precision when calculating the small scales.

I This is intuitive due to the high inherent uncertainty in small
scale dynamics (parametrisation, viscosity, data-assimilation,...).

I The smallest scales are most expensive.
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A scale-selective approach
PhD student Tobias Thornes

A scale-dependent reduction in precision for the surface
quasi-geostropic equations.

Forecast simulations confirm that a scale-selective approach is much
more efficient than a uniform precision reduction.

Thornes, Düben and Palmer QJRMS 2017, Thornes, Düben and Palmer QJRMS 2018
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A scale-selective approach: Track of Hurricane Irma
PostDoc Matthew Chantry

I Simulations with OpenIFS at 40 km resolution.
I The scale-selective simulation is using scale-selective precision

in spectral space. An average of 8.6 bits is used for the
significand.

Chantry, Thornes, Palmer, Dueben MWR 2019
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Bitwise information content and predictability

Information content of bits for a Lorenz’63 model using a single long
term integration and Shannon information theory.

It is possible to identify information content of individual bits and their
impact on predictability into the future.

Jeffress, Düben and Palmer Proc. R. Soc. A 2017
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Two research questions
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One more research questions

Can a study of numerical precision help to understand model
uncertainty and model error?

Peter Düben Page 28



Analyse precision to learn about error and uncertainty

I Superparametrisation is running a two-dimensional cloud
resolving model in each grid-cell of a global simulation.

I Superparametrisation improves tropical predictions but it is very
expensive.

I We integrate the cloud resolving model using emulated reduced
precision.

Figure source: http://www.ucar.edu/communications/quarterly/summer06/cloudcenter.jsp
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Analyse precision to learn about error and uncertainty
I We automate the search for reduced precision to find the optimal

level of precision for individual parameters and model fields.

I We compare model errors due to reduced precision with
ensemble spread.

Parameter/Variable Precision Relative rounding error
specific heat of air 7 0.000%
gravitational acceleration 7 0.025%
gas constant water vapour 8 0.000%
diffusivity water vapour 7 0.209%
dynamic viscosity of air 3 0.022%
sub-grid-scale eddy viscosity 3 6.250%
zonal wind 17 3.81 · 10−4%

moist static energy 23 5.96 · 10−6%

pressure 22 1.19 · 10−5

temperature 23 5.96 · 10−6%

water vapour 17 3.81 · 10−4%
...

We should use results of the precision analysis to adjust “global”
stochastic parametrisation schemes.

Düben, Subramanian, Dawson and Palmer JAMES 2017
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Analyse precision to learn about error and uncertainty

I Precision can be reduced almost to zero in the turbulent kinetic
energy scheme and for the high orders of the water vapour
saturation curve.

I We remove those parts from the model.

I The new model setup is approximately 12% faster.

A precision analysis can help to adjust model complexity.
Düben, Subramanian, Dawson and Palmer JAMES 2017
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One more research questions

Can a study of numerical precision help to understand model
uncertainty and model error?

Yes!
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Shallow water model with hardware faults

I We introduce a coarse backup grid to save prognostic fields.
I We test whether the fields on the backup grids are physically

meaningful and restore erroneous values on the model grid,
using the backup grid.

I We emulate soft errors in floating point operations and the loss
of information in large areas of the model domain.

I The backup system generates 13% overheads.
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How to approach full-blown GCMs?
Emulation of reduced precision

Method:
We define a new reduced-precision type that behaves like a floating
point number, but reduces the precision when it is operated on, this
allows the emulation of reduced precision and specific setups of
inexact hardware in large models (maybe IFS?) with no need for
extensive changes of model code.

Example:
Emulated 5 bit significand with reduced precision “+”

Standard Fortran:
REAL :: a,b,c
a = 1.442221
b = 2.136601
c = a+b
→ c=3.578822

Reduced precision declarations:
TYPE(reduced_precision) :: a,b,c
a = 1.442221
b = 2.136601
c = a+b
→ c=3.562500
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Machine learning in weather and climate modelling

I Many techniques can be labelled as “machine learning”.
I We apply machine learning all the time.

I Decision Trees and Random Forests are interesting.
I I will focus on neural networks.
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Neural Networks in a nutshell

www.wikipedia.org

I Neural Networks can learn from input/output pairs to emulate a
non-linear process.

I Neurons have weighted connections to each other and the
weights are trained to produce the optimal results.

In the following, I will show example to (1) emulate existing model
components, (2) learn the equations of motion, (3) improve
post-processing and (4) use machine learning hardware.
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Emulate existing model components
I Store input/output pairs of parametrisation schemes.

I Use this data to train a neural network to do the same job.

I Replace the parametrisation scheme by the neural network.

Why would you do this?

I A large fraction of the computational cost is generated by
parametrisation schemes.

I Parametrisation schemes cause > 90% of model code.

I Optimization of this code is very difficult
(→ less than 5% peak performance).

I Neural Networks are highly optimized and can even use
co-designed hardware.
→ Portability comes for free.

We hope that deep Neural Networks will be almost as good as the
original parametrisation schemes but much more efficient.
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Neural Networks to replace the radiation scheme at
ECMWF in the year 2000

I 20-30 hidden neurons.
I Trained on 80,000 vertical profiles.
I Accuracy of the new scheme was comparable.
I The new scheme was seven times faster.
I The network could be used to generate tangent linear and

adjoint code for 4DVar data assimilation.
I However, Neural Networks are currently not used in operational

models.

