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Differential Equations of  Atmospheric Dynamics 
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Part I:   Analytic Formulations:

Introduction;

Eulerian & Lagrangian reference frames; 

Atmospheric PDEs;

Nonhydrostatic (all-scale) PDEs;

Perturbation forms;

Unified framework;

Conservation law forms;

Generalised coordinates;

Examples

Part II:  Integration Schemes:

Forward-in-time integrators, E-L congruence;

Semi-implicit algorithms;

Elliptic boundary value problems;

Variational Krylov-subspace solvers;

Preconditioning;

Boundary conditions
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CPI2,  2880 dt=300 s, 

wallclock time=2.0 mns

8 days, surface θ’, 

128x64x48 lon-lat grid, 

128 PE of Power7  IBM

CPEX,  432000 dt=2 s, 

wallclock time=178.9 mns

This huge computational-efficiency gain comes at the 

cost of increased  mathematical/numerical complexity

Preamble:
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Part I:   Analytic Formulations

Meteorology has a large portfolio of diverse analytic formulations of the 

equations of motion, which employ variety of simplifying assumptions while 

focusing on different aspects of atmospheric dynamics.

Examples include: shallow water equations, isosteric/isentropic models, 

hydrostatic primitive equations, incompressible Boussinesq equations, 

anelastic systems, pseudo-incompressible equations, unified equations,        

and fully compressible Euler equations.

Many of these equations can be written optionally in Eulerian or Lagrangian

reference frame and in terms of various dependent variables; vorticity, 

velocity or momentum for dynamics, and total energy, internal energy or 

entropy for thermodynamics.

However, with increasing computational power the non-hydrostatic (i.e., all-

scale) systems come into focus, thus reducing the plethora of options.
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Two reference frames

Eulerian  Lagrangian

The laws for fluid flow --- conservation of mass, Newton’s 2nd law, conservation of energy, and 2nd

principle of thermodynamics --- are independent on reference frames  the two descriptions must 

be equivalent, somehow.

(the archetype problem, AP)
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Fundamentals:

physics (re measurement)

physics (relating observations 

in the two reference frames)

math (re Taylor series)

Taylor , 1685-1731  

Newton, 1642-1727  

http://en.wikipedia.org/wiki/File:BTaylor.jpg
http://www.google.co.uk/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0CAcQjRw&url=http://mrnussbaum.com/pioneers/isaac_newton/&ei=H-JFVajCNLLd7Qa06ID4BA&bvm=bv.92291466,d.d2s&psig=AFQjCNEuMNHM1ALdRQ3Ri-gCwvW7__M7xA&ust=1430729630769013
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Euler expansion formula, 

More math:

parcel’s volume evolution;

flow divergence, definition flow Jacobian

0 <  J  <  ∞, for the flow to 

be topologically realizable

and the rest is easy 

Leibniz,  1646-1716

Euler, 1707-1783 

Gauss, 

1777-1855 

http://www.google.pl/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0CAcQjRw&url=http://www-history.mcs.st-and.ac.uk/PictDisplay/Euler.html&ei=UAY2VZneEcmssAGH5ICoAQ&bvm=bv.91071109,d.bGg&psig=AFQjCNFucurt2_A8QmcvffkL5ym7BK5CDA&ust=1429690330845070
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key tools for deriving conservation laws

mass  continuity

Lebesque1875-1941
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Elementary examples:

Shallow-water equations

anelastic system

(Szmelter & Smolarkiewicz, JCP, 2010)

See: Wedi & Smolarkiewicz, QJR, 2009, for discussion; and a special issue  of JCP, 2008, 

“Predicting Weather, Climate and Extreme Events” for an overview of computational meteorology 
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All leading weather and climate codes are based on the compressible Euler 

equations, yet much of knowledge about non-hydrostatic atmospheric 
dynamics derives from the soundproof equations  descendants of the 

classical, reduced incompressible Boussinesq equations

Euler, 1707-1783 Boussinesq, 1842-1929



ECMWF2019  Slide 11

Why bother?  Handling unresolved acoustic modes, while insisting on large 

time steps relative to speed of sound, makes numerics of non-hydrostatic 

atmospheric models based on the compressible Euler equations demanding 

pressure and density solid lines, entropy long dashes, velocity short dashes 
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From compressible Euler equations to incompressible Boussinesq equations

3D momentum equations under gravity

mass continuity and adiabatic entropy equations 

perturbation about static reference (base) state:

momentum equation, perturbation form:

incompressible Boussinesq equations

for problems with small vertical scales and density perturbations:

Helmholtz, 

1821-1894

http://www.google.co.uk/url?sa=i&source=imgres&cd=&cad=rja&uact=8&ved=0CAwQjRw&url=http://www.nndb.com/people/445/000072229/&ei=05RHVa_PG87aat_ZgYgN&psig=AFQjCNF8Cpo5tm-1LQ1-AG4puomZxDcJvw&ust=1430840915702918
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Perturbation forms in the context of initial & boundary conditions

Take incompressible Boussinesq equations:

which also require initial conditions for pressure and density perturbations. Then consider an 

unperturbed ambient state, a particular solution to the same equations

subtracting the latter from the former gives the form

that takes homogeneous initial conditions for the perturbations about the environment ! 
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Perturbation forms in terms of potential temperature and Exner function



compressible Euler equations

F.M. Exner, 

1876-1930
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● The incompressible Boussinesq system is the simplest nonhydrostatic

soundproof  system. It describes small scale atmospheric dynamics of 

planetary boundary layers, flows past complex terrain and shallow gravity 

waves, thermal convection and fair weather clouds.  

● Its extensions include the anelastic equations of Lipps & Hemler (1982, 

1990) and the pseudo-incompressible equations of Durran (1989, 2008). 

In the anelastic system the base state density is a function of altitude; in the 

pseudo-incompressible system the base state density is a (different) 

function of altitude, and the pressure gradient term is unabbreviated.

● In order to design a common approach for consistent integrations of 

soundproof and compressible nonhydrostatic PDEs for all-scale 

atmospheric dynamics, we manipulate the three governing systems into a

single form convenient for discrete integrations:
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Unified Framework, combined symbolic equations:

conservation-law forms 

gas law 

(Smolarkiewicz, Kühnlein & Wedi, JCP, 2014)
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Combined equations, conservation form:

Accounting for curvilinear coordinates:

 example  integration schemes 

specific vs. density variables

 recall “the archetype problem, AP”

Riemann, 

1826-1863
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Global baroclinic instability  (Smolarkiewicz, Kühnlein & Wedi , JCP, 2014) 

CMP,  2880 dt=300 s, 

wallclock time=2.0 mns

PSI,  2880 dt=300 s, 

wallclock time=2.3 mns,

ANL,  2880 dt=300 s, 

wallclock time=2.1 mns,

8 days, surface θ’, 

128x64x48 lon-lat grid, 

128 PE of Power7  IBM
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The role of baroclinicity

anelastic pseudoincompressible compressible
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CPS

PSI

ANL

1.5h, surface lnθ, 320x160 

Gal-Chen grid,

domain 120 km x 60 km

``soundproof’’ dt=5 s

``acoustic’’ dt=0.5 s 

320 PE of Power7  IBM
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Part II:      Integration Schemes

A) Forward-in-time (FT) non-oscillatory (NFT) integrators for all-scale flows,

Cauchy, 

1789-1857

Kowalevski, 

1850-1891
Lax, 1926- Wendroff, 

1930-

Robert, 

1929-1993
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● Generalised forward-in-time (FT) nonoscillatory (NFT) integrators for the AP

Eulerian

Lagrangian (semi)

EUlerian/LAGrangian congruence
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Motivation for Lagrangian integrals
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Compensating 1st error term on the rhs is a responsibility of an FT advection scheme 

(e.g. MPDATA). The 2nd error term depends on the implementation of an FT scheme

forward-in-time temporal discretization:

Second order Taylor expansion about t=nδt  &  Cauchy-Kowalewski procedure 

Motivation for Eulerian integrals
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Given availability of a 2nd order  FT algorithm for the homogeneous problem (R≡0), 

a 2nd order-accurate solution  for an inhomogeneous problem with “arbitrary” R is:

“Banach principle”, an important tool for systems with nonlinear right-hand-sides:

Eulerian semi-implicit compressible algorithms 

1892-1945
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Semi-implicit formulations  (solar MHD example)

 thermodynamic/elliptic problems for “pressures” Φ



semi-implicit  ``acoustic’’ scheme:

in some detail for compressible Euler PDEs 

of all-scale atmospheric dynamics 

(RE: Banach principle)

simple but computationally  unaffordable; example 

(RE: thermodynamic  pressure)
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elliptic boundary value problems (BVPs):

Poisson problem in soundproof models relies on the mass continuity equation

and …

diagonally preconditioned Poisson problem for pressure perturbation



(RE: elliptic  pressure)
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And how  does one solve this “thing” ?