Chevallier et al. QJRMS 2000.
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A neural network emulator for the state-of-the-art
model configuration with 137 vertical levels
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Progsch, Ko, Angerer @NVIDIA and Dueben, Hogan, Bauer @ECMWF

Downward solar radiation at the surface for the original radiation
scheme and the Neural Network emulator.

However, we still need to stabilise free-running model simulations
with the Neural Network and more work is required.
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A neural network emulator for gravity wave drag

Original scheme Difference Neural Network

Chantry, Abdelrahman, Desai, Dueben, Palem, Palmer.

Tendency output for the non-orographic gravity wave drag
parametrisation scheme for the standard scheme and a neural
network emulator.
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Learn the equations of motion

I We know the equations of motion of the atmosphere but we
cannot solve them.

I Discretisation and sub-grid-scale variability generates significant
errors.

I The data handling system of ECMWF provides access to over
210 petabyte of primary data and the data archive of ECMWF
grows by about 233 terabyte per day.
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Global weather forecast based on Neural Networks
I Retrieve hourly data of geopotential height at 500 hPa from

ERA5 re-analysis for training (> 65000 global data sets).

I Map the data to a coarse lon/lat grid (60x31).

I Use the state of the model at time step i as input and the state of
the model at time step i + 1 as output.

I Use a 9× 9 stencil around the grid point that should be
predicted.

I Add time of day and year as well as the coordination of a grid
point (lon+lat) as input variables to the network.

I The poles need special treatment.
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Global weather forecast based on Neural Networks

Dueben and Bauer GMD 2018

The Neural Network model can compete with a dynamical model of
similar complexity.
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Global weather forecast based on Neural Networks
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The simulations show reasonable dynamics.

Just adding further inputs does not necessarily help.

Model runs crash after a couple of weeks.
Dueben and Bauer GMD 2018
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Improve post-processing

Ensemble simulations are important but expensive.

We use one model trajectory, the ensemble mean and the ensemble
spread field at initialisation to predict the ensemble spread of a 10
member ensemble six hours into the forecast for an area over Europe
(40W-30E and 40N-60N).

Spread after 6 hours: Prediction from neural network:

Grönquist, Ben-Nun, Taranov, Höfler @ ETH and Dueben and Bauer @ ECMWF
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Challenges 1
Weather and climate models are very complex with non-linear
interactions between model components at different time-scales.

There is no fundamental reasons not to use a black box.
However,...

I We have a good knowledge about the Earth System and the
leading equations of motion are known for almost all of its
components. How can we use this knowledge?

I We do not know how to remove biases via an adjustment of
parameters. How shall we deal with this?

I How to adjust fluxes between model components and how to
secure conservation laws?

I How to pick hyper-parameters (#neurons, #layers, activation,
loss,...) with no use of excessive trial and error testing?

I How can we generate networks that reproduce results if
hyper-parameters or training data is changed?
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Challenges 2
I How can we get beyond “dense” networks to use scalable

methods (convolution, pooling,...)? How to establish the right
connectivity between neurons?

I There is no guarantee that the model will interact correctly with
the Neural Network parametrisation and the model response
may be non-trivial.

I How can we diagnose physical knowledge from the network?
How can we “debug” a network?

I How can we stabilize long-term integrations or represent
complex interactions between model features.

I Fields are very diverse (specific humidity, precipitation,
geopotential height, surface pressure,...).

I What can be used as a “better” truth? Superparametrisation,
Large Eddy Simulations, high-resolution simulations.

I Can a Neural Network parametrisation scheme explore the full
phase space (all weather regimes) during training?
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The way forward

I To study known differential equations to
learn how to derive blueprints for neural
network architectures.

I To study model source code to learn
how to derive blueprints for the design
of network architectures.

I To study the representation of
sub-grid-scale processes and
systematic errors when using neural
networks.

I To scale the application of neural
networks in W&C models beyond
today’s limits.

Weather and climate
models

Deep learning
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An example: The Burgers equation
Let’s represent a non-linear system that is approximated by the
Burgers’ equation:

∂u
∂t

= ν
∂2u
∂x2 − u

∂u
∂x

+ p.

The conventional approach:

∂ui

∂t
= ν

ui+1 − 2ui + ui−1

∆x2 −ui
ui+1 − ui−1

2∆x
+c0 +c1 ·ui +c2 ·u2

i +c3 ·ui ·ζ.

The data-science approach: The way forward:

Standard Neuron InputOutput Standard connection

Differential quotient 1 Differential quotient 2 Product pooling
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Conclusions
Scientific challenges to improve forecasts:

I The free lunch is over in high performance computing.

I We fail to provide a satisfying representation of model
uncertainty in weather and climate models.

Results suggest that...

I a reduction in precision will allow significant savings.

I savings can be reinvested to achieve higher
resolution/complexity or more ensemble members to improve
predictions.

I our understanding of model error and model uncertainty helps to
adjust precision.

I machine learning may open up opportunities to increase
efficiency and improve models.
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