Helmholtz problems for large-time-step compressible models also rely on mass continuity equation:

combine the evolutionary form of the gas law & mass continuity in the 

AP  for pressure perturbation, to then derive the Helmholtz problem
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Part II:      Integration Schemes

Helmholtz, 

1821-1894

Poisson, 

1781-1840

Krylov, 

1863-1945
Richardson, 

1881-1953

B) Elliptic solvers for boundary value problems (BVP) in atmospheric models

Schur, 

1875-1941

http://www.google.co.uk/url?sa=i&source=imgres&cd=&cad=rja&uact=8&ved=0CAwQjRw&url=http://www.nndb.com/people/445/000072229/&ei=05RHVa_PG87aat_ZgYgN&psig=AFQjCNF8Cpo5tm-1LQ1-AG4puomZxDcJvw&ust=1430840915702918
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Direct  methods (e.g.,  spectral, Gaussian elimination, conjugate-gradients (CG)) 

vs.    Iterative methods (e.g., Gauss-Seidel, Richardson, multigrid, CG) 

Taxonomy:

Matrix inversion  vs.  matrix-free methods

Approximate vs.  Exact projection  user-friendly libraries vs. bespoke solvers

Multiple terminologies & classifications; common grounds; the state-of-the-art

Basic tools and concepts:

Banach principle,  Neumann series,  Gaussian elimination,  Thomas 3-diagonal 

algorithm, Fourier transformation, calculus of variations, multigrid 

Physical analogies:

Heat equation, damped oscillation equation,  energy minimisation
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Notion of variational Krylov-subspace solvers: i) basic concepts and definitions

≡



where is the solution error, so 

where is the domain integral 

gives the exact solution toas provided

:= negative definiteness (comments on 

dissipativity, semi-definiteness and null spaces)

symbolism:

pseudo-time augmentation

linear BVP 
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i) basic concepts and definitions, cnt.

Next, the “energy” functional





given

:= self-adjointness or symmetry  in matrix representation,

a common property of Laplacian, since 

(comment  on suitable boundary conditions) 
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i) basic concepts and definitions, cnt. 2

only for exact solution, otherwise it defines the residual error 

can be rewritten as







Richardson iteration  ( )

(comments on stability vs convergence, and spectral implications) 
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Notion of variational Krylov-subspace solvers:  ii)  canonical schemes

Steepest descent and minimum residual

By the same arguments like applied to continuous equations , Richardson iteration implies 

For self adjoint operators         implies 

Because the exact solution minimises the energy functional, 

one way to assure the optimal convergence is to minimise

and 



And from self adjointness

Steepest descent
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Digression, orthogonality of subsequent iterates  



Minimum residual: Self adjointness can be difficult to achieve in practical models, the minimum 

residual circumvents this by minimising instead  



Steepest descent and minimum residual are important  for understanding, but otherwise 

uncompetitive. The true foundation is provided by conjugate gradients and residuals

 3 term recurrence formula 

a.k.a 2nd order Richardson, due to Frankel 1950
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

Conjugte gradient (CG) and conjugate residual (CR):

the coefficients of which could be determined via norms’ minimisation, analogous to steepest 

descent and minimum residual, or instead  

CG CR
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The best asymptotic convergence rate one can get from plain CG methods is in 

the  inverse proportionality to (condition number )1/2  of  the problem at hand 

… variational Krylov-subspace solvers:  iii)  operator  preconditioning

P (“left” preconditioner) approximates L  but is easier to invert. 

Preconditioned conjugate  residual:

replacing 
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



Preconditioners,  e ≈ P 
-1
(r), examples:

1)

2)

3)
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Non-symmetric preconditioned generalized conjugate residual scheme GCR(k):
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A few remarks on boundary conditions:

LH CE
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Principal conclusions

1. Soundproof and compressible all-scale models form complementary elements of  a general 

theoretical-numerical framework that underlies non-oscillatory forward-in-time (NFT) flow solvers.

2. The respective PDEs are integrated using essentially the same numerics. 

3.The resulting flow solvers can be available in compatible Eulerian and semi-Lagrangian variants

4. The flux-form flow solvers readily extend to unstructured-meshes and generalised forms of the 

governing PDEs (Smolarkiewicz, Kühnlein & Wedi , JCP, 2019) 
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